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Abstract
We consider stochastic programs with joint chance constraints with discrete random distribu-
tion. We reformulate the problem by adding auxiliary variables. Since the resulting problem
has a non-regular feasible set, we regularize it by increasing the feasible set. We solve the
regularized problem by iteratively solving amaster problemwhile adding Benders’ cuts from
a slave problem. Since the number of variables of the slave problem equals to the number of
scenarios, we express its solution in a closed form. We show convergence properties of the
solutions. On a gas network design problem, we perform a numerical study by increasing the
number of scenarios and compare our solution with a solution obtained by solving the same
problem with the continuous distribution.
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1 Introduction

In many real-world applications, the data is inherently random. This randomness many stem
from many different sources: Let us mention imprecise parameter measurements, the neces-
sity to consider future weather conditions or random people behavior, see the discussion in
Wiecek and Dranichak (2016). In such cases, deterministic problem formulation may per-
form subpar and it may be advantageous to consider stochastic (random) formulation where
some parameters are not considered fixed but random. There are two basic approaches.

In the robust optimization Ben-Tal and Nemirovski (1998), all possible realizations of the
random parameters are given and a solution performing best for the worst-case scenario is
sought for. Even though this may be the correct concept, for example, an ambulance has to
reach its patient within a certain time limit, no matter where the patient is, this approach is
usually too restrictive.

On the other hand, for the stochastic optimization Birge and Louveaux (2011) the distri-
bution of the random parameters is assumed to be known. There are many approaches how
to handle this problem: For example to optimize the objective for a nominal scenario or in
expectation if the uncertainties are in the objective. In this paper, we will consider Chance-
constrained problems (CCP). For this class of problems, the randomness appears only in the
constraints and instead of requiring the constraints to be satisfied for all scenarios, it allows
small violation of the constraints. Namely, we require that for some small ε ∈ (0, 1) it is
sufficient that the constraints are satisfied with probability 1−ε. This provides a compromise
between good system performance and satisfying the random constraints.

First, we give an overview of the main results concerning CCP. A general approach
called sample (empirical) approximation is based on substituting the underlying continuous
distribution by a finite sample and on reformulation as a (large) mixed-integer programming
problem. The crucial question is the choice of the sample size, which is usually based on
the exponential rates of convergence derived, e.g., by Kaňková (1990), Luedtke and Ahmed
(2008). However, these estimates can be too conservative, cf. Henrion (2013). Recently,
Barrera et al. (2016) employed the importance sample technique to solve a chance constrained
telecommunications problemwith Bernoulli input distributions. Exploiting its structure, they
derived conditions to ensure a uniform variance reduction. In Curtis et al. (2018), the authors
locally approximated the feasible set and applied a trust region method to solve the chance
constrained problem. The local approximation allowed to consider only a few active scenarios
at each iteration.

For linear constraints andfinite discrete distribution, strong results and algorithms based on
cutting planes for mixed-integer reformulations are available, cf. Beraldi and Bruni (2010),
Luedtke (2014), Luedtke et al. (2010). Recently, Küçükyavuz (2012), Zhao et al. (2017)
derived new strong valid inequalities based on an intersection of multiple mixing sets for the
chance constrained problems with a random right-hand side.

When the random parts of constraints are separated from the decision variables, we obtain
the case with a random right-hand side. In this case, the basic approach to individual chance
constraints is to use quantiles and to reformulate the chance constraints in a deterministic
way. This approach can be extended to joint chance constraints under discrete distribution
using p-level efficient points (pLEPs) introduced by Prékopa (1990), which generalize the
notation of quantiles to themultivariate case, see alsoDentcheva et al. (2000), Lejeune (2012),
Lejeune and Noyan (2010) for recent results. By adopting a dual point of view, van Ackooij
et al. (2017) developed a solution framework based on a recent generation of bundle methods.
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Nonlinear programming algorithms were suggested for chance constrained problems by
Prékopa (2003) and further developed by Dentcheva and Martinez (2012), Dentcheva and
Martinez (2013). Recently, Geletu et al. (2017) proposed a smooth approximation approach
employing an inner and an outer analytic approximation of chance constraints leading to
two classes of nonlinear programming problems. In Xie and Ahmed (2017) the authors
introduced quantile cuts which can be obtained as a projection of the mixing inequalities
valid for the MINLP reformulation onto the original problem space. The paper further shows
that a recursive application of quantile closure operations recovers the convex hull of the
nonconvex chance constrained set in the limit.

A wide class of approaches is based on approximating the indicator function by a more
tractable function. Approximation based on conditional value at risk has been deeply investi-
gated by Rockafellar and Uryasev (2000), Rockafellar and Uryasev (2002), Sun et al. (2014).
Similar ideas were used by Haneveld and van der Vlerk (2006) who employed the so-called
integrated chance constraints. Bernstein approximation has been introduced by Nemirovski
and Shapiro (2007) for constraints affine in random coefficients and further developed by
Ahmed (2014). Recently, algorithmic approaches based on representation using a difference
of convex (DC) functions appeared in the literature, see Shan et al. (2014), Sun et al. (2014),
Wozabal et al. (2010). A second-order cone programming reformulation was obtained by
Cheng and Lisser (2012) for problems with linear constraints under normally distributed
random coefficient and under independence and copula dependence of the rows. For these
linear-Gaussian problems, Henrion and Möller (2012) provided an explicit gradient formula
and derived an efficient solution procedure.

Convexity is a desirable property which is often violated for CCP. Apart from well-known
cases based on log-concavity and its generalizations Prékopa (1995), Shapiro et al. (2009),
it was investigated and recently verified for general problems with high probability levels
by Henrion and Strugarek (2008), van Ackooij (2015), van Ackooij and Malick (2018). A
special attention has been paid to the stability of the optimal values and solution with respect
to the changes of the probability distribution Branda and Dupačová (2012), Henrion and
Römisch (2004). Various approximations and worst-case bounds for distributionally robust
chance constraints were derived by Chen et al. (2010), Zymler et al. (2013).

Our new algorithmic approach relies on using the Benders’ decomposition. It has already
been considered in conjunction with chance constraints by Luedtke (2014), van Ackooij et al.
(2016), Zhang et al. (2017). The readers can be also referred to the survey Rahmaniani et al.
(2017) for further insights.

In this paper we extend and combine our earlier workAdam andBranda (2016) andGotzes
et al. (2016). In Adam and Branda (2016) we considered discrete distribution and proposed a
method for solving CCP with individual chance constraints. We introduced binary variables
for each scenario, relaxed these variables and derived necessary optimality conditions and
equivalence between the original and the relaxed problems. Since standard constraint quali-
fications are not satisfied for the relaxed problem, we regularized it by increasing the feasible
set and showed the convergence properties of solutions of the regularized problem. Finally,
we applied this approach to a portfolio optimization problem.

InGotzes et al. (2016)we built on the results ofM.BertocchiAllevi et al. (2007),Maggioni
et al. (2010) on gas networks.We considered a gas networkwith randomdemands at all nodes.
We showed an equivalent condition for satisfying all demands. For normally distributed
scenarios we proposed a method for computing values and gradients of chance constraints
based on the spheric-radial decomposition of normal random vectors. Finally, we optimized
the network design Gonzalez Grandon et al. (2017) via a simple projection method.

Our contribution in this paper is the following:
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– We extend the results of Adam and Branda (2016) to problems with joint chance con-
straints by approximating the chance constrained problem by a regularized problem.

– Even when the data is convex, the feasible set of the chance constrained problem is only
a union of convex sets and thus nonconvex. However, we show that under convex data
stationary points are local minima. In Theorem 5 we propose a general result which also
implies that strong stationary points for MPECs or MPCCs with convex data are local
minima.

