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Minimum Description Length Principle
for Compositional Model Learning

Radim Jirousek"2®) and Iva Krejcova!
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2 Institute of Information Theory and Automation,
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Abstract. Information-theoretic viewpoint at the data-based model
construction is anchored on the assumption that both source data and
a constructed model comprises certain information. Not having another
source of information than source data, the process of model construc-
tion can be viewed at as the transformation of information representa-
tion. The combination of this basic idea with the Minimum Description
Length principle brings a new restriction on the process of model learn-
ing: avoid models containing more information than source data, because
these models must comprise an additional undesirable information. In the
paper, the idea is explained and illustrated on the data-based construc-
tion of multidimensional probabilistic compositional models.

Keywords: Machine learning - Multidimensional models - Probability
distributions - Composition - Information theory - Lossless encoding

1 Introduction

Minimum Description Length (MDL) principle has been used for model learning
by a whole range of authors. In connection with Bayesian network learning let us
mention for example Lam and Bacchus [10], (for general sources see also [2], and
[3]). These authors regarded MDL as an application of a Occam’s razor philo-
sophical principle, which says that the best solution is more likely the simplest.
In this paper we will study this approach also from another point of view, from
the point of view of information theory.

Data-based model learning is usually based on the following simple idea: the
data in question were generated by a generator whose probabilistic character-
istics are unknown, but, in a way, stabile. If we do not have another source of
information (such as, for example, some theoretical knowledge about the field
of interest) all we know about this generator is encoded in the data file. So,
when reconstructing the generator we should exploit as much of information
contained in the data file as possible, but we should avoid adding any other
undesirable information. In this sense, the process of model construction can be
© Springer International Publishing Switzerland 2015
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Minimum Description Length Principle for Compositional Model Learning 255

viewed as a transformation of the data file into the constructed model. Since it
is well-known that during any transformation process the amount of information
cannot increase, we should check what is the amount of information before the
transformation (i.e., the information contained in the input data file) and after
the transformation (i.e., the information contained in the constructed model).
Using this idea, models containing more information than the input data file
will be considered unacceptable because, obviously, some undesirable informa-
tion was added.

Accepting the above mentioned principle, a new problem arises: how to mea-
sure the above mentioned information amounts. Our proposal is to measure
this information in bits necessary for the optimum lossless encoding of the
data/model. In this context we take advantage of the old ideas of von Mises
[13] and Kolmogorov [8] who both explored relations interconnecting random-
ness, complexity and information. So, we accept the principle: the more complex
model, the more information it comprises. Nevertheless, realize that looking
for the optimum lossless encoding would be in practical situations intractable.
Therefore, we use in this paper some heuristics and also a famous Huffman’s
encoding [4], which is known to be optimal under some conditions. Thus, though
the encoding used in this paper is only suboptimal, it will serve well to the pur-
pose of this paper: to show that application of MDL principle is not as straight-
forward as it can seem at the first glance. We will show that the users should
find a reasonable equilibrium balancing the complexity of the model structure
and the preciseness of specified parameters.

The proposed approach is fully sensible also from the statistical point of view.
The less data we have, the less amount of bits we may use to encode the model.
It means, among others, that for small data files we cannot consider probability
values specified with a high precision. This fully corresponds with the fact that
having a small number of data, the confidence intervals for the estimates of
probability parameters are rather wide. Therefore it does not have a sense to
specify these estimates with a high precision, with a great number of digits.

Thus, the goal of this paper is not to introduce a new algorithm for data-
based model learning. The paper presents two simple ideas that should be incor-
porated into any data-based learning algorithm and that we have not found in
the literature. First, the amount of input data determines the upper limit to
the complexity of the constructed model. It is against a common sense (and
also against the information-theoretic principles) to construct a model whose
encoding requires more bits than the input data file. The other idea is that the
users should decide whether it is more advantageous to consider either simpler
structure models with more precise parameters, or models with more complex
structures, i.e., more parameters specified with lower precision.

