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Sequential Decision Process Supported
by a Compositional Model
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Abstract. The goal of the paper is to describe a classical sequential
decision process that is often used for both medical and technical diag-
nosis making in a relatively new theoretical setting. For this, we represent
the background knowledge, which is assumed to be expressed in the form
of a multidimensional probability distribution, as a compositional model.
Though we do not perform a detailed analysis of its computational com-
plexity, we show that the whole process is easily tractable for probability
distributions of very high dimensions in the case that the distribution is
represented as a compositional model of special properties.

Keywords: Sequential decision-making · Multidimensional models ·
Probability distributions · Composition · Information theory

1 Introduction

The basic idea, upon which a sequential decision process is based, is simple. The
goal is to find out evidence supporting a decision with a required certainty. To
express this idea more precisely let us use the language of probability theory.
Let Z denote a decision variable whose values correspond to individual decisions
(e.g., diagnoses). If κ is a probability distribution describing a relationship among
the feature variables and the decision variable, we want to find out a subset E of
feature variables whose values e (evidence) observed in the situation in question
yields

κ(Z = d|E = e) ≥ ε

for some decision d, and a required reliability threshold ε. In a sequential process,
the set E is gradually constructed by adding (usually) one variable at each step.
Naturally, we want to keep the set E as small as possible, or generally, if some
weights (or costs) connected with individual variables are given, we want to get
the cheapest possible decision process.

Quite often, sequential decision processes are represented in a form of a deci-
sion tree. However, in many practical problems a fixed tree does not suit the

c© Springer International Publishing AG 2016
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situations. For example, in case of a medical diagnosis making, a patient vis-
its a physician with some complains, i.e., with symptoms (values of variables)
that need not be at the beginning of the decision tree, and still they should
be included in the set E. Similarly, faults of a technical device manifest at the
very beginning in different ways (or, it may be observed by different users in
different ways). Not speaking about a newly appointed manager whose task is
to strengthen a company. To diagnose weaknesses of the enterprise they always
start with different prior knowledge. Moreover, costs assigned to variables may
differ from case to case. A patient may come to a specialist with the results of
some expensive laboratory tests that were already performed by another physi-
cian, so the specialist has it free. This is why we prefer not to compute a single
decision tree in advance but to construct a sequential decision process based on
a multidimensional probability distribution at time of its application.

When speaking about dimensionality of probability distributions, it is clear
that in practical situations we should have in mind rather thousands than tens
of variables. Therefore we will use a tool enabling us to represent and compute
with such large distributions.

For this purpose, Bayesian networks [5] that were developed in 1980s, or other
graphical models [10] are often used. In contrast to this, in this paper we want to
enhance application of another, non-graphical approach, so called compositional
models that were proposed for multidimensional probability distributions; see [6].

The paper is organized as follows: Sect. 2 introduces a necessary notation and
serves as a brief introduction to compositional models (more on this topic can be
found in [6]). In Sect. 3 we show that it is possible to compute conditionals even
for probability distributions of very high dimensions when the distributions are
represented in the form of compositional models of special properties. Section 4
is devoted to the description of the sequential decision process.

2 Compositional Model

In this text we use the notation from the paper [7] presented at IUKM 2015. We
deal with a finite system of finite-valued random variables N = {X1, . . . , Xn, Z}.
A set of values of feature variable Xi, which is denoted Xi, is assumed to have at
least two elements. The same is assumed also about set Z of values of decision
variable Z. The set of all combinations of the considered values is denoted XN =
X1×X2× . . . ×Xn×Z. Analogously, for K ⊂ N \ {Z}, XK = ×Xi∈KXi, and for
Z ∈ K ⊂ N , XK = ×Xi∈KXi×Z.

Distributions of the considered variables are denoted by Greek letters (π, κ, μ)
with possible indices; thus for K ⊆ N , we can consider a distribution π(K),
which is a |K|-dimensional distribution and π(x) denotes a value of probability
distribution π for state x ∈ XK .

