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ON COMPUTATIONS WITH CAUSAL COMPOSITIONAL
MODELS

Vladislav B́ına and Radim Jiroušek

The knowledge of causal relations provides a possibility to perform predictions and helps to
decide about the most reasonable actions aiming at the desired objectives. Although the causal
reasoning appears to be natural for the human thinking, most of the traditional statistical
methods fail to address this issue. One of the well-known methodologies correctly representing
the relations of cause and effect is Pearl’s causality approach.

The paper brings an alternative, purely algebraic methodology of causal compositional mod-
els. It presents the properties of operator of composition, on which a general methodology is
based that makes it possible to evaluate the causal effects of some external action. The pro-
posed methodology is applied to four illustrative examples. They illustrate that the effect of
intervention can in some cases be evaluated even when the model contains latent (unobservable)
variables.

Keywords: causal model, conditioning, intervention, extension

Classification: 65C50, 97K50

1. INTRODUCTION

In many situations one would like to know what would happen if the current state of
world is changed by an external intervention. For example, the governor of the national
bank plans to intervene in favor (or, against the strength) of the national currency, and
it would be nice to reveal all the consequences before such action is realized. Similar
situations occur in everyday work of physicians: It would be nice to know in advance
the effects of a specific treatment applied to a patient. To simplify our presentation, in
this paper we will illustrate our considerations on a trivial example. Assume we trade
in cement and have reliable suppliers, which enables us to control the price just on the
basis of demand. Whenever the demand for cement increases we can slightly increase
the price, and vice versa, which, as we believe, maximizes our profit. The situation is
depicted in Figure 1. Imagine that a current demand for cement is on its minimum,
we keep the price very low and therefore our profit is almost negligible. The question
is whether we can afford to increase the price of cement regardless of the low current
demand. What will be the impact of such an action to our profit.
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Demand

Price Gain

Fig. 1. An example of causal relations (cement trading).

It is well known that the questions asked in the previous paragraph cannot be an-
swered solely with the help of statistical data [2]. Such data may serve to answer the
question: What was our profit in case that the price of cement was high? But now,
we are asking the question: What will be our profit if we set the price of cement high?
Naturally, in the past when the price was high, the demand was high, too, and therefore
also the profit was high. Now, we cannot expect the increase of the price will increase
the demand, rather the opposite. Therefore, such a direct utilization of the statistical
data collected in the past is useless.

Nevertheless, when studying the book [7] by Judea Pearl we can see that such data
can help us for causal models construction. Naturally, such data will not help us to
find out causal relations. They can help us to reveal a dependence of variables but not
the direction of causality. This must be done on the basis of some other knowledge,
and the data can be used just to estimate the necessary parameters, the necessary
probabilities. For a more detailed introduction to the causal inference and interesting
examples of application in (strategic) management see, e. g., book by Michael Ryall and
Aaron Bramson [8].

Most of the tools for causal model description use directed graphs to express the
(asymmetric) relations of cause and effect (for an example see [1]). It also holds for
Pearl’s causal networks [7]. In contrast to this common approach, in this paper we take
advantage of the algebraic apparatus of compositional models [3]. In fact, this paper is
a continuation of the contribution to IPMU 2014 conference [4], where the first ideas on
causal compositional models were published. The present paper is organized as follows.
Section 2 recalls the main operator, which is used to assemble compositional models,
so called operator of composition, and its properties. In Section 3, we show difference
between conditioning and intervention, define causal compositional models and present
general formulae for the computation of intervention in causal compositional models.
The examples illustrating both the application of these formulae and the situations, in
which they are of no help can be found in Section 4.

2. BASIC NOTIONS AND NOTATION

In this paper we consider a set of n finite valued variables {X1, X2, . . . , Xn}, subsets
of which are denoted by lower-case Roman alphabets (e. g., x, y, and z). 〈Xi〉 denotes
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the set of values (states) of variable Xi, and analogously, for sets of variables x, y the
respective Cartesian products of all combinations of their values are denoted by 〈x〉, 〈y〉,
respectively. Elements of these sets, i. e., the (combinations of) values of variables will
be denoted by lower-case boldface Roman characters (e. g., a ∈ 〈x〉).

