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Abstract

Business processes, as well as various other fields of management and decision-making,
involves causal relations. The paper presents an algebraic approach to the modeling
of causality in systems of stochastic variables. The methodology is based on an op-
erator of a composition that provides the possibility of composing a multidimensional
distribution from low-dimensional building blocks taking advantage of the dependence
structure of the problem variables. The authors formally define and demonstrate on
a hypothetical example a surprisingly elegant unifying approach to conditioning by a
single variable and to the evaluation of the effect of an intervention. Both operations
are realized by the composition with a degenerated distribution and differ only in the
sequence in which the operator of the composition is performed.

Keywords: Compositional models, operator of composition, causality, conditioning,
intervention.

1 Introduction

The purpose of this paper is to foster a new method for causality modeling that can be incorporated
into standard business process models. Without a doubt, causality and its proper treatment plays
an important role in this modeling and may be used to solve a great variety of problems. For
example, Feugas, Mosser, and Duchien [3] use it to predict the effect of business process evolution
on the quality of service. They show the possibility of coping with one phenomenon that also will
be discussed in this paper. Namely, with the fact that the characteristics of the quality of service,
such as the response time, are influenced by hidden factors.

As Kirkwood argues in his book [9] human beings are quick problem solvers, because quick
problem solvers were the ones who survived. For this, it is necessary to distinguish correctly
between causes and effects. However, in many complex situations, it is not a simple task, as
business processes are complex systems as a rule, especially when one considers systems with
causal loops. To simplify the problem, we consider only the causal relations in this paper that
can be well described by Markovian probabilistic models. In fact, we restrict our attention only to
situations that are well described by Pearl’s causal diagrams [15].

The exact approaches to causality modeling are often applied to the spheres of social sciences,
e.g., applications in strategic management by Michael Ryall [16], in psychology by York Hagmayer
et al. [4], in educational research and other social sciences [14]. For other examples the reader can
also refer to an introduction to causal inference by Morgan and Winship [13] where the applications
are aimed at the fields of sociology, political science, and economics.

Though graphical modeling for business process representation has been considered classical
from its very beginning (flowcharts in the 20th, PERT in 50th, influence diagrams in 80th, . . . ), the
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Figure 1: Causal models for the hypothetical example.

application of Pearl’s causal diagrams (i.e., employment of directed graphs) to represent causal-
ity using arrows pointing from causes to effects, though quite intuitive and generally accepted,
may bring some technical complications. Moreover, their advantage is diminishing when the dia-
grams containing hundreds of nodes are considered. In these situations, one may acknowledge an
“algebraic” approach based on compositional models, in which computations of conditioning and
interventions are computed in a similar way using the operator of a composition.

The goal of this paper is not to introduce a mathematical theory of compositional models. For
this, the reader is referred to [6]. We want to convince the reader that incorporating of causal
compositional models into business process models may help them to solve otherwise unsolvable
problems. To make the following explanation as simple as possible, we present the results just
using a trivial hypothetical example.

1.1 Motivation - Hypothetical Example

Analyzing data from universities, we found out that regular lecture attendance significantly in-
creases the chances of passing exams on the first attempt. In connection with this, we were not
surprised that students from universities where attendance at lectures was compulsory were slightly
more successful in passing exams than students from universities where attendance was optional.
These results led us to construct a simple and “natural” causal model with a causal diagram from
Figure 1(a).

After publishing these research results, we succeeded in convincing the public to such an extent
that eventually all universities excepted the rules that their lectures henceforth would be compul-
sory. We were quite satisfied that our research had made a real impact and expected that it would
manifest itself in the form of better results at university exams. Unfortunately, the opposite proved
to be true; on average, fewer students passed the exam on the first attempt. How could this be
possible?