For a probability distribution π(K) and J ⊂ K, its marginal distribution π↓J

is computed for all x ∈ XJ by

π↓J(x) =
∑

y∈XK :y↓J=x

π(y),
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where y↓J denotes the projection of y ∈ XK into XJ . For computation of marginal
distributions we do not exclude situations when J = ∅, in this case π↓∅ = 1.

Having two distributions π(K) and κ(K), we say that κ dominates π (in
symbol π � κ) if for all x ∈ XK

κ(x) = 0 =⇒ π(x) = 0.

One of the most important notions supporting an efficient representation of
multidimensional probability distributions is a famous concept of conditional
independence (se e.g. [10] or [13]).

For a probability distribution π(K) and three disjoint subsets L,M,R ⊆
K such that both L,M 	= ∅, we say that groups of variables L and M are
conditionally independent given R (in symbol L ⊥⊥ M |R [π]) if

π↓L∪M∪Rπ↓R = π↓L∪Rπ↓M∪R.

2.1 Operator of Composition

For the compositional models, the key notion is that of a composition.

Definition 1. For arbitrary distributions π(K) and κ(L), for which π↓K∩L �
κ↓K∩L, their composition is, for each x ∈ X(L∪K), given by the following formula

(π � κ)(x) =
π(x↓K)κ(x↓L)
κ↓K∩L(x↓K∩L)

.

In case π↓K∩L 	� κ↓K∩L, the composition remains undefined.

Let us briefly repeat the basic properties of this operator that were discussed
in more details in [6] and also in [7].

Lemma 1. Suppose π(K), κ(L) and μ(M) are such probability distributions
that all the following expressions (compositions) are defined. Then the following
statements hold.

1. π �κ is a probability distribution of variables (L∪K) and its marginal distri-
bution for variables K equals π:

(π � κ)↓K = π.

2. The composition is not commutative, therefore in general: π � κ 	= κ � π,
however, π and κ are consistent, i.e., π↓K∩L = κ↓K∩L, if and only if

π � κ = κ � π.

3. The composition is not associative, therefore in general (π�κ)�μ 	= π�(κ�μ),
however if K ⊃ (L ∩ M), or, L ⊃ (K ∩ M), then

(π � κ) � μ = π � (κ � μ).
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4. If (K ∩ L) ⊆ R ⊆ K ∪ L, then

(π � κ)↓R = π↓K∩R � κ↓L∩R.

5. If K ⊃ (L ∩ M), then (π � κ) � μ = (π � μ) � κ.

The above presented assertion expresses all the properties of the operator of
composition we will need in this paper. For example, from Property 1 one can
easily see that it enables us to construct a more-dimensional distribution from
two low-dimensional ones. The result is an extension of the first argument. On
the other hand side, having a more-dimensional distribution one can, in some
situations, factorize this distribution into two (or more) low-dimensional ones.
This property is precisely expressed in the following assertion, the proof of which
can also be found in [6].

Lemma 2. Consider a probability distribution π(K), and three disjoint subsets
L,M,R ⊆ K such that both L,M 	= ∅. Then L ⊥⊥ M |R [π] if and only if

π↓L∪M∪R = π↓L∪R � π↓M∪R.

2.2 Generating Sequences

In the rest of the paper we will deal with sequences of low-dimensional probability
distributions. To avoid some technical problems and the necessity of repeating
some assumptions to excess, let us make the following three conventions.

First, whenever we speak about a distribution πk, it will be a distribution
πk(Kk). Thus, formula π1 � . . . � πm, if it is defined, determines the distributions
of variables K1 ∪ . . . ∪ Km.

Since the operator of composition is not associative (see Property 3 of
Lemma 1), the formulas like π1 � . . . � πm are, strictly speaking, ambiguous.
Therefore, the second convention avoids this ambiguity saying that we always
apply the operators from left to right. Thus

π1 � π2 � π3 � . . . � πm = (((π1 � π2) � π3) � . . . � πm),

and the parentheses will be used only when we want to change this default
ordering. Therefore, to construct a multidimensional distribution it is sufficient
to determine a sequence – we call it a generating sequence – of low-dimensional
distributions.