Conditional distributions will be denoted using a standard notation, e. g., π(y|X),
or, in case that we consider conditioning by a specific value of variable X by π(y|X =
a). This must be strictly differentiated from the result of intervention, for which we
use Pearl’s do operator; i. e., π(y|do(X = a)) denotes the effect on y caused by the
intervention do(X = a), which sets variable X to a value a ∈ 〈X〉.

For a probability distribution π(x) its marginal distribution for y ⊂ x is denoted
either by π(y), or by π↓y. The latter notation will especially be used when marginalizing
a distribution expressed in the form of a formula, or when referring to the value of
probability distribution π for a specific state a (combination of values of variables):
π↓y(a). In this paper we are interested also in an opposite operation called extension.
By this term we understand any distribution κ defined for a superset of variables, i. e.,
κ(z) for z ⊃ x, such that κ(x) = π(x). The set of all extensions of distribution π(x) for
variables z ⊃ x will be denoted by Ψ[π; z].

Now, consider two distributions π(x) and κ(y). Obviously, there exists their joint
extension if and only if they are consistent, i. e., if π(x ∩ y) = κ(x ∩ y). In case that
they are not consistent then one can be interested in getting an extension of π containing
from κ as much information as possible. Speaking more precisely, one can look for a
distribution µ(x ∪ y) that is a projection of κ into the set of all extensions Ψ[π;x ∪ y]:

µ(x ∪ y) = arg min
λ∈Ψ[π;x∪y]

Div(λ(y);κ(y)).

If the considered divergence is the Kullback-Leibler divergence1

Div(λ(y);κ(y)) =


∑

a∈〈y〉:λ↓y(a)>0

λ↓y(a) log λ↓y(a)
κ(a) if λ↓y � κ,

+∞ otherwise,

then Theorem 6.2 in [3] states that this type of projection can be got as a composition
of π and κ that is defined by the formula

µ(x ∪ y) = π(x) . κ(y) =


π(x)·κ(y)
κ(x∩y) if π(x ∩ y)� κ(x ∩ y),

undefined otherwise.
(1)

Since the operator of composition is one of the key notions of this paper let us recall
its most important properties proven in [3].

1λ(y)� κ(y) denote that κ(y) dominates λ(y), which holds (in the considered finite setting) when

κ(b) = 0 =⇒ λ(b) = 0

for all b ∈ 〈y〉.



528 V. BÍNA AND R. JIROUŠEK

Theorem 2.1. Suppose π(x), κ(y) and λ(z) are probability distributions such that
κ↓x∩y � π↓x∩y, λ↓(x∪y)∩z � (π B κ)↓(x∪y)∩z and λ↓x∩z � π↓x∩z. Then the following
statements hold:

1. (Domain): π B κ is a probability distribution for x ∪ y.

2. (Composition preserves first marginal): (π B κ)↓x = π.

3. (Reduction:) If y ⊆ x then, π B κ = π.

4. (Non-commutativity): In general, π B κ 6= κ B π.

5. (Commutativity under consistency): π and κ are consistent if and only if π B κ =
κ B π.

6. (Non-associativity): In general, (π B κ) B λ 6= π B (κ B λ).

7. (Associativity under special condition I): If x ⊃ (y ∩ z) then, (π B κ) B λ =
π B (κ B λ).

8. (Associativity under special condition II): If y ⊃ (x ∩ z) then, (π B κ) B λ =
π B (κ B λ).

9. (Stepwise composition): If (x ∩ y) ⊆ w ⊆ y then, (π B κ↓w) B κ = π B κ.

10. (Exchangeability): If x ⊃ (y ∩ z) then, (π B κ) B λ = (π B λ) B κ.

11. (Simple marginalization): If (x ∩ y) ⊆ w ⊆ (x ∪ y) then, (π B κ)↓w = π↓x∩w B
κ↓y∩w.