The application of the above mentioned ideas will be illustrated on learning
compositional models [6] that will be briefly introduced in the next section.
Sections 3 and 4 will be devoted to the discussion of possibilities how to encode
data and models, respectively, and Section 5 briefly describes two ways how to
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256 R. Jirousek and I. Krejcova

simplify constructed models to meet the upper limit given by the size of the
input data.

2 Compositional Models

As said above, in this section, we will briefly introduce the models to be con-
structed from data; for more details and the properties of these models the reader
is refereed to [6].

In the whole paper we consider a finite set of finite-valued random variables
N ={X1,Xs,..., X, }. Probability distributions (measures) will be denoted by
the characters of Greek alphabet, as e.g., m(N). Its marginal distribution for
variables M C N will be denoted either w(M), or 7t Let X; denote the set of
values of variable X;. It means that a probability distribution 7(V) : Xy — [0, 1]
is defined with the help |Xy| numbers (probabilities), where Xy denotes the
Cartesian product Xy = X; x Xy x ... x X,,, e.g., the space of all states of
variables N. Analogously, for a subset of variables K C N, Xg = X ,c g Xy.

For two distributions 7 (V) and x(V), we say that x dominates 7 (in symbol
m < k) if for all x € Xy, for which x(z) = 0 also 7w(x) = 0. As a measure of
similarity of two distributions we will consider their Kullback-Leibler divergence
[9] (or crossentropy) defined

7(x) log % if T < K,
Div(m; k) =  z€Xnim(2)>0
+00 otherwise,

which is known to be zero if and only if 7 = k.

Compositional models considered in this paper are multidimensional prob-
ability distributions that are assembled (composed) from its low-dimensional
marginals with the help of a so called operator of composition. This operator
realizes an operation in a way inverse to marginalization. For a probability dis-
tribution p(N) and J, K C N, such that J U K = N, the respective marginal
distribution u!/ and pt® are unique. On the other side, if J # N and K # N
then there are (infinitely) many distributions v(N) such that v+’ = p'’ and
v = MK Al these distributions v are called join extensions of ut’ and
5. One of them can be got by the application of the following operator of
composition.

Definition 1. For two arbitrary distributions m(M) and (L), for which m+NE
< NMOL - their composition is, for each x € Xpum, given by the following
formula*
LMYy (gL
(5 M) () = E M@
ALMOL (LML)

In case MOl £ NMOL “4he composition remains undefined.

! In this paper we take % = 0 by definition.
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Notice that the composition p!’ > ¥ is always defined (because the
marginals p!’ and p'f are consistent), and that the distribution p'” > p!¥
need not coincide with u(N). It is easy to show (see [6]) that for the composed
distribution p'’ >t variables J\ K and K \ J are conditionally independent?
given variables K N J.

If we compose two general distributions w (M) and A(L), and the composition
7> A is defined, then the result is a distribution of variables M U L, and it is
an extension of distribution 7 (see [6]), which is as similar as possible to a given
distribution A in the following sense (see Theorem 6.2 in[6])

T>\ = arg min Div(k'E;\).
K(LUM):rxiM =g
Notice that if 7> A is defined, then this minimum is unique. This is also the
reason why we can say that > \ is a projection of A into the set (space) of all
the extensions of 7 for variables L U M [1].

In this paper we are not interested in computational properties of distribu-
tions represented in a form of (iterative) compositions, so we need not present
the algebraic properties of the operator of composition; for them, the reader is
referred to [6]. Instead, let us present the definition of a compositional model.

Definition 2. Distribution k(N) is a compositional model if there ezists a cover
Ki,Ks,...,K,, (ie., KjU...UK,, = N), such that?

k(N) =kt p g2 gl Em, (1)

Let us conclude this section by stating that the class of compositional models
is exactly the same as the class of Bayesian networks [5].

3 Coding Data

The goal of this and the next section is not to find algorithms encoding composi-
tional models and /or data files but just to estimate how many bits are necessary
for such encodings. These numbers will be used to measure complexity of the
respective models (data). More precisely, these numbers will be used when we
will compare the complexity of two models, or the complexity of a model and

? Recall that for distribution x(IN) variables K and L are conditionally independent
given variables M (K, L, M C N are assumed to be disjoint) if

K(KULUM) -k(M)=r(KUM)-x(LUM).