All this could happen because of a wrong causal graph. It was true that the new rules increased
the percentage of regular attendance to lectures. It was also true that regular attendants were more
successful at exams; yet, the impact of the law was negative because the causal model did not reflect
another important cause - the fact that regulations and therefore also the behavior of students is
different between traditional universities and new ones. Taking this fact into account, we can
construct a new causal diagram (see Figure 1(b)), which describes the situation much better, and
which can explain the decrease in success rates at the exams. Unfortunately, when we collected the
data we did not recorded the type of university (traditional vs. new one), and therefore we have to
treat the respective variable as a “hidden” one, which is why the respective arrows are dotted in
Figure 1(b). As it will be shown later, if we had used the second causal model (even if we had to
consider the type of university to be hidden - a non-measurable variable) to estimate the impact
of an intervention realized by the new regulations, we would have really predicted a slight decline
in the number of successful students.

In connection with this failure, one question arises. Was it possible to realize that the causal
model from Figure 1(a) did not correspond to the situation described? The answer is positive and
will be discussed in more details in Secion 4.
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1.2 Causal Models

The purpose why we foster the employment of causal models in business process modeling is evident
from the previous hypothetical example (for another example see, e.g., Váchová and B́ına [18]).
Prior to any serious intervention, the managerial board should take into consideration all possible
ways of predicting a potential impact of the intended action.

In [15] (see page 29), Pearl says causal models may help to answer the following three types of
queries:

• predictions/conditioning - are the students more successful if the lectures are compulsory?

• interventions - will the students be more successful if we introduce a regulation making the
lectures compulsory?

• counterfactuals - would the students be more successful had the lectures been compulsory,
given that they are not too successful and the lectures are optional?

In this paper, we will be interested only in the first two tasks: prediction (conditioning) and
intervention. Let us stress the difference between them. While prediction gives evidence only about
the students from universities where attendance at lectures is compulsory, intervention speaks about
the success of all students when we make sure that lectures are compulsory at all universities. In
what follows, we will show how to answer these questions with the help of compositional causal
models. It will appear that, in contrast to causal diagrams, where the required results are computed
in two totally dissimilar ways, we can use the same apparatus for causal compositional models.
Syntactically, both these answers can be got as a composition of a model with a degenerated one-
dimensional distribution. The only difference is just in a pair of parentheses. Unfortunately (but
quite naturally), this pair of parentheses may bring some computational difficulties.

2 Compositional Models

In this paper we consider finite valued variables A,E,C, T,X, Y, Z,W, ... that are denoted by up-
per case Latin characters. Boldface characters, such as a,b, c denote values, or combination of
values of these variables. Sets of these variables are denoted by lower case characters (x, y, ...),
and their probability distributions are denoted using characters of a Greek alphabet, such as
κ, λ, π. So, κ(X1, X2, . . . , Xn) denotes an n-dimensional probability distribution, and κ(a) is
a value of this distribution for state a, which is a combination (vector) of values of variables
X1, X2, . . . , Xn. An (n− 1)-dimensional marginal distribution of κ is denoted by κ−Xi , or, denot-
ing x = {X1, . . . , Xi−1, Xi+1, . . . , Xn}, we use also the symbol κ↓x. The latter symbol κ↓y can be
used for any y ⊆ {X1, . . . , Xn}.

2.1 Operator of Composition

The term compositional model is derived from the fact that these multidimensional models (dis-
tributions) are composed (assembled) from a system of low-dimensional distributions using an
operator of composition that was introduced first in [5]. For its rigorous mathematical definition
and a detailed survey of its properties see [6]; here we will do just with the following brief summary.

Consider two (non-empty) sets of variables x and y (notice that they may be, but need not to
be, disjoint, one may be a subset of the other). Let κ and λ be distributions defined for x and y,
respectively, such that the marginal distribution λ↓x∩y dominates κ↓x∩y, i.e.,

∀a λ↓x∩y(a) = 0 =⇒ κ↓x∩y(a) = 0.

In this case we can define composition of κ and λ by the formula (notice that we define 0·0
0 = 0)

κ � λ =
κ · λ
λ↓x∩y

.