The reader certainly noticed that the assumptions on the dominance relations in the
previous assertion guarantee that the compositions appearing in the individual properties
are well defined. To make the following exposition more lucid, and to avoid repeating
again and again the necessary assumptions on the dominance relation, let us make the
following convention: Whenever the operator of composition appears in this paper, the
respective relation of dominance is supposed to hold, so that all the compositions are
always well defined. Notice that this can be trivially secured by supposing that all the
distributions are strictly positive, but in this case we would lost a possibility to model
logical (deterministic) dependence.

Recall that Property 6 from Theorem 2.1 states that the composition operator is
generally not associative. This disadvantage is, in a way, compensated by the existence
of an alternative operator, called anticipating composition operator, which is defined
as follows. Consider probability distributions π(x) and κ(y) and another subset of
variables z. Then,

π(x) ©.zκ(y) =
(
π(x) · κ((z \ x) ∩ y)

)
. κ(y). (2)

Notice that this composition operator is parameterized by subset z. If (z \ x) ∩ y = ∅
then π ©.zκ = π . κ. An important property of this operator was proven in [3].
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Theorem 2.2. For probability distributions λ(z), π(x) and κ(y) it holds that

(λ B π) B κ = λ B (π ©.zκ). (3)

Adopting notation from [11] we will define a degenerate one-dimensional distribution
δa(X), which is a distribution of variable X achieving probability 1 for value X = a ∈
〈X〉, i. e.,

δa(X) =
{

1 if X = a,
0 otherwise.

So, distribution δa(X) carries the sure information that X = a. This provides a possi-
bility to formulate the following assertion concerning conditional distributions.

Theorem 2.3. For probability distribution π(x) and x ⊇ y ∪ {X}, X 6∈ y it holds that

π(y|X = a) = (δa(X) . π(x))↓y . (4)

P r o o f . Denote z = y∪{X}. Then, using Property 11 of Theorem 2.1, one can compute

(δa(X) . π(x))↓y =
(

(δa(X) . π(x))↓z
)↓y

= (δa(X) . π(z))↓y .

Property 1 of Theorem 2.1 says that δa(X).π(z) is a probability distribution of variables
z, and from Formula (1) defining the operator of composition it is clear that δa(X) .
π(y,X = b) = 0 if b 6= a. In opposite case, i. e., if b = a, then

δa(X) . π(z) =
δa(X) · π(y,X = a)

π(X = a)
= π(y|X = a).

Therefore, marginalizing

(δa(X) . π(z))↓y =
∑

b∈〈X〉

δa(X) . π(y,X = b) = π(y|X = a),

we get a distribution of variables y, which finishes the proof. �

3. CAUSAL MODELS

Pearl’s causal models [7] are expressed in a form of Bayesian networks whose directed
graphs define the corresponding causal relations: all arrows head from causes to conse-
quences. In other words, relation of parents and children in the graph correspond to the
relation of causes and consequences.

Conditioning in a causal model is just a conditioning in the corresponding Bayesian
network, and the intervention in a causal model is defined as a conditioning in a modified
Bayesian network; the modification consists in deleting all the edges heading to the node,
in which the intervention is realized. This is because the intervention is performed in
spite of any influence from other nodes (variables) of the considered causal model.

Let us illustrate the necessity of distinguishing between conditioning and intervention
by a trivial example.
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3.1. Example

Let us go back to our cement trading example. To dispatch unusually high number of
orders we have to prolong loading shifts. To describe this relation formally consider two
(for simplicity binary) variables describing whether we have got unusually many orders
(variableQ), and whether we have a prolonged loading shift (variable L). Naturally, since
we assume that great quantity of orders Q = y results in a prolonged shift L = y, there
is an evident causal relation between these variables: Q is a cause for L. Clearly, these
variables are mutually dependent, and therefore, denoting the respective probability
distribution π(Q,L), we quite naturally expect that π(Q = y|L = y) > π(Q = y) and
π(L = y|Q = y) > π(L = y).