– Since the number of variables in the regularized problem equals to the sum of the number
of original variables and the number of scenarios, it is usually intractable. To solve this
issue, we propose a Benders’ decomposition algorithm for the regularized problem. The
algorithm consists of two parts: The outer part solves the master problem which depends
only on the original variables. The inner part solves a slave problemwhich adds feasibility
cuts to the master problem. Since the number of variables in the slave problem depends
on the number of scenarios, we derive a closed-form solution for it.

– We propose a heuristic method for obtaining a fast high-quality solution. This is based
on artificially requiring that the chance constraint is satisfied with a higher probability
than the prescribed level.

– Since ourmethod requires a discrete distribution,we empirically examine its convergence
by increasing the number of scenarios. We compare it with the method from Gotzes et al.
(2016) which works directly with a continuous distribution. On a numerical example, we
show that our method may perform better.

– The codes are available online.1

The paper is organized as follows: In Sect. 2 we derive theoretical results extending our work
from Adam and Branda (2016) and we briefly summarize the results of Gotzes et al. (2016).
Since the proof techniques are rather similar to those of Adam and Branda (2016), we moved
the proofs to the Appendix. In Sect. 3 we propose the numerical method of alternatively
solving the master problem and adding feasibility Benders’ cuts via the slave problem. We
show how to get an explicit solution for the slave problem and that the number of possible
cuts is finite. In Sect. 4 we demonstrate that we obtain a high-quality solution on a problem
with 10,000 scenarios within a few minutes.

2 Methodology and algorithms

The joint chance constrained problem may be formulated as follows:

minimize
x

f (x)

subject toP(g1(x, ξ) ≤ 0, . . . , gK (x, ξ) ≤ 0) ≥ 1 − ε,

h j (x) ≤ 0, j = 1, . . . , J .

(1)

Here x ∈ R
n is the decision variable, 0 < ε < 1 is a prescribed probabilistic level, f : Rn →

R, gk : Rn ×R
d → R and h j : Rn → R are functions which are continuously differentiable

in variable x and finally ξ ∈ R
d is a random vector with known probability distribution P.

1 http://staff.utia.cas.cz/adam/research.html.
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2.1 Comparison of discrete and continuous approaches

As we have mentioned in the introduction, concerning the probabilistic distribution there are
two basic approaches to solve (1). In the first one, a finite number of scenarios is sampled
and the chance constraint is replaced by its discrete approximation. In the second one, we
keep the continuous distribution. The scenario approach has the following advantages:

– Lower requirements on the random distribution. For example, it suffices to know only
the empirical distribution whereas for the continuous approach, a special distributional
assumption such as normality is often needed.

– Lower requirements on the data (e.g., in the application in Sect. 4 it allows to work with
cycles).

However, its biggest disadvantage is that it can handle only a restricted number of scenarios,
thus the precision of the solution will be limited compared with the approach based on an
underlying continuous distribution.

2.2 Discrete (scenario) approach

In this part, we discretize the continuous distribution into possible realizations ξ1, . . . , ξS .
Assuming that these realizationmayhavedifferent probabilities,wedenote these probabilities
by p1, . . . , pS . We may then reformulate problem (1) into

minimize
x

f (x)

subject to
S∑

i=1

piχ(max
k

gk(x, ξi ) ≤ 0) ≥ 1 − ε,

h j (x) ≤ 0, j = 1, . . . , J ,

(2)

where χ stands for the characteristic function which equals to 1 if maxk gk(x, ξi ) ≤ 0 and to
0 otherwise. Introducing artificial binary variable y ∈ {0, 1}S to deal with χ , we obtain the
following mixed–integer nonlinear problem

minimize
x,y

f (x)

subject to p�y ≥ 1 − ε,

yi ∈ {0, 1}, i = 1, . . . , S,

gk(x, ξi )yi ≤ 0, k = 1, . . . , K , i = 1, . . . , S,

h j (x) ≤ 0, j = 1, . . . , J .

(3)

Since this problem is difficult to tackle bymixed-integer (nonlinear) programming techniques
in any of the previous forms, we relax binary variable yi ∈ {0, 1} into yi ∈ [0, 1] to obtain
the nonlinear programming problem

minimize
x,y

f (x)

subject to p�y ≥ 1 − ε,

0 ≤ yi ≤ 1, i = 1, . . . , S,

gk(x, ξi )yi ≤ 0, k = 1, . . . , K , i = 1, . . . , S,

h j (x) ≤ 0, j = 1, . . . , J .

(4)

123



Annals of Operations Research

Fig. 1 Feasible sets of problems (3) (top left), (4) (top right) and (8) (bottom left) and regularization φt from
(10) (bottom right)

In the subsequent text, we denote (4) as the relaxed problem and (2) as the original problem.
The feasible relations for yi and gk(x, ξi ) are depicted in the top row of Fig. 1. The feasible

set of problem (2) can be written as a union of “nice” sets. The following index powersets
will locally describe this decomposition:

Ĩ (x) :=
⎧
⎨

⎩ Ĩ ⊂ {1, . . . , S} : maxk gk(x, ξi ) < 0 �⇒ i ∈ Ĩ ,

maxk gk(x, ξi ) > 0 �⇒ i /∈ Ĩ ,

∑

i∈ Ĩ
pi ≥ 1 − ε

⎫
⎬

⎭,

I (x) := minimal elements of Ĩ (x) with respect to set inclusion.

Note that any I ∈ I (x) always contains all scenario indices where the random constraint
is strictly satisfied and never contains scenario indices where the random constraint is not
satisfied. The reason for this is that in both cases a small perturbation in x will not change
whether the inequality is satisfied or violated. For the scenarios where the random constraint
is satisfied as the equality, we select an arbitrary scenario subset such that the prescribed
probability level 1 − ε is achieved.

Even though these problems are not equivalent, see (Adam and Branda 2016, Example
2.1), there are close similarities between them, as stated in the next result.

Proposition 1 A point x̄ is a global minimum of problem (2) if and only if there exists ȳ such
that (x̄, ȳ) is a global minimum of problem (4). A point x̄ is a local minimum of problem (2)
if and only if for all I ∈ I (x̄) the point (x̄, ȳ) is a local minimum of problem (4), where
ȳi = χ(i ∈ I ).

When actually solving an optimization problem, we usually search for stationary points
instead of local minima. To derive stationary conditions for problems (2) and (4), we define
the following sets of active indices

I0(x) := {i : maxkgk(x, ξi ) = 0}, I00(x, y) := {i : i ∈ I0(x), yi = 0},
K i
0(x) := {k : gk(x, ξi ) = 0}, I0+(x, y) := {i : i ∈ I0(x), 0 < yi ≤ 1},
J0(x) := {

j : h j (x) = 0
}

and the following constraint qualification. Note that its second part is close to the standard
Mangasarian-Fromovitz constraint qualification in its dual form.

Assumption 1 Let x̄ be a feasible point of problem (2). Assume that at least one of the
following two conditions is satisfied:
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– function gk(·, ξi ) and h j are affine linear.
– the following implication is satisfied for all I ∈ I (x̄):

∑

i∈I0(x̄)

∑

k∈Ki
0(x̄)

λik∇x gk(x̄, ξi ) +
∑

j∈J0(x̄)

μ j∇h j (x̄) = 0

λik ≥ 0, i ∈ I0(x̄) ∩ I , k ∈ K i
0(x̄)

λik = 0, i ∈ I0(x̄) \ I , k ∈ K i
0(x̄)

μ j ≥ 0, j ∈ J0(x̄)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

�⇒ λik = 0, i ∈ I0(x̄), k ∈ K i
0(x̄),

μ j = 0, j ∈ J0(x̄).