Note that for disjoint x and y the marginal κ↓x∩y = λ↓x∩y = 1, and κ � λ = λ � κ simplifies to a
product of (independent) distributions. If λ↓x∩y does not dominate κ↓x∩y then the composition is
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not defined. However, to avoid technical problems, let us assume in this paper that whenever we
use the operator of composition we assume it is defined.

It is known that the composition of distributions κ(x) and λ(y) is always a distribution of
variables x ∪ y. In [6], many properties of the operator of the composition are proven. In this
paper, we need mainly the following three that are formulated for κ(x) and λ(y).

(κ � λ)↓x = κ; (1)

z ⊇ x ∩ y =⇒ (κ � λ)↓z = κ↓x∩z � λ↓y∩z, (2)

x ⊇ y =⇒ κ � λ = κ; (3)

z ⊆ x =⇒ κ↓z � κ = κ. (4)

2.2 Causal Compositional Models

Consider variables {X1, X2, . . . , Xn}. For each variable Xi let C(Xi) denote the set of the variables
that are causes of Xi. Naturally, we assume that Xi 	∈ C(Xi). In accordance with Pearl [15], we
say that the causal model is Markovian if there exists an ordering of variables (without loss of
generality we will assume that it is the ordering X1, X2, . . . , Xn) such that C(X1) = ∅, and for all
i = 2, 3, . . . , n, C(Xi) ⊆ {X1, . . . , Xi−1}. It means that considering only Markovian models, we
exclude feedback relations.

Denote xi = C(Xi) ∪ {Xi}. If we have probability distributions μi(xi) we can construct a
compositional causal model (CCM) as

κ(X1, . . . , Xn) = μ1(x1) � μ2(x2) � . . . � μn(xn). (5)

Therefore the proper causal models for the example from Section 1.1 (Fig. 1(b)) is just

τ(T ) � ω(C, T ) � α(A,C) � ε(A,E, T ).

To understand properly expression (5) (and therefore also the above-presented causal model
for the example) we have to highlight some properties following from formulas (1)–(2). First of
all, we have to realize that the composition is not commutative. The reader can get a simple
counterexample when considering a composition of two distributions κ(x), λ(y) for which κ↓x∩y 	=
λ↓x∩y. Though the absence of commutativity is often considered a drawback, for causal models it
can be an advantage, because causal relation is also asymmetric. As we will see later, the operation
of composition is neither associative. Therefore, to make expression (5) unambiguous, we have to
make an agreement that if not specified by parentheses otherwise, in all formulas the operator is
performed from left to right, i.e.,

μ1(x1) � μ2(x2) � . . . � μn(xn)

= (. . . ((μ1(x1) � μ2(x2)) � μ3(x3)) � . . . � μn−1(xn−1)) � μn(xn).

There are several theorems in [6] saying under what conditions one can change the ordering
of distributions in a compositional model without influencing the resulting joint distribution. It
is important to stress that for causal models, most of such transformations are forbidden. For
causal models, we can consider only the orderings guaranteeing their Markovianity, i.e., for which
C(Xi) ⊆ {X1, . . . , Xi−1}. And it is the result of Kratochv́ıl that says that all these orderings define
the same joint probability distribution κ(X1, . . . , Xn) (see [10]).

In what follows, we will need the following three properties (for the respective proofs see [6]).
For distributions μ1(x1), μ2(x2), μ3(x3)

x1 ⊇ x2 ∩ x3 =⇒ μ1 � μ2 � μ3 = μ1 � μ3 � μ2; (6)

x1 ⊇ x2 ∩ x3 =⇒ μ1 � μ2 � μ3 = μ1 � (μ2 � μ3); (7)

x2 ⊇ x1 ∩ x3 =⇒ μ1 � μ2 � μ3 = μ1 � (μ2 � μ3). (8)