The situation changes when, instead of conditioning, we consider intervention. Using
Pearl’s notation we denote by do(Q = y) the situation when somebody arranges that we
get a great number of orders to dispatch. Analogously, do(L = y) denotes the situation
when we decide to organize a long shift. In this case, it is natural to expect that receiving
an enormous number of orders results in the necessity to hold a prolonged loading
shift, but organizing a prolonged shift does not increase the number of received orders.
Therefore while π(L = y|do(Q = y)) > π(L = y), π(Q = y|do(L = y)) = π(Q = y).

Let us express this consideration in a formal model. Consider variable X and a set of
variables C(X) that are causes of X. It means that the behavior of variable X is fully
described by some π(x), for x = {X}∪C(X). Using Properties 3 and 5 from Theorem 2.1
one can immediately see that π(x) = π(C(X)) . π(x), which seems to be unnecessarily
complex, but which may be, as we are now going to show, for causal models very useful.

Theorem 2.3 says that

π(C(X)|X = a) = (δa(X) . π(x))↓C(X), (5)

and taking into consideration that π(x) = π(C(X)) . π(x) we get

π(C(X)|X = a) = (δa(X) . (π(C(X)) . π(x)))↓C(X)
.

Knowing that the operator of composition is not associative, we know that generally

(δa(X) . (π(C(X)) . π(x)))↓C(X) 6= ((δa(X) . π(C(X))) . π(x))↓C(X)
.

The difference between these two expressions follows immediately from the application
of Properties 3 and 11 (see Theorem 2.1) to the right hand part of the above inequality

((δa(X) . π(C(X))) . π(x))↓C(X) = (δa(X) . π(C(X)))↓C(X)

= (δa(X)↓∅ . π(C(X)) = π(C(X)).

So, computing ((δa(X) . π(C(X))) . π(x))↓C(X) we get the marginal π(C(X)). In the
next section we will see that it must be this way because, as we will show,

((δa(X) . π(C(X))) . π(x))↓C(X) = π(C(X)|do(X = a)),

and, as illustrated by the example above, the intervention that changes (fixes) the value
of an effect variable does not influence behavior of its causes.
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3.2. Causal compositional models

In this paper we express the considered causal models in a form of compositional models,
which are known to be equivalent to Bayesian networks (for details see [3]).

Let us consider a set of variables w = {X1, X2, . . . , Xn}, and for each variable Xi ∈ w
let C(Xi) ⊂ w be its causes. Here we consider only Markovian models [7], i. e., the models
in which variables can be ordered (without loss of generality we assume it is the ordering
X1, X2, . . . , Xn) such that causes are always before their effects. So, we assume that

Xk ∈ C(Xi) =⇒ k < i,

which, as the reader certainly noticed, means that C(X1) = ∅, and excludes feedback
models from our consideration.

In keeping with the above notation, denote xi = C(Xi)∪ {Xi}, and let πi(xi) denote
the distribution describing local behavior of Xi. This means that we consider a causal
model2

κ(X1, X2, . . . , Xn) = π1(x1) . π2(x2) . . . . . πn(xn). (6)

In the next section we will show how to compute the result of an intervention to a
variable X ∈ w. To prove the respective formula we will have to show that it realizes
conditioning in a modified causal model, in a model in which C(X) = ∅. So, we want
now to find a causal compositional model, which differs from the considered model given
by Formula 6 only in the fact that for the new model C(X) = ∅. Since we assume that
the original model is Markovian, it is evident that the new model is Markovian, too. Let
us show that the new model is3

κ′(X1, X2, . . . , Xn) = πi(X) . π1(x1) . π2(x2) . . . . . πn(xn), (7)

where
i = min{k : X ∈ xk}

(which means that X = Xi). If i = 1 then validity of expression (7) is obvious (it follows
directly from Property 3 from Theorem 2.1). If i = 2, then first applying Property 5
(keep in mind that C(X1) = ∅, and therefore x1 = {X1}, and x1 ∩ {X} = ∅) and then
Property 3 one gets

π2(X) . π1(x1) . π2(x2) . . . . . πn(xn) = π1(x1) . π2(X) . π2(x2) . . . . . πn(xn)
= π1(x1) . π2(X) . π3(x3) . . . . . πn(xn).