3 Since the operator of composition is not associative, we have to say how to under-
stand the expression (1): If not specified otherwise by parentheses, the operator is
always performed from left to right, i.e.,

RlKl > Rle S RLK"” — ( ((Klfﬁ > KLKQ) > Hle) >...> Kule—l) > HlK”".
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258 R. Jirousek and I. Krejcova

the complexity of data. This is why we will not consider coding the number
of variables, variable names and the cardinality of their value sets. Coding this
information would just increase all the derived complexity measures by a con-
stant. Therefore, without loss of generality we can assume in this paper that
variable X; is identified by its index ¢, and their values are X; = {0,..., h;_1}.

Under the above assumption when encoding a data file D we have to encode
a matrix of nonnegative integers with d rows (records of the data file) and n
columns (variables). For this we will consider several simple procedures. Let us
repeat once more that we are aware of the fact that using more sophisticated
types of codes, such as e.g. arithmetic codes [14], we could achieve even more eco-
nomic encoding. The following codes are selected as a trade-off between precision
and simplicity of the following exposition.

Direct Encoding. For a binary variable we need just one bit for each entry of the
matrix. If the respective h; > 2 then we use* ¢; = [log, h;] bits to encode the
value of variable X;. Therefore, for the direct encoding of the data file we need

caD)=dx (ly+Lla+...+4y)+cC

bits, where ¢ denotes the number of bits necessary to encode the number of
records d (the number of rows in the matrix).

Frequency Encoding. For this coding we will take advantage of the fact that we
need not consider the ordering of records in the data file. We increase the data
matrix by one column into which we insert the number of repetition of each state
(by state we understand the combination of values of all variables) in the data
file. It enables us to keep in the matrix each state only once. Thus, denoting d,..q
the number of different states appearing in the original data file, and denoting
fmaz the maximal number of occurrences of the same state in the data file, then
for this type of encoding we need

cf(D) =dpea X (b1 + Lo+ ...+l + [logo(fraz —1)]) +2 x ¢

bits. [ fimae — 1] appears in the formula, because all the numbers of repetition

in the (n + 1)th column are numbers from 1,..., fi42, and thus we can encode
them as numbers from O, ..., fee — 1, and 2 X ¢ bits are necessary to encode
dred a fma:r-

Huffman Frequency Encoding. By this term we understand coding of the same
table like in the previous case but for coding the numbers of occurrence we use
the famous Huffman code [4]. The number of necessary bits for this code will be
denoted by ¢y (D) (see an example below).

4 [r] denotes the smallest integer, which is not less than r.
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Lezicographic Encoding. Analogously to preceding type of encoding, consider
an extended data matrix in which each state appears maximally once, and the
(n + 1)th column contains the number expressing how many times the state
appears in the original data file. If the number of variables is rather small,
it may happen that the following encoding of the considered matrix is more
economic than that by frequency encoding: add to the matrix all states that do
not appear in data (with number of repetition equaling 0), sort all the states
in the lexicographic order, and then we can encode only the numbers from the
(n + 1)th column. This coding requires

Cl(D) = |XN| X “ng fmaa:—| +c

bits (realize the last ¢ bits are used to encode fiq4z)-

Huffman Lexicographic Encoding. As in the previous case we code only frequen-
cies for all |[Xy| combinations, for which we use the Huffman encoding. For real
data files, Huffman process usually yields a code with the average length less
that two bits per number (this is because in practical situations numbers of
repetition greater than 1 are rare).

Naturally, the readers can extend the list of the considered data encoding
possibilities by as many other approaches as they want (e.g. see [12]). In this
paper we consider the complexity measure for the data file just

¢(D) = min{cq(D),cs(D),csu(D, (D), u(D)}.

Example. The ideas presented in this paper will be illustrated by an example
with artificially generated data. For the sake of simplicity we consider in this
example just eight binary variables (with values 0,1), and a data files with 100
records (binary vectors). In spite of this we fix the number of necessary bits to
encode the length of the data file to ¢ = 32, because we made experiments with
much bigger data files (up to 100 000 records). Recall that we neglect coding the
information about the model.