The reader certainly realized that all the above introduced properties, including property (6),
describe Markovianity preserving modifications. It means that, for example, if μ1 � μ2 � μ3 is
Markovian CCM then x1 ⊇ x2 ∩ x3 guarantees that μ1 � μ3 � μ2 is also Markovian (it follows from
the fact that under this assumption x3 ∩ (x1 ∪ x2) = x3 ∩ x1).
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2.3 Perfectization Procedure

Consider an arbitrary compositional model κ(x1 ∪ . . . ∪ xn) = π1(x1) � . . . � πn(xn). Property 1
guarantees that π1 = κ↓x1 but generally πj 	= κ↓xj for j > 1. This may be in some situations
disadvantageous. For example, if we want to know probability of variable X ∈ x1 then we can get
it directly from π1 without necessity to consider multidimensional model κ. However, if X 	∈ x1 the
only way how to ascertain the probability of X one has to consider κ↓x1∪...∪xj = π1 � . . . � πj such
that X ∈ x1∪ . . .∪xj . This disadvantage can easily be circumvented when restricting our attention
to perfect sequences, for which, as it was proved in [6], all πj are marginals of the multidimensional
model κ.

We say that a compositional model κ = π1 � . . . � πn is perfect if

π1 � π2 = π2 � π1,
π1 � π2 � π3 = π3 � (π1 � π2),

...
π1 � π2 � . . . � πn = πn � (π1 � . . . � πn−1).

Perhaps, it is not visible for the first sight, but it is not difficult to prove a stronger property
than that mentioned above. In [6], it is proved that a compositional model κ = π1 � . . . � πn is
perfect if and only if all distributions πj are marginals of the multidimensional model κ. Therefore,
considering that low-dimensional distributions πk are carriers of local information, the constructed
multidimensional model – if it is perfect – represents global information faithfully reflecting all of
the local input.

It is important to realize that restricting our attention only to perfect models is not at the loss
of generality. This is because any compositional model π1 � . . . � πn can be transformed into a
perfect model κ1 � . . . � κn using the following procedure:

κ1 = π1,

κ2 = κ↓K2∩K1

1 � π2,

κ3 = (κ1 � κ2)
↓K3∩(K1∪K2) � π3,

...

κn = (κ1 � . . . � κn−1)
↓Kn∩(K1∪...Kn−1) � πn.

In this case, namely, κ1 � . . . � κn is perfect and π1 � . . . � πn = κ1 � . . . � κn. Moreover, since πj and
κj are defined for the same set of variables, it is evident that if π1 � . . . � πn is Markovian that also
κ1 � . . . � κn is Markovian.

Perhaps, we should mention that from the theoretical point of view the process of perfectization
described above is simple. Unfortunately, it need not be valid from the point of view of compu-
tational complexity. The process requires marginalization that may be, in some situations, rather
computationally expensive (for details on marginalization in compositional models see [1, 12]).

3 Conditioning and Intervention

Let us recall the difference between conditioning and intervention. Going back to our example,
while conditioning by C = 1 gives evidence only about the universities, where attendance at lectures
is compulsory, the intervention do(C = 1) speaks about all universities under the assumption that
we make sure (e.g., by a legislative act) that attendance at lectures is compulsory at all universities.

To simplify the following formulas, denote in the rest of this subsection y = x1 ∪ . . . ∪ xn and
z = y \ {X} for some X ∈ x1 ∪ . . . ∪ xn. It means that considering a causal compositional model
κ(y) = μ1(x1) � μ2(x2) � . . . � μn(xn) the conditioning by X = a leads to a distribution of variables
z: κ(z|X = a).

As shown in [2, 7], we can realize both the conditioning and intervention as a composition of the
causal compositional model μ1 � . . . � μn with a degenerated one-dimensional distribution δa(X),
which is a distribution of variable X achieving probability 1 for value X = a, i.e.,

δa(X) =

{
1 if X = a,
0 otherwise.
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Using this denotation we use the following simple formulas proven in [7]:

κ(z|X = a) = (δa(X) � (μ1 � μ2 � . . . � μm))
−X

,

and
κ(z|do(X = a)) = (δa(X) � μ1 � μ2 � . . . � μm)

−X
.