For i > 2 we have first to apply Property 5, then (n− 2) times Property 10, and finally

2To avoid too many brackets in formulae, we do not use them if the operator of composition is
performed from left to right, i. e.,

π1(x1) . π2(x2) . . . . . πn(xn) = (. . . (π1(x1) . π2(x2)) . . . . . πn−1(xn−1)) . πn(xn).

3It is obvious that, due to Property 3 of Theorem 2.1, the term πi(xi) can be deleted from right
hand side of Formula (7). We prefer not doing it since it leads to simpler and more elegant formulae.
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again Property 3:

πi(X) . π1(x1) . π2(x2) . . . . . πn(xn) = π1(x1) . πi(X) . π2(x2) . . . . . πn(xn)
= π1(x1) . π2(x2) . πi(X) . π3(x3) . . . . . πn(xn)
= . . . = π1(x1) . π2(x2) . . . . . πi−1(xi−1) . πi(X) . πi(xi) . . . . . πn(xn)
= π1(x1) . π2(x2) . . . . . πi(X) . . . . . πn(xn).

3.3. Intervention in causal compositional models

Theorem 3.1. For the causal compositional model κ given by Formula (6), and for
arbitrary X ∈ x1 ∪ . . . ∪ xn, a ∈ 〈X〉, y ⊆ x1 ∪ . . . ∪ xn \ {X},

κ(y|do(X = a)) =
(
δa(X) . π1(x1) . π2(x2) . . . . . πn(xn)

)↓y
. (8)

P r o o f . Since we follow Pearl’s idea, we define the intervention as a conditioning in the
altered model, i. e., κ(y|do(X = a)) = κ′(y|X = a), where κ′ is given by Formula (7).
Using Theorem 2.3

κ(y|do(X = a)) = κ′(y|X = a)

=
(
δa(X) .

(
πi(X) . π1(x1) . π2(x2) . . . . . πn(xn)

))↓y
.

The expression δa(X).
(
πi(X) . π1(x1) . π2(x2) . . . . . πn(xn)

)
can further be simplified

using n times Property 8 and at last once Property 3

δa(X) .
(
πi(X) . π1(x1) . π2(x2) . . . . . πn(xn)

)
= δa(X) .

(
πi(X) . π1(x1) . π2(x2) . . . . . πn−1(xn−1)

)
. πn(xn) = . . .

= δa(X) . πi(X) . π1(x1) . π2(x2) . . . . . πn−1(xn−1) . πn(xn)
= δa(X) . π1(x1) . π2(x2) . . . . . πn−1(xn−1) . πn(xn), (9)

and therefore

κ(y|do(X = a)) = (δa(X) . π1(x1) . π2(x2) . . . . . πn−1(xn−1) . πn(xn))↓y ,

which was to be proven. �

Quite often we are interested in a effect of intervention do(X = a) to a single variable
Y ∈ y. Though the focus of this paper is not oriented to finding optimum computational
algorithms (for algorithmic solution of computational problems the author is referred to
Malvestuto’s papers [5, 6]), we want to show that principally the general expression (8)
can be further transformed into simpler formulae. The level of simplification is dependent
on the first appearance of Y in Formula (6). Therefore, we keep the notation

i = min{k : X ∈ xk},
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and denote
j = min{k : Y ∈ xk}.

When modifying Formula (8) we will distinguish two situations according to the
relation of values i and j: whether j < i, or j > i (obviously, i 6= j, because each
xi = {Xi} ∪ C(Xi)).4

First, assume j < i.

In this case applying Property 5 and afterwards several times (precisely (j − 1)-times)
Property 10 we get

δa(X) . π1(x1) . π2(x2) . . . . . πn(xn) = π1(x1) . δa(X) . π2(x2) . . . . . πn(xn)
= π1(x1) . π2(x2) . . . . . πj(xj) . δa(X) . πj+1(xj+1) . . . . . πi(xi) . . . . . πn(xn),

and therefore (using Property 2)

κ(Y |do(X = a)) =
(
δa(X) . π1(x1) . π2(x2) . . . . . πn(xn)

)↓{Y }
=

(
π1(x1) . π2(x2) . . . . . πj(xj)

)↓{Y }
= κ(Y ). (10)

Now, consider the other possibility j > i.