(5)

Finally, we derive the stationarity conditions for both problems.

Theorem 1 Let x̄ be a local minimum of problem (2) and let Assumption 1 be satisfied at x̄ .
Then for every I ∈ I (x̄) there existmultipliersλik , i ∈ I0(x̄), k ∈ K i

0(x̄)andμ j , j ∈ J0(x̄)
such that

∇ f (x̄) +
∑

i∈I0(x̄)

∑

k∈Ki
0(x̄)

λik∇x gk(x̄, ξi ) +
∑

j∈J0(x̄)

μ j∇h j (x̄) = 0, (6a)

λik ≥ 0, i ∈ I0(x̄) ∩ I , k ∈ K i
0(x̄), (6b)

λik = 0, i ∈ I0(x̄) \ I , k ∈ K i
0(x̄), (6c)

μ j ≥ 0, j ∈ J0(x̄). (6d)

Let (x̄, ȳ) be a local minimum of problem (4) and let Assumption 1 be satisfied at x̄ , where
for its second part we check system (5) only for I = I0+(x̄, ȳ) and not for all I ⊂ I (x̄).
Then there exist multipliers λik, i ∈ I0(x̄), k ∈ K i

0(x̄) and μ j , j ∈ J0(x̄) such that

∇ f (x̄) +
∑

i∈I0(x̄)

∑

k∈Ki
0(x̄)

λik∇x g(x̄, ξi ) +
∑

j∈J0(x̄)

μ j∇h j (x̄) = 0, (7a)

λik ≥ 0, i ∈ I0+(x̄, ȳ), k ∈ K i
0(x̄), (7b)

λik = 0, i ∈ I00(x̄, ȳ), k ∈ K i
0(x̄), (7c)

μ j ≥ 0, j ∈ J0(x̄). (7d)

We briefly comment on these conditions. First, ȳ enters system (7) only through index
sets I00(x̄, ȳ) and I0+(x̄, ȳ). Second, the difference between (6) and (7) is only in the b) and
c) part, where the signs are prescribed for different indices. This leads to the following result.

Corollary 1 Consider a feasible point x̄ of problem (2) and let Assumption 1 be satisfied at
it. Then x̄ is a stationary point of problem (2) if and only if for all I ∈ I (x̄) the point (x̄, ȳ)
with ȳi = χ(i ∈ I ) is a stationary point of problem (4).

Interestingly, under convex data, stationary points are also local minima even though the
problem is nonconvex. This follows directly from the general result in Theorem 5 at page 18
in the Appendix.

Theorem 2 Let f (·), gk(·, ξi ) and h j (·) be convex function for all i , j and k. If a feasible
point x̄ of (4) satisfies the stationary conditions (7), then it is a local minimum of problem
(4).
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Unfortunately, as argued in (Adam and Branda 2016, Remark 2.1), the Mangasarian-
Fromovitz constraint qualification is often not satisfied for problem (4). For these reasons,
we propose an additional technique which is based on a well-known solution approach to
mathematical problems with complementarity constraints, see Scholtes (2001). This tech-
nique enlarges the feasible set and solves the resulting regularized problem while driving the
regularization parameter t to infinity. Thus, we consider regularized problem

minimize
x,y

f (x)

subject to p�y ≥ 1 − ε,

0 ≤ yi ≤ 1, i = 1, . . . , S,

yi ≤ φt (gk(x, ξi )), k = 1, . . . , K , i = 1, . . . , S,

h j (x) ≤ 0, j = 1, . . . , J .

(8)

Here, φt : R → R is chosen in such a way that driving t to infinity ensures that yi approaches
zero for the violated constraint gk(x, ξi ) > 0. Namely, φt is a family of continuously differ-
entiable decreasing functions which depend on the regularization parameter t > 0 and which
satisfy the following properties:

φt (0) = 1, (9a)

φt (z) > 0 for z ∈ R, (9b)

φt (z
t ) → 0 whenever zt

t→∞→ z̄ > 0 for some z̄, (9c)

φ′
t (z

t )

φ′
t (z̃t )

→ 0 whenever φt (z
t ) ↘ 0 and φt (z̃

t ) → z̄ > 0 for some z̄. (9d)

As an example of such regularizing function, we may consider

φt (z) =
⎧
⎨

⎩

e−t z if z ≥ 0, (10a)

1 − c

(t + 1)2
arctg

(
t(t + 1)2

c
z

)
if z < 0, (10b)

where c > 0 is an arbitrary parameter. Note that form of φt on the negative numbers (10b)
is not important for (8). Indeed, consider any scenario i and any k with gk(x, ξi ) < 0. Since
φt (0) = 1 and φt is decreasing by assumptions, this means that φt (gk(x, ξi )) > 1. But since
the upper bound on yi reads yi ≤ min{1, φt (gk(x, ξi ))} = 1, the exact form (10b) is not
important. However, it will play a crucial role later when the feasible region is approximated
via Benders’ cuts; we comment more on this in the next section. The feasible relation for yi
and gk(x, ξi ) for (8) and the regularizing function φt from (10) are depicted in the bottom
row of Fig. 1.

Nowwe justify the use of the regularized problem and show that it is a good approximation
of the original problem. Note that we have to impose the second part of Assumption 1 as
certain boundedness of multipliers is needed.

Theorem 3 Consider (x̄ t , ȳt ) to be stationary points of problem (8). Assume that the second
part of Assumption 1 is satisfied at x̄ and that (x̄ t , ȳt ) → (x̄, ȳ) for some (x̄, ȳ) as t → ∞.
Then (x̄, ȳ) is a stationary point of problem (4). Moreover, if f (·), gk(·, ξi ) and h j (·) are
convex function for all i , j and k, it is even a local minimum of problem (4).

We summarize the previous results in Algorithm 2.1. Note that due to Theorem 3 the
resulting point (x̄, ȳ) is only a stationary point of the relaxed problem (4) and due to Corollary
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1, x̄ does not have to be a stationary point of the original problem (2). However, as the
numerical experience in Adam and Branda (2016) suggests, it often happens that I (x̄) has
only a single element and then x̄ becomes the stationary point of the original problem (2) as
well. Our conjecture is that this happens due to the regularizing properties of (8).

Algorithm 2.1 for solving problem (1)

Input: starting point (x0, y0), regularization parameters 0 < t1 < · · · < t L

1: for l = 1, . . . , L do
2: find (xl , yl ) solving (8) with tl and starting point (xl−1, yl−1)
3: if (xl , yl ) is feasible for (4) or termination criterion is satisfied then
4: break
5: end if
6: end for
7: return x̄ = xl

2.3 Continuous approach

For the sake of comparison, we present an alternative numerical solution approach addressing
Gaussian and Gaussian-like distributions of the random vector without sampling. It is based
on the so-called spheric-radial decomposition of Gaussian random vectors Genz and Bretz
(2009) which has been successfully applied to chance constrained optimization problems
Déak (2000), Gonzalez Grandon et al. (2017), Royset and Polak (2007).

Theorem 4 Let ξ be a d-dimensional Gaussian random vector distributed according to ξ ∼
N (μ,Σ). Then for any Borel measurable subset A ⊂ R

d it holds that

P (ξ ∈ A) =
∫

v∈Sd−1
μχ

{
r ≥ 0 | (r Lv + μ) ∩ A �= ∅}

dμη,

where L is such that Σ = LLT (e.g., Cholesky decomposition), μχ is the Chi-distribution
with d degrees of freedom and μη is the uniform distribution over the Euclidean unit sphere
S
d−1.