The third aforementioned convention is of a rather technical nature. Con-
sidering a generating sequence π1, π2, . . . , πm we will always assume that all the
included operators of composition are well defined, which means that we assume

π↓K2∩K1
1 � π↓K2∩K1

2 ,

(π1 � π2)↓K3∩(K1∪K2) � π
↓K3∩(K1∪K2)
3 ,

and so on. Therefore, we assume that π1 � π2 � π3 � . . . � πm is defined.
Another important notion we will need in this paper is that of a perfect

sequences that is defined in the following way (see also [6]).
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Definition 2. A generating sequence of probability distributions π1, π2, . . . , πm

is called perfect if

π1 � π2 = π2 � π1,

π1 � π2 � π3 = π3 � (π1 � π2),
...

π1 � π2 � . . . � πm = πm � (π1 � . . . � πm−1).

The importance of perfect sequences becomes clear from the following char-
acterization theorem (for the proofs of all the assertions presented in the rest of
this section see [6]).

Theorem 1. A sequence of distributions π1, π2,. . . ,πm is perfect iff all the dis-
tributions from this sequence are marginals of the distribution π1 � π2 � . . . � πm.

Another advantageous property of the perfect sequences says that perfect
sequences represent a unique distribution in the following sense.

Theorem 2. If a sequence π1, π2, . . . , πm and its permutation πi1 , πi2 , . . . , πim

are both perfect, then

π1 � π2 � . . . � πm = πi1 � πi2 � . . . � πim .

In the rest of the paper we will need two more facts expressed in the following
assertions. The first says that any generating sequence can be transformed into a
perfect sequence without influencing the resulting multidimensional distribution.

Theorem 3. For any generating sequence π1, π2, . . . , πm, the sequence κ1, κ2,
. . . , κm computed by the following process

κ1 = π1,

κ2 = κ↓K2∩K1
1 � π2,

κ3 = (κ1 � κ2)↓K3∩(K1∪K2) � π3,

...
κm = (κ1 � . . . � κm−1)↓Km∩(K1∪...∪Km−1) � πm

is perfect, and
π1 � . . . � πm = κ1 � . . . � κm.

The process of perfectization described in Theorem 3 is simple. Unfortu-
nately, not from the point of view of computational complexity. This is because
the computation of (κ1�. . .�κr−1)↓Kr∩(K1∪...∪Kr−1) may be computationally very
expensive [2]. Therefore, in the next sections we will take advantage of special
generating sequences, namely those whose sequences of variables K1,K2, . . . ,Km

meet the so called running intersection property (RIP):

∀r = 2, . . . ,m ∃s(1 ≤ s < r)

(
Kr ∩ (

r−1⋃
k=1

Kk) ⊆ Ks

)
.
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Consider a perfectization process applied to such a RIP generating sequence
π1, π2, . . . , πm. In this case, either K1 ⊇ K3∩(K1∪K2), or K2 ⊇ K3∩(K1∪K2),
which means that K3 ∩ (K1 ∪ K2) equals either K1 ∩ K3 or K2 ∩ K3. Since the
sequence κ1, . . . , κm is constructed in the way that κ1 and κ2 are consistent,
i.e., κ↓K2∩K1

1 = κ↓K2∩K1
2 , due to Property 2 of Lemma 1 κ1 � κ2 = κ2 � κ1

and therefore, using Property 1 of the same Lemma, (κ1 � κ2)↓K1 = κ1 and
(κ1 �κ2)↓K2 = κ2. Thus we got that (κ1 �κ2)↓K3∩(K1∪K2) equals either κ↓K3∩K1

1 ,
or κ↓K3∩K2

2 . Analogously, we can see that for any r = 3, . . . ,m there exists s
such that

(κ1 � . . . � κr−1)↓Kr∩(K1∪...∪Kr−1) = κ↓Kr∩Ks
s ,

which makes the perfectization process computationally simple.
Another advantageous property concerning the RIP generating sequences is

expressed in the following theorem [6].