Using analogous reasoning as in the previous step we start computing

(δa(X) . π1(x1) . . . . . πn(xn))↓xi∪...∪xj

= (π1(x1) . . . . . πi−1(xi−1) . δa(X) . πi(xi) . . . . . πj(xj))
↓xi∪...∪xj .

First notice that the term πi(xi) can be deleted because of Property 3. Further, denoting
xi ∪ . . . ∪ xj = z, we can apply several times Property 11

(δa(X) . π1(x1) . . . . . πn(xn))↓z

= (π1(x1) . . . . . πi−1(xi−1) . δa(X) . πi+1(xi+1) . . . . . πj(xj))
↓z

= (π1(x1) . . . . . πi−1(xi−1) . δa(X) . πi+1(xi+1) . . . . . πj−1(xj−1))↓z\{Xj} . πj(xj)
= . . .

= (π1(x1) . . . . . πi−1(xi−1))↓z\{Xi,...,Xj} . δa(X) . πi+1(xi+1) . . . . . πj(xj),

from which we can deduce a general formula

κ(Y |do(X = a)) =
((
π1(x1) . . . . . πi−1(xi−1)

)↓z\{Xi,...,Xj}
. δa(X).

. πi+1(xi+1) . . . . . πj(xj)
)↓{Y }

. (11)

4The reader familiar with Bayesian network theory certainly noticed that in case that X and Y are
independent, then their mutual placement in the sequence can be changed by selecting another, fully
equivalent ordering of variables. This fact, naturally, plays an important role in algorithmic solutions
of the computational problems, but this, as said at another place, is not the goal of this paper.
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Fig. 2. Causal model: factors influencing the gain in cement trading.

The last question to be answered in this section is how to compute the effect of
a multiple intervention. But it is an easy task. Consider a causal compositional model
κ(w) = π1(x1) . . . . . πn(xn), and (for simplicity) two variables V,X ∈ w. Let a ∈
〈X〉,b ∈ 〈V 〉, and denote y = w \ {V,X}. Then

κ(y|do((V,X) = (b,a)) = κ(y|do(V = b), do(X = a))

= (δb(V ) . δa(X) . π1(x1) . π2(x2) . . . . . πn(xn))↓y

=
(
δ(b,a)(V,X) . π1(x1) . π2(x2) . . . . . πn(xn)

)↓y
.

4. EXAMPLES

When evaluating the impact on variable Y of an intervention to variable X we usually
need to take into account other related factors. And quite often these related factors
cannot be observed (some authors call them confounders or covariates). In this context
a natural question arises: Can we evaluate the effect of intervention even in the presence
of hidden (unobservable) confounders? The answer is, in some cases, positive (see, e. g.,
[7, 10]) and in the rest of this paper we present simple examples illustrating how to use
the formalism of causal compositional models for this purpose. To be able to describe
all four examples just with one causal model, let us enrich the cement trade model from
Figure 1 by four more variables as depicted in Figure 2. So, in all the following examples
we consider the following causal compositional model

κ(C,D,G,M,O, P, S) = π1(S) . π2(D,S) . π3(M,S) . π4(D,O).
. π5(C,M,O) . π6(C,D, P ) . π7(C,D,G, P, S).

4.1. Example 1

First, let us consider a simple situation when we intend to evaluate the effect of restriction
of the production output O on the demand D, i. e., our aim is to compute κ(D|do(O =
o)). Following the recipe from Section 3 we realize that i = 4 and j = 2 and we can
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directly use the Formula (10) as a result for j < i and obtain simple result

κ(D|do(O = o)) = (π1(S) . π2(D,S))↓{D} .

We can see that the result contains a marginal (of the original model) in variable D
which can be estimated from data, and that the considered intervention has, in the
considered model, no impact on variable D.

4.2. Example 2

If the cement traders want to analyze the effect of restriction of the production output
O on the price P , then, according to the Section 3, we get i = 4 and j = 6, which leads
to the application of Formula (11). So, in this case we arrive at

κ(P |do(O = o)) =
(

(π1(S) . π2(D,S) . π3(M,S))↓{D,M} . δo(O).