The goal of this paper is to illustrate the applicability of causal compositional models to business
process modeling, and thus we do not go more deeply into theory of compositional models (for this
the reader is referred to [6, 7, 8], nevertheless let us stress the importance of the pair of brackets
in which the formulas above differ from each other. This difference arises from the fact that the
operator of composition is not associative.

The reader familiar with Pearl’s causal diagrams [15] has certainly noticed an advantage of the
introduced compositional models. While here we can compute both conditioning and intervention
from one causal compositional model, in causal diagrams we have to consider two different graphs.
Conditioning is computed from the “full” causal diagram, from which, for the computation of
intervention, we have to delete all the arrows heading to the intervention variable.

3.1 Anticipating Operator

In the next section we will illustrate on our example from Section 1.1 the possibility to compute
results of intervention and conditioning even in the case of model with a hidden variable. For this
task, it will appear advantageous to compensate the lack of associativity by introducing another
operator, so called anticipating operator , defining a special type of composition. For a set of
variables z and distributions κ(x) and μ(y) it is defined by the formula:

κ ©�zμ = (μ↓(z\x)∩y · κ) � μ.

Its advantage is expressed by Theorem 9.4 in [6] saying that for π(z), κ(x) and μ(y)

π(z) � κ(x) � μ(y) = π(z) � (κ(x) ©�zμ(y)). (9)

3.2 Elimination of Hidden Variables

Let us now derive formulas to be used for computation of conditioning and intervention in the
simple causal compositional model describing our example from Section 1.1. Assuming it is in a
perfect form we can express it with the help of its marginals:

κ(A,C,E, T ) = κ(T ) � κ(C, T ) � κ(A,C) � κ(A,E, T ).

Computation of the conditional κ(E|C = a) is simple.

κ(E|C = a) =
(
δa(C) � (κ(T ) � κ(C, T ) � κ(A,C) � κ(A,E, T ))

)↓{E}
=

((
δa(C) � κ(A,C,E, T )

)−T
)↓{E}

(2)
=

(
δa(C) � (κ(A,C,E, T ))−T

)↓{E}
=

(
δa(C) � κ(A,C,E)

)↓{E}
.

Notice that during these computations we used the property (2) from Section 2.1. This is why the
symbol (2) appears above the respective equality sign. This type of explanation will also be used
in the subsequent computations.

To compute κ(E|do(C = a)) we will need to apply most of the properties introduced above,
as well as the anticipating operator defined in the preceding section. Since we cannot expect the
reader is accustomed to the computations with the operator of composition we will perform just
one elementary modification at each of the following steps. This is why the following computations
look even more cumbersome than they really are.
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κ(E|do(C = a)) =
(
δa(C) � κ(T ) � κ(C, T ) � κ(A,C) � κ(A,E, T )

)↓{E}
(3)
=

(
δa(C) � κ(T ) � κ(A,C) � κ(A,E, T )

)↓{E}
(6)
=

(
δa(C) � κ(A,C) � κ(T ) � κ(A,E, T )

)↓{E}
(9)
=

(
δa(C) � κ(A,C) �

(
κ(T ) ©�{C,A}κ(A,E, T )

))↓{E}

(2)
=

(
δa(C) � κ(A,C) �

(
κ(T ) ©�{C,A}κ(A,E, T )

)−T
)↓{E}

To express
(
κ(T ) ©�{C,A}κ(A,E, T )

)−T

we will take advantage of the idea of extension used for

this purpose by Pearl in [15]. The reader can realize that it is the way how to take into account
the mutual dependence of variables A,C,E (notice that it plays the same role of what is realized
by inheritance of parents in Shachter’s edge reversal rule [17]).