Theorem 4. If π1, . . . , πm is a sequence of pairwise consistent probability dis-
tributions such that K1, . . . ,Km meets RIP, then this sequence is perfect.

3 Conditioning

In [3] we showed that even the conditional distribution can be computed using
the operator of composition. Consider any variable Y ∈ N and its value a ∈
X{Y }. Define a degenerated one-dimensional probability distribution δa(Y ) as a
distribution of variable Y achieving probability 1 for value Y = a, i.e.,

δa(Y ) =
{

1 if Y = a,
0 otherwise.

Now, compute (δa(Y )�κ)↓{X} for a probability distribution κ(L) with X,Y ∈ L.
For b ∈ X{X}

(δa(Y ) � κ)↓{X}(b) = ((δa(Y ) � κ)↓{X,Y })↓{X}(b) = (δa(Y ) � κ↓{X,Y })↓{X}(b)

=
∑

x∈X{Y }

(δa(Y ) � κ↓{X,Y })(b, x)

=
∑

x∈X{Y }

δa(Y ) · κ↓{X,Y }(b, x)
κ↓{Y }(x)

=
κ↓{X,Y }(b,a)

κ↓{Y }(a)
= κ↓{X,Y }(b|a).

Analogously, we can easily show that for κ(L)

κ(L \ {Y }|Y = a) = (δa(Y ) � κ)↓L\{Y },

and for E = {Y1, Y2, . . . , Yk}, and e ∈ XE ,

κ(L \ E|E = e) = (δe↓{Y1}(Y1) � (. . . � (δe↓{Yk}(Yk) � κ)))↓L\E .
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Now, we want to show that the last expression can be effectively computed
for a multidimensional distribution κ represented in a form of a RIP perfect
generating sequence: κ = π1(K1) � π2(K2) � . . . � πm(Km).

Let us, first, consider the computation

δe↓{Yk}(Yk) � κ = δe↓{Yk}(Yk) � (π1 � π2 � . . . � πm).

It is well known (and the reader can see it from the properties of joint trees
described in Sect. 4.1) that for each Ki the RIP sequence K1,K2, . . . ,Km can
be reordered so that the resulting sequence is also RIP and Ki is at the begin-
ning of this new sequence. So, without loss of generality we can assume that
π1, π2, . . . , πm is such that Yk ∈ K1. The fact that the respective reordering does
not influence the represented multidimensional distribution π1 � π2 � . . . � πm

follows from Theorems 4 and 2.
Now, consider

δe↓{Yk}(Yk) � ((π1 � π2 � . . . � πm−1) � πm).

Since Yk is contained in K1, it is contained also in (K1 ∪ K2 ∪ . . . ∪ Km−1), and
therefore, applying Property 3 of Lemma 1, we get

δe↓{Yk}(Yk) � ((π1 � π2 � . . . � πm−1) � πm)
= (δe↓{Yk}(Yk) � ((π1 � π2 � . . . � πm−1)) � πm.

Repeating this reasoning m − 1 times we eventually get

δe↓{Yk}(Yk) � (π1 � π2 � . . . � πm) = (δe↓{Yk}(Yk) � π1) � π2 � . . . � πm,

which means that computing a conditional from a distribution represented by a
RIP perfect generating sequence results, again, in a distribution represented as a
RIP sequence. The latter can be, as showed in the preceding section, efficiently
transformed into a RIP perfect generating sequence (Theorem 3). Therefore,
to compute κ(L \ E|E = e) we have to successively apply the above idea for
all Yj ∈ E. Let us stress that for each Yj we have to find a RIP ordering of
(K1,K2, . . . ,Km) such that Yj is in the first set of this RIP ordering. Generally,
for different Yj we have to use a different RIP ordering of (K1,K2, . . . ,Km).