To apply the direct encoding approach, when taking into account the con-
sidered small data file we need to encode the following table

1100 0010

which means that we need ¢4(D) = 100 x 8 + 32 = 832 bits.

To encode the same data file with the frequency encoding, transform first
the data file into the form, in which all the rows (states) are unique and the last
column contains the number of occurrences of the respective state in the original
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260 R. Jirousek and I. Krejcova

data file. For the considered data file we get the following table

001 1010 1 27

1 0110 0 O 1 10
dred:38

1 1.0 00 01 0 1

Thus we get cy(D) = 38 x (8 4+ 5) 4+ 2 x 32 = 558 bits.

To get what we call Huffman version of frequency encoding we need to find
Huffman code for the numbers of occurrences. In our case such a code is the
following (the numbers in parentheses - the last column - read how many times
the respective frequency number appears in the above table)

27 11111 (1x)
10 11110 (1x)
5 1110 (2%)
3 110 (5%)
2 10 (9x)
1 0 (20x)

Thus, using Huffman version of frequency encoding we have to encode the above
coding table (which can easily be done with 6 x (54 5) = 60 bits, and for coding
the numbers of occurrences we need only 2x54+2x4+5x3+9x2+20x1 =71
bits (instead of 38 x 5 = 190, which is needed for the frequencies encoding in the
previous case). So, we get ¢y (D) =38 x (8) + 60 + 71 + 2 x 32 = 499 bits.

To get the lexicographic encoding we have to consider all 2% states lexico-
graphically ordered

(0 0 00O O OO 1

00 0 0 0001 0

00 0 0 0 O0T1TO0 0
256 <

111 1 1 111 0

\

So, lexicographic encoding of the framed frequencies requires ¢;(D) = 256 x 5 +
32 = 1312 bits. However, if we use Huffman approach to encode all the numbers
appearing in the frame, i.e., if we use the following code

27 111111 (1x)
10 111110 (1x)
5 11110 (2x)
3 1110 (5x)
2 110 (9%)
1 10 (20)
0 0 (218x%)
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Table 1. Requirements for coding the data files

Cd cf CfH Cl ClH
Dioo 832 958 499 1,312 404
D1iooo 8,032 1,680 976 2.080 992
D10000 80,032 4,084 2,713 3,104 2,362
Diooooo 800,032 5,676 5,800 3,872 4,775

we need only 7 x (54 6) = 77 bits to encode this coding table, and ¢;5 (D) =
TT+2X64+2x54+5x44+9x3+20x24218 x1 =404 bits.

To illustrate the way how these complexity measures increase with the
amount of the considered data we generated (using the same generator) another
three data files with 1 000, 10 000 and 100 000 records. A summary of the bit
requirements to encode all these data files is in Table 1.

4 Coding Models

To encode a compositional model given by Formula (1) we have to encode
marginal distributions x5, kt&2 . klEm in a proper order. Each of these
distributions !¢ is described by the list of variables, i.e.,

number of variables | K;| [log, n| bits
list of variables |K;| x [logy n] bits

and the respective probabilities, whose total number is [][ h,. Obviously,
encoding the probabilities is, as a rule, much more space demanding that

encoding the variables, for which the respective marginal is defined. The lat-
ter encoding requires, as presented above, only (|K;| + 1) X [log, n] bits.
Naturally, the space requirements for the probability encoding is closely con-
nected with the precision with which the respective probabilities should be spec-
ified. A simple way, which is used in this paper, is the following.
Select a positive integer, denote it base, and express all the considered prob-
abilities as a ratio of two nonnegative integers

a

base’

This means that the respective probability will be encoded by integer a. From
the obvious reasons it does not have a sense to choose base > d (recall that d
is the number of records in the input data file). However, base may be much
smaller than d and can be defined with respect to the size of confidence intervals
computed for the probability estimates, or it can be reduced when we want to
reduce the complexity of the constructed compositional model (as shown in the
next section).

