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1 Faculty of Management, University of Economics, Prague, Czech Republic
2 Institute of Information Theory and Automation, CAS, Prague, Czech Republic

{radim,velorex}@utia.cas.cz

Abstract. The paper introduces a new approach to constructing mod-
els exhibiting the ambiguity aversion. The level of ambiguity aversion
is described by a subjective parameter from the unit interval with the
semantics: the higher the aversion, the higher the coefficient. On three
examples, we illustrate the approach is consistent with the experimental
results observed by Ellsberg and other authors.
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1 Introduction

It is well known, and it has also been confirmed by our experiments that people
prefer lotteries, in which they know the content of a drawing drum to situations
when the constitution of the drum’s content is unknown. In our experiments, the
participants were asked to choose one from six predetermined colors and they got
the prize when the color of a randomly drawn ball coincided with their choice.
It appeared that the participants were willing to pay in average by 90% more to
take part in games when they knew that the urn contained the same number of
balls of all six colors in comparison with the situation when they knew only that
the urn contained balls of the specified colors and their proportion was unknown.
This well known, seemingly paradoxical phenomenon, can hardly be explained
by different subjective utility functions or by different subjective probability
distributions. To explain this fact, we accepted a hypothesis that humans do not
use their personal probability distributions but just capacity functions that do
not sum up to one [13]. Roughly speaking, the subjective probability of drawing
a red ball is 1

6 in the case that the person knows that all colors are in the same
amount in the drum. However, the respective “subjective probability” in the case
of lack of knowledge is ε < 1

6 . The lack of knowledge psychologically decreases
the subjective chance of drawing the selected color – it decreases the subjective
chance of success.

This paper is one of many studying the so-called ambiguity aversion, which
is used to model the fact that human behavior violates Savage’s expected utility
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theory [17]. We present one possible way how to find a personal weight func-
tion (the above-mentioned capacity) that can be used, similarly to probability
function, to compute the personal subjective expected value of a reward in case
that the description of the situation is ambiguous. It is clear from the litera-
ture [6–8,15] that it cannot be a probability function. It cannot be normalized
because our experiments show that people usually expect smaller reward under
total ignorance than in case they know that all alternatives are of equal prob-
abilities. As we will see later (when discussing the Ellsberg’s experiments), this
function is neither additive. Thus, the considered function will belong to the
class of superadditive capacities.

To find a way, how to compute this personal weight function we will take
advantage of the fact that situations with ambiguity are well described by tools
of a theory of belief functions. This theory distinguishes between two types of
uncertainty: the uncertainty connected with the fact that we do not know the
result of a random experiment (a result of a random lottery) and the ignorance
arising when we do not know the content of a drawing urn. In this paper, we start
with describing the situation by belief functions that can be interpreted as gener-
alized probability [9], i.e., each belief function corresponds to a set of probability
functions, which is called a credal set [9]. Then, we adopt a decision-theoretic
framework used also by other authors based on the transformation of the belief
function into a probability function. However, we do not use the achieved prob-
abilistic representative directly to decision, we add one additional step. Before
computing the expected reward, we reduce the probabilities to account for ambi-
guity aversion. This is the only point in which our approach differs from Smets’
decision-making framework [20], which is based on the Dempster-Shafer theory
of belief functions [5,18].

Before describing the process in more details, let us stress that our aim is
not as ambitious as developing a mathematical theory describing the ambiguity
aversion within the theory of belief functions. In fact, it was already done by
Jaffray [12], who shows how to compute generalized expected utility for belief
function. We do not even consider all elements from a credal set with all the
preference relations as, for example, in [3]. The ambition of our approach is to
provide tools making it possible to assign a personal coefficient of ambiguity
to experimental persons. Then, we will have a possibility to study its stabil-
ity with respect to different decision tasks and/or its stability in time. Such a
coefficient of ambiguity is considered also by Srivastava [22] and the suggested
approach repeats some of his basic ideas. For example, we use almost the same
idea to identify the amount of ambiguity connected with individual states of the
considered state space.