4 Sequential Decision Process

A sequential decision process consists in a successive repetition of the following
step:

Knowing state e ∈ XE of variables E, find a variable X ∈ N \ (E ∪ {Z})
such that the detection of its value a increases (as much as possible) the
chances of getting

κ(Z = d|E = e,X = a) ≥ ε

for some value d ∈ Z.
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It is important to realize that in this step we search for a variable X whose
value is to be ascertained next. It means that at the moment of looking for X
we do not know the value a ∈ X{X}. This value will be ascertain before the next
sequential step is realized with new E := E ∪ {X}.

For the selection of X ∈ N \ (E ∪ {Z}) we can hardly find a better criterion
than that used in the process of construction of efficient decision (or search)
trees for many years [9,12]. Using this criterion, in the process of data based
construction of a decision tree, we look for the variable that splits the considered
training data file into subfiles yielding the minimum expected Shannon entropy
for the decision variable. In fact, it is nothing else than looking for a variable
X ∈ N \ (E ∪ {Z}) maximizing the expression

MIκ(N\E|E=e)(X;Z)

=
∑

(x,z)∈X{X}×Z

κ↓{X,Z}(x, z|E = e) · log
κ↓{X,Z}(x, z|E = e)

κ↓{X}(x|E = e)κ↓{Z}(z|E = e)
.

Now, as the reader certainly expects, we take advantage of the results from
the preceding section and assume that the conditional distribution κ(N \E|E =
e) is represented in the form of a RIP perfect generating sequence. This
assumption enables us not only to compute values MIκ(N\E|E=e)(X;Z) for all
X ∈ N \ (E ∪ {Z}) in an efficient way, but also to speed up the computational
process by indicating those variables, for which we need not to compute the
value of mutual information because we can learn in advance that the respective
conditional mutual information cannot achieve a maximal value.

4.1 Computations in Joint Trees

It is known from both data-base [1] and Bayesian network [5,10] theories that a
system of sets K1,K2, . . . ,Km can be ordered to meet RIP if and only if one can
construct a structure called a joint tree. It is a tree having K1,K2, . . . ,Km for
its nodes and possessing the following special property: If Kk lies on the path
from Kr to Ks then Kk ⊇ Kr ∩ Ks.

Recall that it is an easy task to construct a joint tree for a RIP sequence
K1,K2, . . . ,Km: For, each Kr (r = 2, . . . ,m) the joint tree contains an edge
connecting Kr with that Ks, which meets the RIP condition

1 ≤ s < r & Kr ∩ (K1 ∪ . . . ∪ Kr−1) ⊆ Ks.

If there are more such nodes Ks, then Kr is connected to only one of them. The
tree contains no other edges than those specified above.

To compute MIκ(N\E|E=e)(X;Z) for all X ∈ N\(E∪{Z}), start enumerating
this mutual information for all variables from Kr, for which Z ∈ Kr (if there are
more sets meeting this condition, consider all of them). Since we assume that

κ(N \ E|E = e) = π1 � π2 � . . . � πm,
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and that π1, π2, . . . , πm is a perfect sequence, due to Theorem 1 we know that
πr is marginal of κ(N \E|E = e). This means that we can compute the required
conditional mutual information just from πr, which is simple.

After having evaluated the required mutual information for all the variables
from Kr \ (E ∪ {Z}), we start processing variables from the neighboring nodes,
i.e., from nodes Ks that are adjacent to Kr in the joint tree. Now, it is important
to realize two facts that makes the computation very efficient.

First, since Ks is adjacent to Kr in the joint tree, it is possible to find a RIP
ordering of K1,K2, . . . ,Km such that it starts Kr,Ks, ..., and therefore (thanks
to Theorem 2 and Property 1 of Lemma 1) we know that

κ((Kr ∪ Ks) \ E|E = e) = πr � πs.