(
κ(T ) ©�{C,A}κ(A,E, T )

)−T

=
(
κ(T ) ©�{A}κ(A,E, T )

)−T

=

((
κ(C, T ) ©�{A}κ(A,E, T )

)−C
)−T

=
(
κ(A) · κ(C, T ) � κ(A,E, T )

)↓{A,E}

=
(
κ(A) · κ(C) � κ(C, T ) � κ(A,E, T )

)↓{A,E}

(3)
=

(
κ(A) · κ(C) � κ(C, T ) � κ(A,C) � κ(A,E, T )

)↓{A,E}

(7)
=

(
κ(A) · κ(C) � (κ(C, T ) � κ(A,C)) � κ(A,E, T )

)↓{A,E}

=
(
κ(A) · κ(C) � κ(A,C, T ) � κ(A,E, T )

)↓{A,E}

(8)
=

(
κ(A) · κ(C) � (κ(A,C, T ) � κ(A,E, T ))

)↓{A,E}

=
(
κ(A) · κ(C) � κ(A,C,E, T )

)↓{A,E} (2)
=

(
κ(A) · κ(C) � κ(A,C,E)

)↓{A,E}

=
(
κ(C) ©�{A}κ(A,C,E)

)−C

,

which eventually leads to

κ(E|do(C = a)) =

(
δa(C) � κ(A,C) �

(
κ(C) ©�{A}κ(A,C,E)

)−C
)↓{E}

.

3.3 Hypothetical Example - Numerical Computations

Let us illustrate the above-derived formulas on data corresponding to the example from Section 1.1.
For the sake of simplicity, we consider all the variables to be binary. The data concerning 200
students from 16 universities are presented together with corresponding percentages as estimates
of corresponding probabilities (see Table 1).

From Table 1 we can immediately see that the total probability of a success at the first attempt
is κ(E = 1) = 0.68.

Let us first consider the inapt model without the hidden variable T (recall that it assumes the
conditional independence of C and E given A). To construct it, we need three distributions, namely
a distribution for variable C, a distribution for variables A,C and the last one for variables A,E.
Then we compute these distributions from Table 1, and denote them κc(C), κac(A,C), κae(A,E),
respectively. Constructing the compositional model corresponding to the graph from Figure 1(a)

κ(A,C,E) = κc(C) � κac(A,C) � κae(A,E) = κac(A,C) � κae(A,E)

we cannot expect to get a perfect model (the reader can see that it is really not perfect from the
last row in Table 1), and therefore keep in mind that the estimated distributions κc, κac and κae

are not marginals of κ.

CZECH-JAPAN SEMINAR 2017 21



Table 1: Estimates of probabilities

C 0 0 0 0 1 1 1 1
A 0 0 1 1 0 0 1 1
E 0 1 0 1 0 1 0 1

frequencies 18 42 22 38 12 12 12 44

percentages 0.09 0.21 0.11 0.19 0.06 0.06 0.06 0.22

κace = κac � κae 0.11 0.19 0.9 0.21 0.04 0.08 0.08 0.20

Now, it is an easy task to compute

κ(E|do(C = 1)) = κ(E|C = 1) = ((δ1(C) � κac(A,C)) � κae(A,E))
↓{E}

,

from which we immediately get

κ(E = 0|do(C = 1)) = κ(E = 0|C = 1) = 0.31,

κ(E = 1|do(C = 1)) = κ(E = 1|C = 1) = 0.69.

Therefore, as it was said in Introduction, this model expects a slight increase of success after the
intervention making attendance at lectures compulsory at all universities.

Consider, now, a more complex model including the hidden variable T , i.e.,

λ(A,C,E, T ) = λt(T ) � λct(C, T ) � λac(A,C) � λaet(A,E, T ).

As said above, since the type of a university is for us a hidden variable, for this model we can
estimate only one distribution from the data, namely λac = κac.