Accordingly, the x-dependent probability in (1) can be represented as

P(g1(x, ξ) ≤ 0, . . . , gK (x, ξ) ≤ 0) =
∫

v∈Sd−1
μχ {r ≥ 0 | max

k=1,...,K
gk(x, r Lv + μ) ≤ 0}dμη.

Numerically, the chance constraint in (1) is then approximated as a finite sum

N∑

i=1

μχ

{
r ≥ 0 | max

k=1,...,K
gk(x, r Lvi + μ) ≤ 0

} ≥ 1 − ε,

where {v1, . . . , vN } is a sample (e.g. extracted from aQuasiMonte-Carlo sequence) approxi-
mating the uniform distribution on the unit sphere. In order to set up a nonlinear optimization
algorithm solving problem (1) subject to a Gaussian random vector ξ , one has not only to
compute (approximate) the probabilities above but also their gradients with respect to the
decision variable x . As shown in van Ackooij and Henrion (2014), van Ackooij and Henrion
(2017), the gradients can be represented as spheric integrals too (just with different inte-
grands), so that one and the same sample vi can be employed in order to update values and

123



Annals of Operations Research

gradients of the probabilities above. In the numerical section, we embedded this strategy into
a simple projected gradient method.

3 Numerical method

The biggest disadvantage of solving (8) is that variables x and y are treated in an equal
manner. Since y corresponds to the scenarios, this nonconvex problem becomes numerically
intractable when the number of scenarios is large. In this section, we propose a method to
eliminate y based on Benders’ decomposition and derive a basic convergence analysis.

3.1 Cut generation for fixed t

In this part we consider a fixed t and derive an outer approximation of the feasible set of (8).
To this aim, consider the master problem

minimize
x

f (x)

subject to vb(x) ≤ 0, b = 1, . . . , B − 1,

h j (x) ≤ 0, j = 1, . . . , J .

(11)

Here, f is the same objective as in (8) and vb(x) ≥ 0 are cuts which provide an outer
approximation of the feasible region of (8) in the x dimension. If an optimal solution x̂ of
(11) is a feasible point for (8), then (x̂, y) is also an optimal solution of (8) for some y. In the
opposite case, we generate a Benders’ cut vB(x) ≤ 0, which cuts away x̂ from the feasible
region of (11) but does not cut away any feasible point of (8), increase B and iterate. Thus
the approximation stays an outer one. The feasibility Benders’ cut is based on the feasible
set of (8). For fixed x̂ we define the linear slave problem

minimize
y

0

subject to p�y ≥ 1 − ε,

0 ≤ yi ≤ 1, i = 1, . . . , S,

yi ≤ φt (gk(x̂, ξi )), k = 1, . . . , K , i = 1, . . . , S.

(12)

Its optimal value is 0 if x̂ is feasible for (8) and +∞ otherwise. The dual problem for (12)
reads

maximize
u,v,w

K∑

k=1

S∑

i=1

φt (gk(x̂, ξi ))uik + v(1 − ε) +
S∑

i=1

wi

subject to
K∑

k=1

uik + vpi + wi ≤ 0, i = 1, . . . , S,

uik ≤ 0, v ≥ 0, wi ≤ 0.

(13)

Since the feasible region of (13) is a cone, its optimal value is zero or it is unbounded. In
the former case, the optimal value of (12) is also zero, which means that x̂ is optimal for (8).
In the latter case, the dual slave problem (13) is unbounded in some direction (û, v̂, ŵ) and
under the light shed by Lemma 1 below we construct the feasibility Benders’ cut
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vB(x) :=
K∑

k=1

S∑

i=1

φt (gk(x, ξi ))ûik + v̂(1 − ε) +
S∑

i=1

ŵi ≤ 0, (14)

add it to the master problem (11) and continue in the same way.

Lemma 1 Assume that problem (12) does not have a feasible solution. Then cut (14) is valid,
thus vB(x̂) > 0 and vB(x) ≤ 0 if x is feasible for (8).

Proof Since (13) is unbounded in direction (û, v̂, ŵ), we immediately get vB(x̂) > 0. Con-
sider now any feasible point x of (8). Then the optimal value of (12) with x̂ replaced by x
equals to zero and the same holds for (13). Now first observe that (û, v̂, ŵ) is feasible for
(13) and so vB(x) ≤ 0, which concludes the proof. ��

Even though (13) is a linear problem, it still depends on the number of scenarios S. We
will derive its explicit solution, which means that we are able to generate the cuts quickly
even for large S. Since the feasible set of (13) is a cone and the objective is linear, we may
consider only v ∈ {0, 1}. If v = 0, then constraint

∑K
k=1 uik + vpi + wi ≤ 0 is redundant

and we may decompose (13) into S problems, from which we obtain wi = 0. Since φt is
positive, we also obtain uik = 0. Consider thus v = 1. Then we may again decompose (13)
into S problems

maximize
uik ,wi

K∑

k=1

φt (gk(x̂, ξi ))uik + wi

subject to
K∑

k=1

uik + wi ≤ −pi ,

uik ≤ 0, wi ≤ 0.

This problem has, together with v̂ = 1, the explicit solution

max
k

gk(x̂, ξi ) > 0 �⇒ φt (gk̂i (x̂, ξi )) < 1 �⇒ ûik = 0 for k �= k̂i , ûi k̂i = −pi , ŵi = 0,

max
k

gk(x̂, ξi ) ≤ 0 �⇒ φt (gk(x̂, ξi )) ≥ 1 �⇒ ûik = 0 for k �= k̂i , ûi k̂i = 0, ŵi = −pi ,

(15)
where k̂i := argmaxk gk(x̂, ξi ). Then if the objective of (13) is positive, thus if

∑

i∈I (x̂)
piφt (gk̂i (x̂, ξi )) < 1 − ε −

∑

i /∈I (x̂)
pi , (16)

where I (x̂) := {i | maxk gk(x̂, ξi ) > 0}, then problem (13) is unbounded and cut (14)
amounts to ∑

i∈I (x̂)
piφt (gk̂i (x, ξi )) ≥ 1 − ε −

∑

i /∈I (x̂)
pi . (17)

If (16) does not hold, x̂ is optimal for (8). Note that the cut (17) is in an explicit form and
depends only on x̂ .

3.2 Algorithm summary and convergence analysis

Denote the projections of the feasible sets of (8) and (4) into the x dimension by Zt and Z∞,
respectively. For any t1 < t2 we have Zt1 ⊃ Zt2 ⊃ Z∞. This means that cuts generated for

123



Annals of Operations Research

(8) for t = t1 are also valid for problem (8) with t = t2. In other words, when we pass to a
larger t , it is not necessary to delete cuts from (11). We summarize the whole procedure in
Algorithm 3.1.

Algorithm 3.1 for solving problem (1)

Input: starting point (x0, y0), regularization parameters 0 < t1 < · · · < t L

1: B ← 1
2: for l = 1, . . . , L do
3: t ← tl

4: for B = 1, 2, . . . do
5: find x̂ l B solving (11)
6: if (16) is violated or termination criterion then
7: break for
8: else
9: add cut vB via (17)
10: end if
11: end for
12: if x̂ l B is feasible for (2) or termination criterion is satisfied then
13: break for
14: end if
15: end for
16: return x̄ = x̂ l B

Provided that L is finite, the number of loops in Algorithm 3.1 is finite, which follows
from two facts. First, since cuts (17) depend only on the index sets I (x), the number of
possible cuts is finite. Second, the same cut cannot be generated twice. To see this, assume
that first some x1 generates a cut v1(x) ≤ 0 and later some x2 generates the cut v2(x) ≤ 0
with v1 = v2. Due to Lemma 1 we have v2(x2) > 0. However, since x2 is feasible for the
regularized problem, we also have v1(x2) ≤ 0. But this is a contradiction with v1 = v2. Thus,
we have the finite convergence. Moreover, Lemma 5 in the Appendix states that (û, v̂, ŵ)

derived in (15) is an extremal direction of (13).
Finally, from the discussion in Appendix C, there are K S “best” cuts. This has a direct

consequence for individual chance constraints with K = 1, where there is only one “best”
cut which in (17) corresponds to I (x̂) = {1, . . . , S} and takes the form

S∑

i=1

piφt (g1(x, ξi )) ≥ 1 − ε

which is nothing else than direct smoothing of chance constraints, see Shan et al. (2014).
This cut is also close to the true feasible set which equals to

S∑

i=1

pi max{φt (g1(x, ξi )), 1} ≥ 1 − ε. (18)

Thus, the feasibility cuts (17) seems to provide a good approximation of the feasible set of
the regularized problem (8).