2 Belief Functions

The basic concepts and notations are taken over from [13], where the described
approach was introduced for the first time. We consider only a finite state
space Ω. In the examples described below, Ω is the set of six considered
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colors: Ω = {red, black, white, yellow, green, azure} (Ω = {r, b, w, y, g, a} for
short in the sequel). Similar to probability theory, where a probability measure
is a set function defined on some algebra of the considered events, belief func-
tions are represented by functions defined on the set of all nonempty subsets of
Ω [5,18]. Let 2Ω denote the set of all subsets of Ω.

The fundamental notion is that of a basic probability assignment (bpa), which
describes all the information we have about the considered situation. It is a
function m : 2Ω → [0, 1], such that

∑
a∈2Ω m(a) = 1 and m(∅) = 0.

For bpa m, a ∈ 2Ω is said to be a focal element of m if m(a) > 0. This
enables us to distinguish the following two special classes of bpa’s representing
the extreme situations:

(1) m is said to be vacuous if m(Ω) = 1, i.e., it has only one focal element,
Ω. A vacuous bpa is denoted by mι. It represents total ignorance. In our
examples, mι represents situations when we do not have any information as
for the proportion of colors in the drawing urn.

(2) m is said to be Bayesian, if all its focal elements are singletons, i.e., for
Bayesian bpa m, m(a) > 0 implies |a| = 1. Bayesian bpa’s represents
exactly the same knowledge as probability functions. As all focal elements
of a Bayesian bpa m are singletons, we can define probability distribution
Pm for Ω such that

Pm(x) = m({x}) (1)

for all x ∈ Ω. Thus, Bayesian bpa’s represent in our examples situations
when the proportion of colors in a drawing ball is known.

The same knowledge that is expressed by a bpa m can also be expressed by
a belief function, and by plausibility function.

Belm(a) =
∑

b∈2Ω :b⊆a

m(b). (2)

Plm(a) =
∑

b∈2Ω :b∩a �=∅
m(b). (3)

We have already mentioned that we interpret the belief function theory as a
generalization of the probability theory. It means that for each bpa we consider
its credal set, which is a convex set of probability distributions P on Ω defined
as follows (P denote the set of all probability distributions on Ω):

P(m) =

{

P ∈ P :
∑

x∈a

P (x) ≥ Belm(a) for ∀a ∈ 2Ω

}

.

Notice that Pm defined by Eq. (1) for a Bayesian bpa m is such that P(m) =
{Pm}, and that P(mι) = P. It is also easy to show that for all P ∈ P(m)

Belm(a) ≤ P (a) ≤ Plm(a),

for all a ∈ 2Ω . Thus, if Bel(a) = Pl(a) then we are sure that the probability of
a equals Bel(a). Otherwise, the larger the difference Pl(a) − Bel(a), the more
uncertain we are about the value of the probability of a.
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In this paper, we use belief functions only to represent the knowledge regard-
ing the content of a drawing drum. How can we model the computation of a
subjective expected gain if we know that in situation x ∈ Ω our reward will be
g(x)? Since we want to reduce the expected value on the account of ambiguity
we do not apply any direct formula (e.g., Choquet integral [2], Shenoy expec-
tation [19]). We propose to use some of the probability transforms suggested
to find a probabilistic representation of a belief function [4]. In this paper, we
take advantage of the fact that for the examples presented in the next section
it was shown in [14] that several probabilistic transforms yield the same results.
Therefore we choose the simplest of them, the famous pignistic transform, which
was for this purpose strongly advocated by Smets [20,21]):

Bet Pm(x) =
∑

a∈2Ω :x∈a

m(a)
|a| . (4)

3 Experimental Lotteries

In our experiments, we considered 12 simple lotteries described below. For each
lottery, the subjects were asked how much they are maximally willing to pay to
be allowed to take part in the specified lottery. The considered lotteries should
reveal the behavior of subjects in the following three situations.