The other fact that can speed up the computational process follows from
a famous property of mutual information. It is known from any textbook on
information theory (e.g. [4]) that if X ⊥⊥ Z|M [μ], for some set of variables M
then

MIμ(X;Z) ≤ MIμ(M ;Z).

Therefore, applying this property and Lemma 2 to this situation we get that for
X ∈ Ks \Kr (recall that Z ∈ Kr \Ks because all variables from Kr were treated
in the previous step)

MIπr�πs
(X;Z) ≤ MIπr�πs

(Kr ∩ Ks;Z).

This means that if there is variable X ∈ Kr for which

MIπr�πs
(Kr ∩ Ks;Z) ≤ MIπr�πs

(X;Z)

then we do not need to compute mutual information MIπr�πs
(X ′;Z) for variables

X ′ ∈ Ks \ Kr because we know that it cannot achieve the looked for maximum.
In a similar way we can compute MIκ(N\E|E=e)(X;Z) for all the remaining

variables from N \ (E ∪{Z}). First we have to find the shortest path in the con-
sidered joint tree connecting nodes containing X and Z (realize that in a tree,
two nodes are always connected by a unique path, but both the considered vari-
ables X and Z may be in several nodes). Denote this path Kj1 ,Kj2 , . . . ,Kjk in
the way that X ∈ Kj1 and Z ∈ Kjk . Then from the perfectness of π1, π2, . . . , πm

and the RIP property we get that

κ((Kj1 ∪ Kj2 ∪ . . . ∪ Kjk) \ E|E = e) = πj1 � πj2 � . . . � πjk ,

and thus we compute

MIκ(N\E|E=e)(X;Z) = MIπj1�πj2�...�πjk
(X;Z).

However, the longer path Kj1 ,Kj2 , . . . ,Kjk the greater chances that among the
variables, for which the mutual information has been evaluated, we can find
variable X ′, for which

MIπj1�πj2�...�πjk
(Kji ∩ Kji+1 ;Z) ≤ MIπj1�πj2�...�πjk

(X ′;Z),

for some i ∈ {1, 2, k − 1}, and therefore the computation of
MIπj1�πj2�...�πjk

(X;Z) is wasteful.
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4.2 An Algorithm

Up to now, we have described and theoretically supported all the individual
parts of the proposed sequential decision process. Let us (rather informally)
summarize it in several steps.

Initialization. We assume that the probability distribution represented by a
RIP generating sequence is given. If it is not perfect then apply the perfectiza-
tion procedure described in Theorem 3 so that the resulting generating sequence
π1, π2, . . . , πm meets RIP condition and is perfect. Thus, in the sequel we com-
pute with the distribution

κ(N) = π1 � π2 � . . . � πm.

Set E := ∅.

Preliminary Evidence Processing. E0 denotes the set of variables whose
values e0 are given before the sequential process starts. If there is no preliminary
evidence, i.e. E0 = ∅, skip the rest of this step. Otherwise for all variables X
from E0 realize the following conditioning procedure.

Conditioning. Assign a new value to E := E ∪ {X}, and extend the point
e := e↓E

0 . Reorder (renumber) the given generating sequence in the way that the
new ordering K1,K2, . . . ,Km meets RIP and X ∈ K1. Apply the perfectization
procedure (Theorem 3) to the sequence: (δe↓X

0
(X) � π1), π2, . . . , πm, and assign

the result, after marginalizing variable X out, as a new value to π1, π2, . . . , πm.
So that now,

κ(N \ E|E = e) = π1 � π2 � . . . � πm.

Sequential Procedure. Perform the following process consisting of three
steps (Variable selection, Application and Conditioning) repeatedly until
π

↓{Z}
r (d) ≥ ε for some d ∈ Z. (Take any r such that Z ∈ Kr.)

Variable selection. Set L := N \ (E ∪ {Z}) (L is a set of variables, for which
we should compute the value of mutual information in this step).
For all X ∈ L, for which there exists r ∈ {1, 2, . . . ,m} such that both X,Z ∈ Kr,
compute MIπr

(X;Z), and reset L := L \ {X}.
Now, denote X the variable achieving the maximal value of the mutual infor-

mation, and repeat the following step until L = ∅.