4 Numerical experiments

In this section, we show a good performance of our method on a gas network problemGotzes
et al. (2016).
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4.1 Application to gas network design problem

We consider a gas network described as follows:

– withdrawal points (exit nodes) V = {1, . . . , n}with random exit loads ξ = (ξ1, . . . , ξn);
– one injection point 0 corresponding to the root;
– directed edges (pipes) E with e = (i, j) ⊂ V × V and coefficient of the pressure drop

in Φe;
– lower and upper pressure bounds pmin

k , pmax
k .

For tree structured networks without cycles, it was shown in Gotzes et al. (2016) that a
random demand ξ can be satisfied if and only if

(pmin
0 )2 ≤ (pmax

k )2 + hk(ξ), k = 1, . . . , |V |,
(pmax

0 )2 ≥ (pmin
k )2 + hk(ξ), k = 1, . . . , |V |,

(pmax
k )2 + hk(ξ) ≥ (pmin

l )2 + hl(ξ), k, l = 1, . . . , |V |,
(19)

Here, functions hk(ξ) can be computed by

hk(ξ) =
∑

e∈Π(k)

Φe

⎛

⎝
∑

l∈V , l�π(e)

ξ l

⎞

⎠
2

,

where Π(k) denotes the unique directed path (edges) from the root to node k, k � l means
that the unique path from root to k passes through l and π(e) is the end node of edge e.

There are many ways of defining the objective. The simplest way is to minimize the upper
pressure bounds, which with a cost vector c, results in

minimize
pmax

c� pmax

subject toP(system (19) is fulfilled) ≥ 1 − ε.

(20)

The minimal capacities pmin are usually considered to be fixed. Then we can reduce the
number of inequalities in (19) to (pmax

k )2 ≥ νk , k = 0, 1, . . . , |V |, where we make use of
h0(ξ) ≡ 0 and where

ν0 := max
k=0,1,...,|V |

{
(pmin

k )2 + hk(ξ)
}

,

νk := ν0 − hk(ξ).

(21)

Then problem (20) reduces to

minimize
pmax

c� pmax

subject toP
(
(pmax

0 )2 ≥ ν0, . . . , (p
max
n )2 ≥ νn

) ≥ 1 − ε.

(22)

Note that the resulting regularized problem (8) has n+1+S variables, 1+(n+1)S nonlinear
constraints and additional 2S bound constraints.

4.2 Parameter description

In this section, we describe the choice of model parameters and their updates. According to
(Koch et al. 2015, Chapter 13), random gas loads can often be described by combinations
of Gaussian-like multivariate distributions (Gaussian, truncated Gaussian, log-normal). For
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simplicity, we shall assume here a multivariate Gaussian distribution as in Theorem 4 with
mean μ and covariance matrix Σ . For both methods described in Sect. 2, we employed
Quasi-Monte Carlo (QMC) sampling on the basis of Sobol sequences as a special case
of low-discrepancy sequences that are included in the category of (t,m, d)-nets and (t, d)

sequences Dick and Pillichshammer (2010).
For the application of our discrete (scenario) method, a QMC sample of 10,000 scenarios

was created according to the given distributionN (μ,Σ) and processed as described below.
For the continuous approach via spheric-radial decomposition presented in Sect. 2.3, a QMC
sample of 100,000 scenarios was created according to a standard Gaussian distribution (zero
mean and identity covariancematrix). Normalizing each scenario to unit length then provides
a sample of the uniform distribution on the sphere as required in the simultaneous update
of values and gradients of the probability function (see the text below Theorem 4). The
superiority of the QMC sampling (in particular when combined with the variance-reducing
spheric-radial decomposition) over the crudeMonte-Carlo of the given Gaussian distribution
is highlighted in (Gotzes et al. 2016, p. 454).

The probability level is chosen as 0.85, i.e., ε = 0.15. For the discrete approach, we used
the 10,000 QMC scenarios of the given Gaussian distribution as mentioned above. Then we
applied Algorithm 3.1 to solve (20) with a fixed number of scenarios

S ∈ {100, 300, 500, 1000, 3000, 5000, 10,000}

as many times as possible before exhausting the total sample. Hence, we solved the problem
altogether 100 times for S = 100, 33 times for S = 300 and so on. For the presentation of
results, we then averaged the results. For indicating a fairly precise value of the probability
for the final solution (not for the discrete method itself), we employed the continuous method
via spheric-radial decomposition (with 100,000 QMC samples).

We solved the master problem (11) by the SQP method implemented in MATLAB’s
fmincon. We set the initial t1 = 10−5 and employed the simplest update rule t l+1 = 2t l .
At every iteration we computed some (xt , yt ). For all not-the-last t , we increased t whenever
constraint p�y ≥ 1 − ε − 0.0005 was satisfied or whenever we added 100 Benders’ cuts.
For the last t = t20 we stop the algorithm whenever p�yt ≥ 1 − ε.

Moreover, at every iteration of Algorithm 3.1 we performed the heuristic cut reduction
technique described in Appendix C. Since in (22) only the right-hand side is stochastic,
it should be possible to use the scenario reduction technique called bundle preprocessing
proposed by Lejeune and Noyan (2010). However, since our main goal is to test the perfor-
mance of the above-described algorithms, we do not implement this interesting method. For
algorithm details we refer to our codes available online.1

4.3 Numerical results

In this section, we solve problem (20) by both the discrete and continuous approach, thus
by the procedures described in Algorithm 3.1 and Sect. 2.3, respectively. We considered two
networks, small and medium, as depicted in Fig. 2.

Table 1 displays the results for both networks depicted in Fig. 2. Every column corresponds
to a given number of scenarios S. The rows depict the mean and standard deviation (SD) of
the obtained optimal value and probability, the number of solves of the master problem (11)
and the computational time. We present the reached true probability (computed for 100,000
samples as described above) and the reached probability inside the sample (computed from
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Fig. 2 Network topology of small (left) and medium (right) size network examples. The entry and exit points
of the considered gas transportation networks are displayed in black (entry) and white (exit), respectively

S samples on which the optimization was run). This corresponds to the standard machine
learning technique to dividing the data into training and testing sets Hastie et al. (2001).

There are several things worth mentioning. Namely, with increasing S:

– The probability in sample stays close to the desired 85%. This means that Algorithm 3.1
always either managed to find a solution or was close to it.

– The true probability increases, the objective gets worse and the standard deviation
decreases. This makes sense as the approximation of the true distribution gets better.

– The number of solves of (11) increases. We guess that cuts (14) provide a worse approx-
imation of the feasible set for large S and thus the efficiency decreases.

– The computational time increases significantly. This is connected with the number of
solves of (11) increases as well. Note that in every iteration problem (11) has the same
number of variables but the number of constraints increases.

Since the computational time is infeasible for a large number of scenarios, for S ≥ 1000we
employed a heuristic method to reduce it. Instead of ε = 0.15 all computation was performed
with ε = 0.14 for the small network and with ε = 0.13 for the medium network. The only
exception was the stopping criterion which was based on the original level ε = 0.15.