By employing the idea of representing probabilities by integers we get, in fact,
exactly the same situation as that in the previous section: marginal distribution
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262 R. Jirousek and I. Krejcova

ki is fully described by those states x € Xk, for which the probability % (z)
is positive and by the respective integer representing value % (z). It means that
for encoding the marginal distributions x*%* we can employ any of the techniques
described in the previous section (perhaps, application of the direct encoding
comes into consideration in very specific and unusual situations, though). As a
rule, the most economic encoding is yielded by Huffman lexicographic encoding.
Frequency encoding (both plain and Huffman’s) may be applicable only for more-
dimensional distributions, which are positive on a small part of the respective
space Xg, .

Thus, when encoding compositional models we will face the only problem:
whether it is more economic to construct a Huffman code specially for each
marginal distribution (and thus also code the respective coding table), or con-
struct one code for coding all the marginals from which the model is composed.

An analogous problem is connected with the selection of the number base. In
this paper we consider only simple models and therefore we use one number base
for the whole model. However, the reader certainly realizes that in some situa-
tions a greater chances to decrease the complexity of the model can be achieved
when defining different base; for different marginals. Namely, the necessity of
coding one number base; for each marginal distribution can be payed back by
the savings achieved for coding the respective probabilities.

Example Continued. Let us illustrate the principles described above by coding
a model

M]_ : /’61 — K/l{l?Q} > Hl{3’4} > Kl{3’5} > K/l{la4v576} > K/l{57678} > Hl{275767778} (2)

constructed from the considered data file D with 100 records. To describe a
structure of the model we need to specify the number of marginal distributions
m = 6, number base = 100.

Thus, the structure of the model (2) can be described with the help of
[logon] + ¢ = 3 4 32 = 35 bits, and to encode k-dimensional distribution by
lexicographic encoding we need either:

number of variables k [log, 1| bits,
list of variables k x [logy n] bits,
frequencies (probabilities) 2% x [log, base] bits,

or, in the case that specification of the maximal frequencies for each marginal
fmaz,i Pays back by savings gained for more economic specification of all fre-
quencies,

number of variables k [log, n] bits,
list of variables k x [logy n] bits,
maximal frequency fiqz.q [log, base] bits,

frequencies (probabilities)  2* x [logy fimax.i] bits.

In our case the two approaches differ just by 18 bits, so let us consider the sim-
pler (the former) approach. Thus we need
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for k12t B34 U85 3 4+ 64 28 = 37 bits,

for L4561 3 4 12 4+ 112 = 127 bits,
for kHE68Y: 3 1 94 56 = 68 bits,
for rUZT56.8F 3 4 15 4 224 = 242 bits,

which means that ¢;(IM;) = 583.

Taking into account the fact that among the 68 frequencies (probabilities)
needed to represent the respective six marginals there appears twenty times “0”
and sixteen times “17, it is not surprising that a more economic encoding is
achieved by Huffman’s version of lexicographic encoding, which yields for this
model ¢;(M;y) = 423. In any case, whatever type of encoding we may take into
consideration we cannot reach the coding requirements sufficient to encode data
cig (D) = 404. This means that the model M; described by formula (2) with
probabilities specified with the help of base = 100 is unacceptable, and there-
fore, to meet the information-theoretic viewpoint at MDL principle described in
Introduction, we have to simplify the considered model by any of the possibilities
described in the next section.

5 Model Simplification

Perhaps the easiest way how to simplify the constructed model is to roughen
the probability estimates by decreasing the constant base. Considering model
M; with base = 100 means that we take all the probability estimates with two
digits of precision. Rounding these estimates to one decimal digit means to con-
sider base = 10. Nevertheless, it is important to realize that we can consider
finer roughening choosing any 10 < base < 100. Denote ¢;7(M1.50), ¢z (M1.40)
and c¢;p7(Mj.32) complexity of Huffman lexicographic encoding of model M,
with base equaling 50, 40 and 32, respectively. Then for the probability esti-
mates got from data file D we have ¢;5(Miy.50) = 408, ¢;z(Mi.40) = 397,
and ¢ (Mj.32) = 284. Thus, both the latter two models are acceptable from
the information-theoretic viewpoint at MDL principle. Let us also note that a
greater simplification achieved when changing base from 40 to 32 than when
changing base from 50 to 40 is due to the fact that [log, 40] > [log, 32] and
[log, 50] = [log, 40].