Fortunately, as it was shown in the preceding section, in this very model we can eliminate the
hidden variable getting

λ(E|C = 1) =
(
δ1(C) � λace(A,C,E)

)↓{E}
,

and

λ(E|do(C = 1)) =

(
δ1(C) � λa,c(A,C) �

(
λc(C) ©�{A}λa,c,e(A,C,E)

)−C
)↓{E}

,

from which we get

λ(E = 0|C = 1) = 0.30,

λ(E = 1|C = 1) = 0.70,

λ(E = 0|do(C = 1)) = 0.33,

λ(E = 1|do(C = 1)) = 0.67.

4 Model verification

When discussing the hypothetical example, in Fig. 1 we introduced two possible causal models that
were denoted κ and λ in Section 3.3. Each of them yielded different results for the intervention
do(C = 1). In this section we are going to show that based on the data from Section 3.3 we should
not have taken the simpler model from Fig. 1(a) (i.e., model κ) into consideration.

When setting up a model, one should always consider, and verify, all (or at least most of)
the conditional independence relations that can be read from the model. For this, several tools
were described in the literature. When the model is in a form of a Bayesian network, one can
use either a d-separation rule or the rule based on separation in a moralized ancestral graph [11].
For the compositional models, persegrams were designed [10], from which one can read all the
independence relations that must hold in the considered model.
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Table 2: Conditional frequencies of C and E for A = 0 (left) and A = 1 (right)

E=0 E=1 E=0 E=1

C=0 18 42 C=0 22 38

C=1 12 12 C=1 12 44

We do not describe here the mentioned procedures. Just let us recall how the conditional
independence relation is defined. Consider a distribution π(x), and variables X,Y ∈ x, and a
subset (possibly empty) of variables y ⊆ x \ {X,Y }. We say that for distribution π variables X
and Y are conditionally independent given set of variables y (in symbol X ⊥⊥π Y |x) if

π↓y∪{X,Y } · π↓y = π↓y∪{X} · π↓y∪{Y }.
Either of the above-mentioned tools yields the following systems of conditional independence

relations:

• for model κ described in Fig. 1(a) it is just one relation: C ⊥⊥κ E|A;

• for model λ described in Fig. 1(b) there are two relations: A ⊥⊥λ T |C, and E ⊥⊥λ C|{A, T}.
In the latter model, both the independence relations contain the unobserved variable T , so we

do not have a possibility to verify (or, better said, to exclude) this model.
But, having data from Table 1 we can test whether the conditional independence C ⊥⊥ E|A

holds true, which is necessary for model κ. The test of this relation can be performed using well-
known Cochran-Mantel-Haenszel test or in a simplified manner using the sum of partial chi-squares
for two conditional probabilities in Table 2. Now we get value of chi-square for A = 0 equal to
χ2
0 = 2.987 and for A = 1 equal to χ2

1 = 3.246 both with one degree of freedom. Therefore we
yield summary test statistics χ2 = 6.233 which is with two degrees of freedom above the five
percent critical value, now equal to 5.99. And thus we should had rejected the null hypothesis of
conditional independence of C and E given A, and should not had considered this causal model.

5 Conclusions

On a slightly paradoxical example we tried to convince the reader that considering causal influence
in business process models may be not only useful but sometimes inevitable, and that having such
a causal model one should do their best to verify the model (or more precisely, to test whether the
model is not excluded by the data). The necessity of having a simple example led us to illustrate
the proposed approach on artificially generated data. However, we tried to generate realistically
looking (non-degenerated) data and this is why the numerical results may seem not so convincing.
Naturally, when more mutually dependent effects are taken into consideration, or when considering
a more complex model with a greater number of variables, the results obtained from descriptive
and causal models can be substantially different.

Another purpose of this paper was to show that causal models need not be only causal dia-
grams. The employment of causal compositional models can be used to describe causal relations
among considered variables. The composition of model distributions with a special (degenerated)
distribution surprisingly provides a possibility to evaluate both conditional probabilities and the
effects of causal interventions using a unifying apparatus of compositional models.
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