The results of this heuristic procedure are depicted in Table 2. For one out of the ten cases
for S = 1000, the optimization failed. First note that it happened that the probability level
in the sample is above 85% and that the true probability is higher than the probability in
the sample. This did not happen for Algorithm 3.1 in Table 1. The reason is that while the
designs presented in Table 1 are often at a local minimum, the results from Table 2 are only
close to it. However, the new heuristic method is significantly faster and even for the medium
network with S = 10,000 scenarios, the required time was only around 14 minutes. This is
a significant improvement from four days in Table 1.

Since all results have a different probability level, they are difficult to compare in terms of
the objective value. In Fig. 3 we depict the objective and the achieved probability level. The
probability was computed on a QMC sample with 100,000 samples. The diamond and the
gray filled circles show the performance of the ProGrad method and the heuristic method,
respectively. The empty circles show the result of the heuristic method after being the pro-
jection onto the boundary of the feasible set of (1) governed by the continuous normal
distribution. This projection was performed using the gradient information that is available
by the spheric-radial approach, see Sect. 2.3. Finally, the crosses show the results when the
final point of the heuristic method was used as the starting point for the ProGrad method.

For one sample the heuristic method obtained lower objective value while achieving
higher probability than the ProGrad method. For the remaining samples, it either obtained a
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Table 2 Results for the heuristic method based on Algorithm 3.1 for the small n = K = 4 and medium
n = K = 12 networks depicted in Fig. 2

Network Criterion Number of scenarios S

1000 3000 5000 10,000

Small Mean objective 740.1 739.7 741.2 739.4

Mean probability (true) [%] 84.67 84.94 85.28 85.31

Mean probability (sample) [%] 85.27 85.19 85.45 85.36

SD objective 2.7 1.2 2.5 –

SD probability (true) [%] 0.33 0.34 0.11 –

Number of solves of (11) 91.2 94.0 98.0 94.0

Time (s) 9.1 13.1 45.1 44.6

Medium Mean objective 3148.1 3154.9 3166.2 3158.3

Mean probability (true) [%] 84.27 84.74 85.07 85.30

Mean probability (sample) [%] 85.23 85.24 85.27 85.56

SD objective 16.4 3.4 1.0 –

SD probability (true) [%] 0.61 0.42 0.00 –

Number of solves of (11) 183.7 184.7 195.0 189.0

Time (s) 135.9 277.7 482.3 820.7

Fig. 3 Selected results for the medium n = K = 12 network for S ∈ {1000, 3000, 5000, 10,000}. The
probabilities are computed outside of the sample on which the optimization was performed. The ProGrad
method is applied to the problem with continuous Gaussian distribution. The heuristic method is a slight
modification of Algorithm 3.1 and works with a finite number of samples of the same distribution. The
heuristic method was also combined with a projection onto the feasible set under the Gaussian distribution
and as a starting point for ProGrad
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Table 3 Comparison of the methods described in Table 3. The CCP method refers to Algorithm 3.1

Network Method

CCP (projection) Heur (projection) ProGrad CCP +
ProGrad

Heur +
ProGrad

Small 738.56 738.51 738.40 738.40 738.40

Medium 3146.52 3149.35 3157.68 3145.47 3145.75

Fig. 4 Six simulations of exit pressure realizations compared to the upper pressure bounds (dashed lines)
provided by the numerical solution for the medium network. Feasible and infeasible pressure realizations at
each node are shown in green and red, respectively. (Color figure online)
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lower objective value or a higher probability level. The performance was further significantly
improved when the point obtained by the heuristic method was used as a starting point for
the ProGrad method. In Table 3 we show a similar comparison for both networks. For all
methods, we show the best obtained objective value. Note that this comparison is fair in the
sense that all solutions have its probability level precisely 85%. Since the problem is highly
nonconvex, we believe that the superior performance of our method is caused by the slow
update in t which is able to avoid local minima, see (Adam and Branda 2016, Example 3.1).
We would like to stress again that the running time for the heuristic method was in the order
of minutes.

In Fig. 4 we perform an a posterior check of the computed solution.We simulate six sets of
exit loads according to the given Gaussian distribution and check whether the corresponding
minimal pressure is feasible with respect to the computed upper pressure limits. Feasible
pressures are displayed in green whereas violated pressures in red. If all nodes are shown in
green, this load scenario is feasible. According to Fig. 4, five out of six gas demand scenarios
are feasible which agrees with the prescribed probability level 85%. Moreover, the method
seems to be rather stable as for the infeasible scenario, the minimal needed pressures did not
exceed the upper pressure bounds by a large margin.

5 Conclusions

We have proposed a method for solving optimization problems with joint chance constraints
where the random vector follows a discrete distribution. The proposed method is based
on introducing binary variables, relaxing them into continuous variables, regularizing the
resulted optimization problem and driving the regularization parameter to infinity. To handle
a large number of scenarios,we transformed the regularized problem into a two-stage problem
where the master problem is in the decision variables and the slave problem adds cuts to the
master problem. Since the slave problem depends on the number of scenarios, we derived
a closed-form solution for it. We proposed a heuristic method to significantly decrease the
computational time. We compared our methods with the ProGrad method and showed their
good performance on two instances of a gas network design problem.

Acknowledgements We would like to thank two anonymous reviewers for carefully reading the manuscript
and for suggesting many improvements.

A New result for sufficient optimality conditions for hierarchical
problems

In this short section, we present a new result which may play a crucial role in deriving suffi-
cient optimality conditions for hierarchical problems such as bilevel problems, mathematical
problems with equilibrium/complementarity/vanishing constraints and so on. In these prob-
lems, the feasible set is usually rather nasty but may be written as a finite union of nice sets.
We show that if these nice sets are convex, then strong stationary points are immediately
local minima.
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Theorem 5 Consider a convex differentiable function f : Rn → R, a set X ⊂ R
n, a point

x̄ ∈ X and an optimization problem

minimize f (x)

subject to x ∈ X .
(23)

Assume that x̄ is its S-stationary point, thus a point with

0 ∈ ∇ f (x̄) + N̂X (x̄),

where N̂X (x̄) stands for the Fréchet normal cone of X at x̄ . If X can be locally around x̄
written as a union of a finite number of (possibly overlapping) convex sets, then x̄ is a local
minimum of problem (23).

Proof From the theorem statement, there are convex sets Xi , i = 1, . . . , I such that locally
around x̄ we have that X coincides with ∪I

i=1Xi . First, we realize that

N̂X (x̄) = (TX (x̄))∗ = (∪I
i=1TXi (x̄))

∗ = ∩I
i=1(TXi (x̄))

∗ = ∩I
i=1NXi (x̄).

Since x̄ is a S-stationary point of (23), we have

0 ∈ ∇ f (x̄) + N̂X (x̄) = ∇ f (x̄) +
I⋂

i=1

NXi (x̄) =
I⋂

i=1

(
∇ f (x̄) + NXi (x̄)

)
.

Fix now any i . From the equation above we obtain that x̄ is a stationary point of

minimize f (x)

subject to x ∈ Xi .

Due to the data convexity, it is a local minimum of the above problem and thus for all x ∈ Xi

sufficiently close to x̄ we have f (x) ≥ f (x̄). But since i was chosen arbitrarily, we obtain
that x̄ is a local minimum of problem (23). ��

B Proofs

In this section, we collect the skipped proofs from Sect. 2.