Another way how to simplify the considered model is to simplify its struc-
ture. Obviously, in the sense of space requirements the most costly is the five-
dimensional marginal x!{2:56:78} Tet us consider two simplifications of My
consisting only of two- and three-dimensional marginals:

Ma : pip = pH12H b g H34) 5 HBS) (L5827} (H156E  (3)

and

Ms : pg = rH34 p H35} 5 cHIS6 | (568} o (HOTSE ({127} (g

Repeating computations described in the preceding section we get ¢;(M2) = 306
and ¢;(Mg) = 356 bits, and ¢;5(Mz) = 267 and ¢;5(M3z) = 304 bits. Let us
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264 R. Jirousek and I. Krejcova

Table 2. Kullback-Leibler divergences

Ml M1:5O M1:4O M1:32 M2 M3

complexity 423 408 397 284 267 304
K-L divergence 0.2736 0.2795 0.2846 0.2881 0.2964 0.3036

stress that these complexities are computed for models with with base = 100.
So, comparing these values with ¢;;7(D) = 404 we see that both these models
are from our point of view acceptable.

Nevertheless, it is clear that we cannot evaluate models just on the basis of
MDL principle, just according to the number of bits necessary for their encoding.
We also need a criterion evaluating to what extent each model carries the infor-
mation contained in the considered data. For this, we use the Kullback-Leibler
divergence between the sample probability distribution defined by data and the
probability distribution defined by the model. So, for each considered model
we can compute the Kullback-Leibler divergence between the eight-dimensional
sample distribution x defined by the considered data file with 100 records, and
the distribution defined by the respective model. For example, for model M it is
Div(k; p1), where k is the sample distribution, and g is the distribution defined
from k by Formula (2). The values of these divergences for all the considered
models are in Table 2.

From Table 2 we can see that the simplification of a model by decreasing the
value of constant base, i.e., by roughening the estimates of probabilities, leads
to the decrease of complexity of the model and simultaneous increase of the
Kullback-Leibler divergence. The greater this type of simplification, the greater
the respective Kullback-Leibler divergence. A precise version of this statement
can be expressed in a form of mathematical theorems whose presentation is
beyond the scope of this paper. On the other hand, from the last two columns
of Table 2 the reader can see that a similar relation valid for the simplification
of a model by decreasing the complexity of a model would be much more com-
plex. This is based on the fact that though both models My and M3 are the
simplification of My, no one is a simplification of the other. This means that
for structure simplification the strength of simplification cannot be measured
just by one parameter, by the amounts of bits necessary for the model encod-
ing but we have to introduce also some partial order on the set of all potential
simplifications, which is a topic for future research.

6 Conclusions

The novelty of this paper lies in the detailed analysis of the complexity of prob-
abilistic models. We do not take into account only the structure of a model but
also the precision of probabilities describing the model in question. It means that
the final selection of the model is based on a trade-off between the complexity of
model structure and the precision of probability estimates; the simplification of a
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model structure makes it possible to consider more precise probability estimates
and vice versa. On the other side it also means that employing these ideas into
the process of model construction substantially increases the space of possible
solutions in comparison with the approaches when only the structure is opti-
mized. Fortunately, a rather great part of the models are “forbidden” because
their complexity is greater than the upper limit determined by the input data. It
is a topic for the future research to design tractable algorithms taking advantage
of this property.

In this paper, the new ideas are illustrated on the data based construc-
tion of probabilistic multidimensional compositional models. Naturally, it can
be applied also to the construction of other probabilistic multidimensional mod-
els (like e.g., Bayesian networks), and also to construction of models in other
uncertainty theories (see e.g., Shenoy’s valuation based systems [7]).
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