. π5(C,M,O = o) . π6(C,D, P )
)↓{P}

.

Again we succeeded in elimination of the hidden variable S, the marginal of original
model (π1(S) . π2(D,S) . π3(M,S))↓{D,M} is distribution in variables D and M and
can be estimated from data. This is an example of situation fulfilling the back-door
criterion (see Pearl [7]) and the result is the same as the one obtained using Pearl’s
back-door adjustment.

4.3. Example 3

If evaluating π(G|do(P = p)), it is apparent that we should proceed according to For-
mula (11), because in this case we get i = 6 and j = 7. However, using this formula we
cannot eliminate the hidden variable S because S is a direct cause of G. In this case we
obtain an expression

κ(G|do(P = p))

=
((
π1(S) . π2(D,S) . π3(M,S) . π4(D,O) . π5(C,M,O)

)↓{C,D,S}
.

. δp(P ) . π7(C,D,G, P, S)
)↓{G}

,

which cannot be evaluated from observable data.
Nevertheless, several properties from Theorem 2.1 provide a possibility to eliminate

the hidden variable and compute the effect of intervention even in this case. The elic-
itation of the causal effect is as follows (the labels above the signs of equation refer to
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the properties of Theorem 2.1 used):

κ(G|do(P = p)) =
(
δp(P ) . π1(S) . π2(D,S) . π3(M,S) . π4(D,O) . π5(C,M,O).

.π6(C,D, P ) . π7(C,D,G, P, S)
)↓{G}

4×(8)
=

(
δp(P ) .

(
π1(S) . π2(D,S) . π3(M,S) . π4(D,O) . π5(C,M,O)

)
.

.π6(C,D, P ) . π7(C,D,G, P, S)
)↓{G}

(9)
=
(
δp(P ) .

(
π1(S) . π2(D,S) . π3(M,S) . π4(D,O) . π5(C,M,O)

)↓{C,D}
.

.
(
π1(S) . π2(D,S) . π3(M,S) . π4(D,O) . π5(C,M,O)

)
.

.π6(C,D, P ) . π7(C,D,G, P, S)
)↓{G}

(7)
=
(
δp(P ) .

(
π1(S) . . . . . π5(C,M,O)

)↓{C,D}
.
(
π1(S) . π2(D,S) . π3(M,S).

.π4(D,O) . π5(C,M,O) . π6(C,D, P )
)
. π7(C,D,G, P, S)

)↓{G}
(8)
=
(
δp(P ) .

(
π1(S) . . . . . π5(C,M,O)

)↓{C,D}
.
(
π1(S) . π2(D,S) . π3(M,S).

.π4(D,O) . π5(C,M,O) . π6(C,D, P ) . π7(C,D,G, P, S)
))↓{G}

(11)
=
(
δp(P ) . κ(C,D,G,M,O, P, S)↓{C,D} . κ(C,D,G,M,O, P, S)↓{C,D,G}

)↓{G}
.

So, even in this case we obtain a result containing the marginals of the model that can
be estimated from the data.

4.4. Example 4

The last example describes an (admittedly rather artificial) situation, when the gov-
ernment is considering to run huge road infrastructure project and minister of industry
wants to know the impact of increased demand for cement D on the producer’s cost C,
i. e., we want to evaluate

κ(C|do(D = d)) =
(
δd(D) . π1(S) . π2(D,S) . π3(M,S) . π4(D,O).

.π5(C,M,O) . π6(C,D, P ) . π7(C,D,G, P, S)
)↓{C}

.

Also in this case we need to employ particular properties from Theorem 2.1 because,
again, hidden variable S is the parent of D. First of all we shall simplify the model
because variables P and G cannot influence the demand. Let us eliminate G and then P
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(and hence also both π6 and π7) using the pair of Properties 11 and 3 twice. After this,
we get the following expression, which is further modified:

κ(C|do(D = d))

=
(
δd(D) . π1(S) . π2(D,S) . π3(M,S) . π4(D,O) . π5(C,M,O)

)↓{C}
(3)
=
(
δd(D) . π1(S) . π3(M,S) . π4(D,O) . π5(C,M,O)

)↓{C}
(8)
=
(
δd(D) .