Proof (Proposition 1) It is sufficient to follow the proof of Lemma 3.1 in Adam and Branda
(2016). ��

Proof (Theorem 1) Denote the feasible set of problem (2) by Z and consider a point x̄ ∈ Z .
Note that Z can be written as

Z =
⋃

I⊂{1,...,S},∑i∈I pi≥1−ε

{
x : gk(x, ξi ) ≤ 0, i ∈ I , k = 1, . . . , K

h j (x) ≤ 0, j ∈ J

}
.

Then Z coincides locally around x̄ with

⋃

I∈I (x̄)

ZI :=
⋃

I∈I (x̄)

{
x : gk(x, ξi ) ≤ 0, i ∈ I0(x̄) ∩ I , k ∈ K i

0(x̄)

h j (x) ≤ 0, j ∈ J0

}
, (24)

123



Annals of Operations Research

which means that

N̂Z (x̄) = (TZ (x̄))∗ =
⎛

⎝
⋃

I∈I (x̄)

TZI (x̄)

⎞

⎠
∗

=
⋂

I∈I (x̄)

N̂Z I (x̄).

By (Rockafellar and Wets 1998, Theorem 6.12) we obtain that 0 ∈ ∇ f (x̄) + N̂Z (x̄) is
a necessary optimality condition for chance constrained problem (2). To obtain the first
statement, it suffices to realize that ZI can be due to (24) written as F(x) ≤ 0 for some
function F combining gk and h j and to use chain rule (Rockafellar andWets 1998, Theorem
6.14).

The proof of the second part goes in a similar way. Due to (Rockafellar and Wets 1998,
Theorem 6.12), the necessary optimality conditions for problem (4) read

0 ∈
(∇ f (x̄)

0

)
+ N̂Z (x̄, ȳ) (25)

where Z is the feasible set of problem (4). For the computation of the normal cone, realize
first that Z locally around (x̄, ȳ) coincides with the union of ZI := Zx

I × Z y
I with respect to

all I ⊂ I00(x̄, ȳ), where

Zx
I :=

{
x : gk(x, ξi ) ≤ 0, i ∈ I ∪ I0+(x̄, ȳ), k ∈ K i

0(x̄)

h j (x) ≤ 0, j ∈ J0

}

Z y
I :=

⎧
⎪⎨

⎪⎩
y :

p�y ≥ 1 − ε

yi ∈ [0, 1], i ∈ I ∪ I0+(x̄, ȳ) ∪ {i : maxk gk(x̄, ξi ) < 0}
yi = 0, i ∈ (I00(x̄, ȳ) \ I ) ∪ {i : maxk gk(x̄, ξi ) > 0}

⎫
⎪⎬

⎪⎭
.

As before, we have

N̂Z (x̄, ȳ) =
⋂

I⊂I00(x̄,ȳ)

N̂Z I (x̄, ȳ) =
⋂

I⊂I00(x̄,ȳ)

N̂Zx
I
(x̄) ×

⋂

I⊂I00(x̄,ȳ)

N̂Z y
I
(ȳ).

Since zero always belongs to a normal cone, the optimality condition (25) is equivalent to

0 ∈ ∇ f (x̄) +
⋂

I⊂I00(x̄,ȳ)

N̂Zx
I
(x̄). (26)

To finish the proof, it suffices to realize that the intersection in (26) is attained for I = ∅
and to use either (Ioffe and Outrata 2008, Proposition 3.4) (if the first part of Assumption 1
holds true) or (Rockafellar and Wets 1998, Theorem 6.14) (if the second part of Assumption
1 holds true). ��

The proof of Theorem 3 is more complicated. For notational simplicity, we consider only
the case of J0(x̄) = ∅. First, we write down the stationarity conditions of (8), then show two
preliminary lemmas and only then proof the theorem itself.

The necessary optimality conditions for problem (8) at a point (x̄ t , ȳt ) read as follows:
there exist multipliers αt ∈ R, β t ∈ R

S and γ t ∈ R
SK such that the first-order optimality

conditions
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0 = ∇ f (x̄ t ) −
S∑

i=1

K∑

k=1

γ t
ikφ

′
t (gk(x̄

t , ξi ))∇x gk(x̄
t , ξi ), (27a)

0 = −αt pi + β t
i +

K∑

k=1

γ t
ik, i = 1, . . . , S (27b)

and the complementarity conditions

αt (1 − ε − p� ȳt ) = 0, (28a)

β t
i

⎧
⎪⎨

⎪⎩

≥ 0 if ȳti = 1,

= 0 if 0 < ȳti < 1,

≤ 0 if ȳti = 0,

(28b)

γ t
ik(ȳ

t
i − φt (gk(x̄

t , ξi ))) = 0 (28c)

are satisfied. Moreover, the sign restrictions αt ≥ 0 and γ t
ik ≥ 0 hold true.

Lemma 2 Assume that (x̄ t , ȳt ) is a stationary point of problem (8). Then the following
assertions hold true:

1. gk(x̄ t , ξi ) < 0 �⇒ γ t
ik = 0;

2. αt = 0 �⇒ β t
i = γ t

ik = 0 for all i and k;

Proof If gk(x̄ t , ξi ) < 0, then from the definition of φt we have φt (gk(x̄ t , ξi )) > 1. Since
ȳti ∈ [0, 1], this directly implies γ t

ik = 0 due to (28c). For the second part, consider the case

of αt = 0. Then due to (27b) we have β t
i + ∑K

k=1 γ t
ik = 0 for all i . Assume that β t

i < 0.
Then there exists some k such that γ t

ik > 0. From (28b) we further get ȳti = 0, and thus
ȳti − φt (gk(x̄ t , ξi )) < 0. But this is a contradiction with (28c) and thus we have β t

i ≥ 0. But
this together with γ t

ik ≥ 0 and βi + γ t
ik = 0 implies the second statement. ��

In the following text, by ȳti ↘ 0 we understand that the sequence ȳti is positive and
converges monotonically to 0.

Lemma 3 If for all t we have p� ȳt = 1 − ε and for some i and k we have φt (gk(x̄ t , ξi )) =
ȳti ↘ 0, then there exists a subsequence in t such that γ t

ik = 0 for all t or such that there
exists index j such that

−γ t
ikφ

′
t (gk(x̄

t , ξi ))

−∑K
k̃=1

γ t
j k̃

φ′
t (gk̃(x̄

t , ξ j ))
→ 0. (29)

Proof Since ȳti ↘ 0 and since p� ȳ = 1−ε, there exists index j , and possibly a subsequence
in t , such that ȳtj is strictly increasing. This implies that 0 < ȳtj < 1 and β t

i = β t
j = 0 for all

t by (28b). If γ t
ik = 0, then the proof is finished. In the opposite case of γ t

ik > 0, we realize
that αt > 0 due to Lemma 2. Since γ t

ik ≥ 0 and φ′
t (gk(x̄

t , ξi )) < 0, we deduce

0 ≤ −γ t
ikφ

′
t (gk(x̄

t , ξi ))

−∑K
k̃=1

γ t
j k̃

φ′
t (gk̃(x̄

t , ξ j ))
≤

−
(∑K

k̃=1
γ t
i k̃

)
φ′
t (gk(x̄

t , ξi ))

−∑K
k̃=1

γ t
j k̃

φ′
t (gk̃(x̄

t , ξ j ))

≤
−∑K

k̃=1
γ t
i k̃

−∑K
k̃=1

γ t
j k̃

φ′
t (gk(x̄

t , ξi ))

φ′
t (gk̂t (x̄

t , ξ j ))

= −αt pi
−αt p j

φ′
t (gk(x̄

t , ξi ))

φ′
t (gk̂t (x̄

t , ξ j ))
→ 0

(30)
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where k̂t := argmink̃ −φ′
t (gk̃(x̄

t , ξ j ), the last equality follows from (27b) as well as
β t
i = β t

j = 0 and the convergence follows from assumption (9d), for which we realize
that φt (gk̃t (x̄

t , ξ j )) ≥ ȳtj , the fact that ȳ
t
j is a strictly increasing sequence and the assumed

convergence φt (gk(x̄ t , ξi )) = ȳti ↘ 0. ��
Proof (Theorem 3)Wewill show first that (x̄, ȳ) is a feasible point of (4). Due to continuity, it
is sufficient to show that gk(x̄, ξi )ȳi ≤ 0. Since this relation is obvious whenever gk(x̄, ξi ) ≤
0 for all k, we consider scenario i with gk(x̄, ξi ) > 0 for some k. But then gk(x̄ t , ξi ) > 0 for
sufficiently large t and thus 0 ≤ ȳti ≤ φt (gk(x̄ t , ξi )). But since gk(x̄ t , ξi ) → gk(x̄, ξi ) > 0,
assumption (9c) implies that ȳi = 0, and thus (x̄, ȳ) is a feasible point of problem (4).