Computation in a joint tree. Find the shortest path Kj1 ,Kj2 , . . . ,Kjk from
the respective joint tree meeting the following three properties: (1) Z ∈ Kjk , (2)
Kj1 ∩ L 	= ∅, and (3) (Kj2 ∪ . . . ∪ Kjk) ∩ L = ∅.
If

MIπj2�...�πjk
(Kj1 ∩ Kj2 ;Z)

> MIπj2�...�πjk
(X;Z)
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Then for all Y ∈ Kj1 ∩ L compute

MIπj1�...�πjk
(Y ;Z),

and reset L := L \ Kj1 .
If the maximum from the computed values of mutual information is higher than

MIπj2�...�πjk
(X;Z)

then reset X to the variable with the highest mutual information.
Else reset L by removing from L all such Ks for which the path from Ks to Kjk

goes through Kj1 .

Application. Ask the user to ascertain the value of variable X. Denote the
result a.

Conditioning. Reset E := E ∪ {Xi}, and extend the point e so that the new
value is from XE , and e↓{X} = a. Reorder (renumber) generating sequence
π1, π2, . . . , πm in the way that the respective new ordering K1,K2, . . . ,Km meets
RIP and X ∈ K1. Apply the perfectization procedure (Theorem 3) to the
sequence: (δa(X) � π1), π2, . . . , πm, and the result, after marginalizing variable
X out, assign as a new value to π1, π2, . . . , πm. So that now,

κ(N \ E|E = e) = π1 � π2 � . . . � πm.

5 Summary and Conclusions

We have described a sequential diagnosis making process based on a knowl-
edge represented by a multidimensional probability distribution. Unfortunately,
because of the restrictions on number of pages we are not able to include an illus-
trative example that will be presented in the conference lecture. Nevertheless,
the idea of the process is simple and can be easily understood from the algorithm
description. The reader certainly realized that the controlling rule aims for the
least number of variables whose values are to be ascertain. As said in Introduc-
tion, it is really not difficult to modify the variable selection rule so that some
weights of the variables are taken into account. In this case, however, one can
hardly rely upon the fact that the longer path Kj1 ,Kj2 , . . . ,Kjk is constructed
in the Computation in a joint tree step the greater chances to cut off the
nodes of the joint tree that cannot contain a variable optimizing the selection
criterion.

Applying just basic properties of the operator of composition and perfect
generating sequences recalled in Sect. 2 we showed that all the necessary com-
putations, including the computation of the required conditionals, can be per-
formed locally , and therefore very efficiently. Application of local computational
procedures, based on original Lauritzen and Spiegelhalter ideas [11], was made
possible due to specific properties of perfect RIP generating sequences.

As it can be seen from the previous text, it is the very application of perfect
compositional models that have one great advantage visible in comparison with
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application of Bayesian networks. Each low-dimensional distribution, which the
model is constructed from, is marginal to the multidimensional model. This
makes verification of some conditions, like for example the stoping rule from the
Algorithm, very simple. More generally, there is a whole class of sets of variables,
for which the marginals can easily be computed. These are the sets that can be
got as a union of nodes of a subtree (connected subgraph) of the respective joint
tree. This property was exploited in the Computation in a joint tree step of
the Algorithm, where we considered marginals πj1 � . . . � πjk .

Though it is beyond the scope of this paper, let us mention yet another advan-
tage of the considered compositional models. The operator of composition was
introduced also in possibility theory [14] and recently even in Shenoy’s Valuation
Based Systems [8], which, as a generic uncertainty calculus covers many other
calculi, such as Spohn’s epistemic belief theory, and D-S belief function theory.
This makes it possible to apply compositional models, and all the methods based
on the compositional models like the described sequential decision process, in all
these alternative uncertainty theories (naturally under the assumption that we
have a function with the properties of mutual information at our disposal).
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