(
π1(S) . π3(M,S)

)
. π4(D,O) . π5(C,M,O)

)↓{C}
(10)
=
(
δd(D) . π4(D,O) .

(
π1(S) . π3(M,S)

)
. π5(C,M,O)

)↓{C}
=
(
δd(D) . π4(D,O) .

((
π1(S) . π3(M,S)

)
©.{D,O}π5(C,M,O)

))↓{C}
,

where the property number is again indicated upon the equality sign. The last modifi-
cation was performed according to Theorem 2.2. In order to evaluate the causal effect
we need to eliminate the hidden variable S, thus, let us focus our attention to the
corresponding subexpression((

π1(S) . π3(M,S)
)
©.{D,O}π5(C,M,O)

)↓{C,M,O}

=
((
π1(S) . π3(M,S)

)
· π5(O) . π5(C,M,O)

)↓{C,M,O}

(3)
=
((
π1(S) . π2(S) . π3(M,S)

)
· π5(O) . π5(C,M,O)

)↓{C,M,O}

(11)
=
((
π1(S) . π2(D,S) . π3(M,S)

)↓{M,S} · π5(O) . π5(C,M,O)
)↓{C,M,O}

(11)
=
((
π1(S) . π2(D,S) . π3(M,S)

)
· π5(O) . π5(C,M,O)

)↓{C,M,O}
.

Notice that in the last formula, the expression
(
π1(S) . π2(D,S) . π3(M,S)

)
is a three-

dimensional marginal of κ, i. e. κ(D,M,S). It contains hidden variable S but having
the data, we can easily estimate its two-dimensional marginal

κ(D,M) =
(
π1(S) . π2(D,S) . π3(M,S)

)↓{D,M}
,

which enables us to eliminate variable S. So we get((
π1(S) . π2(D,S) . π3(M,S)

)
· π5(O) . π5(C,M,O)

)↓{C,M,O}

(11)
=
((
π1(S) . π2(D,S) . π3(M,S)

)↓{D,M} · π5(O) . π5(C,M,O)
)↓{C,M,O}

=
((
π1(S) . π2(D,S) . π3(M,S)

)↓{D,M} ©.{O}π5(C,M,O)
)↓{C,M,O}

.
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All these computations show that we can evaluate the effect of the considered interven-
tion according to the formula

κ(C|do(D = d)) =
(
δd(D) . π4(D,O).

.
((
π1(S) . π2(D,S) . π3(M,S)

)↓{D,M} ©.{O}π5(C,M,O)
)↓{C,M,O}

)↓{C}
, (12)

where the marginal κ(D,H) =
(
π1(S) . π2(D,S) . π3(M,S)

)↓{D,M} can be estimated
from data.

Let us remark that the expression((
π1(S) . π2(D,S) . π3(M,S)

)↓{D,M} ©.{O}π5(C,M,O)
)↓{C,M,O}

contains variable D which is, however, marginalized out in this expression. Here we
employ Pearl’s idea of extension used in his front-door adjustment [7]. The reader can
realize that it is the way how to take into account the mutual dependence of variables
C,D,O (notice that it plays the same role that is realized by inheritance of parents in
Shachters edge reversal rule [9]).

5. CONCLUSIONS

We have presented an alternative algebraical approach to model the effect of an external
intervention. To achieve this goal the proposed methodology employs causal compo-
sitional models and its properties. In Section 3 we derived general formulae for the
evaluation of causal effect in models where latent variable does not appear among the
parents of effect variable. Studied possibilities are illustrated by four examples showing
both the cases when general method is applicable and when it fails. The presented ex-
amples show that the causal effect of an intervention can be evaluated even in some cases
of models containing latent variables. Notice that the structure of expression (12) goes
beyond the usual compositional sequences; it corresponds to more general non-sequential
models whose structures are studied by Malvestuto in [5].
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