Define now

λtik := −γ t
ikφ

′
t (gk(x̄

t , ξi )) ≥ 0,

where the nonnegativity follows from the property that φt is decreasing. If gk(x̄, ξi ) < 0, then
for all sufficiently large t we have gk(x̄ t , ξi ) < 0 and due to Lemma 2 we deduce γ t

ik = 0
and subsequently λtik = 0. Then for sufficiently large t , optimality condition (27a) reads

0 = ∇ f (x̄ t ) +
S∑

i=1

K∑

k=1

λtik∇x gk(x̄
t , ξi )

= ∇ f (x̄ t ) +
∑

{(i,k):gk (x̄,ξi )=0, ȳi>0}
λtik∇x gk(x̄

t , ξi ) +
∑

{(i,k):gk (x̄,ξi )≥0, ȳi=0}
λtik∇x gk(x̄

t , ξi ).

(31)

Here we can omit pairs of indices (i, k) with gk(x̄, ξi ) < 0 due to the discussion above.
We claim now that

∑K
k=1 λtik is uniformly bounded in i and t . If this is not the case, then

we have

λtmax := max
i=1,...,S

K∑

k=1

λtik → ∞. (32)

Then dividing equation (31) by λtmax yields

0 = 1

λtmax
∇ f (x̄ t ) +

∑

{(i,k):gk (x̄,ξi )=0, ȳi>0}

λtik

λtmax
∇x gk(x̄

t , ξi ) +
∑

{(i,k):gk (x̄,ξi )≥0, ȳi=0}

λtik

λtmax
∇x gk(x̄

t , ξi ).

(33)
When taking the limit with respect to t → ∞, the first term vanishes. Consider now the third
term. If p� ȳt > 1 − ε, from Lemma 2 we have λtik = 0 for all i and k. Assume thus that
p� ȳt = 1 − ε for all t . If φt (gk(x̄ t , ξi )) > ȳti , then from (28c) we have λtik = 0. In the
opposite case, we may use Lemma 3 to obtain again that λtik = 0 or there exists j such that

λtik∑K
k̃=1

λt
j k̃

→ 0. But this implies that the last term in (33) vanishes as well. This means that

0 =
∑

{(i,k):gk (x̄,ξi )=0, ȳi>0}
lim
t→∞

λtik

λtmax
∇x gk(x̄

t , ξi ).

Since
λtik

λtmax
∈ [0, 1] and the numerators sum to λtmax due to (32) and the discussion above, at

least one of these fractions converges to a positive number. However, the existence of such
positive limit contradicts Assumption 1 and thus

∑K
k=1 λtik is indeed bounded. Since it is a

sum of nonnegative elements, these elements λtik are uniformly bounded in i , k and t .
This means that we may pass to a converging subsequence, say λtik → λik . Since λtik ≥ 0

for all t , the same property holds for λik . In the light of (31), to finish the proof it suffices
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to show that λik = 0 for all pairs (i, k) such that gk(x̄, ξi ) ≥ 0 and ȳi = 0. But this may be
shown as in the previous paragraph via applying Lemmas 2 and 3. Thus (x̄, ȳ) is indeed a
stationary point of problem (4). ��

C Cut reduction

To propose a method for cut reduction, we start with the following technical lemma.

Lemma 4 Consider two points x̂1, x̂2 such that for all i we have

max
k

gk(x̂
2, ξi ) > 0 �⇒ max

k
gk(x̂

1, ξi ) > 0, argmax
k

gk(x̂
1, ξi ) = argmax

k
gk(x̂

2, ξi ).

(34)
Define now for j = 1, 2 mappings K j : {1, . . . , S} → {0, 1, . . . , K } and v j : Rn → R by

K j (i) :=
{
0 if maxk gk(x̂ j , ξi ) ≤ 0,

argmaxk gk(x̂ j , ξi ) otherwise,

v j (x) :=
∑

{i | K j (i)>0}
piφt (gK j (i)(x, ξi )) − 1 + ε +

∑

{i | K j (i)=0}
pi .

Then for any x we have

v1(x) ≥ 0 �⇒ v2(x) ≥ −(supφt (·) − 1).

Proof Due to (34) we have {i | K 2(i) > 0} ⊂ {i | K 1(i) > 0} and subsequently
v2(x) = v1(x) −

∑

{i | K 1(i)>0, K 2(i)=0}
piφt (gK 1(i)(x, ξi )) +

∑

{i | K 1(i)>0, K 2(i)=0}
pi

≥ v1(x) −
∑

{i | K 1(i)>0, K 2(i)=0}
pi (supφt (·) − 1) ≥ v1(x) − (supφt (·) − 1),

which finishes the proof. ��
Note that the cuts generated by (17) equal to {x | v j (x) ≥ 0}. This lemma states that if

(34) holds true, then the cut generated by x̂1 is tighter than the one generated by x̂2 up to a
margin supφt (·)−1. Since φt (0) = 1, this margin may be made arbitrarily small by a proper
choice of φt , the best cut in (17) is generated whenever maxk gk(x̂, ξi ) > 0 for all i .

This also gives rise to the following heuristic cut reduction technique. If we add a new
cut generated by some x̂1, we remove all the previously included cuts, generated by x̂2, for
which (34) is satisfied. Alternatively, we remove all previous cuts, for which (34) is violated
only for a small number of scenarios.

Finally, the next lemma states that the added cuts in (17) are optimal as they cannot be
linear combination of each other. Recall that a direction d is an extremal direction of a cone
C if there do not exist directions d1, d2 ∈ C different from d and a scalar κ ∈ (0, 1) such
that d = κd1 + (1 − κ)d2.

Lemma 5 The direction defined in (15) is an extremal direction of the feasible set of (13).

Proof Denote the feasible set of problem (13) by Z . For contradiction assume that (û, v̂, ŵ)

is not an extremal direction of Z . Then there are some (u1, v1, w1) ∈ Z and (u2, v2, w2) ∈ Z
different from (û, v̂, ŵ) and some κ ∈ (0, 1) such that

(û, v̂, ŵ) = κ(u1, v1, w1) + (1 − κ)(u2, v2, w2). (35)
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Note now that the role of ûi k̂i and ŵi is symmetric in (15) and thus, it suffices to consider
only the first equation in (15). Define

Z1 := {(v,w1)| vp1 + w1 ≤ 0, v ≥ 0, w1 ≤ 0}

and observe that (v̂, ŵ1), (v
1, w1

1), (v
2, w2

1) ∈ Z1. But this due to (35) means that (v̂, ŵ1) is
not an extremal direction of Z1. But since the extremal directions of Z1 amount to (0,−p1)
and (1,−p1), this is a contradiction with (15). ��
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