Ellsberg’s Example. First, we wanted to verify whether the behavior of our
subjects corresponds to what was observed by many other authors. Therefore we
included a simple modification of the original Ellsberg’s example ([6], pp. 653–
654) with an urn containing 30 red balls and 60 black or yellow balls, the latter
in an unknown proportion. With this urn, Ellsberg considered two experiments.
The first experiment (Ellsberg’s Actions I and II) studied whether people prefer
betting on the red or black ball, in which case they get the reward ($100) if
the ball of the respective color is drawn at random. In the second experiment
(Ellsberg’s Actions III and IV), a person has a possibility to bet on red and
yellow, or, alternatively, on black and yellow. Again, the participant gets the
reward ($100) in case that the randomly drawn ball is of one of the selected
colors.

Following the Ellsberg’s idea we included two lotteries:
E1 The drawing urn contains 15 red, black and yellow balls, you know that
exactly 5 of them are red, you do not know the proportion of the remaining
black and yellow balls. How much you are maximally willing to pay to take
part in the lottery in which you choose a color and get 100 CZK if the
randomly drawn ball has the color of your choice?

E2 The drawing urn contains 15 red, black and yellow balls, you know that
exactly 5 of them are red, you do not know the proportion of the remaining
black and yellow balls. How much you are maximally willing to pay to take
part at the lottery in which you choose a color and get 100 CZK if the
randomly drawn ball is either yellow or of the color of your choice?
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One Red Ball Example. This example is designed to test the decrease of a
subjective “probability” in comparison with the combinatorial probability. For
this, we included eight lotteries, which differ from each other just in the total
number of balls in the drawing urn: the number n. We included lotteries with
n = 5, 6, 7, 8, 9, 10, 11, 12:
Rn The drawing urn contains n balls, each of which is either red, or black, or
yellow, or white, or green, or azure. You know that one and only one of them
is red, nothing more. You even do not know how many colors are present
in the urn. How much you are maximally willing to pay to take part in the
lottery in which you choose a color and get 100 CZK if the randomly drawn
ball is of the color of your choice?

6-Color Example. This example concerns situations, in which six colors are
considered and we do not have any reason to prefer one of them to others. Such
situations occur in two completely different setting: fair distribution of colors
and total ignorance. Thus, the following two lotteries considered:
F1 The drawing urn contains 30 balls, five of each of the following colors: red,
black, yellow, white, green, and azure. How much you are maximally willing
to pay to take part in the lottery in which you choose a color and get 100
CZK if the randomly drawn ball is of the color of your choice?

F2 The drawing urn contains 30 balls, they may be of the following colors:
red, black, yellow, white, green, and azure. You know nothing more, you even
do not know how much colors are present in the urn. How much you are
maximally willing to pay to take part in the lottery in which you choose a
color and get 100 CZK if the randomly drawn ball is of the color of your
choice?

4 Decision Models

As said in the introduction, to describe the considered situations we define the
respective bba’s, and belief and plausibility functions. These belief function mod-
els are further transformed into probabilistic ones. As we have already mentioned
in Sect. 2, for the specified simple situations we consider only the pignistic trans-
form Bet Pm defined by Eq. (4). However, the resulting probability distribution
is not directly used to compute an expected reward. Before computing the sub-
jective expected reward, the considered probabilities are reduced using a coeffi-
cient of ambiguity α, and the subjective expected reward is computed using the
resulting capacity function rm,α. Let us stress again that rm,α is not a probabil-
ity distribution because it does not sum up to one. Now, we describe this process
in more details.

Denote m the bpa describing the situation under consideration. Let Bet Pm

be the corresponding probability distribution obtained by the pignistic trans-
form. Denote by Belm and Plm belief and plausibility functions corresponding
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to bpa m. Let us recall that the higher Plm({x})−Belm({x}), the higher ambigu-
ity about the probability of state x ∈ Ω. Our intuition says, the higher ambiguity
about the probability of a state x, the greater reduction of the respective prob-
ability should be done. Therefore we define a reduced capacity function rm,α for
all x ∈ Ω as follows:

rm,α(x) = (1 − α)Bet Pm(x) + αBelm({x}), (5)

where α ∈ [0, 1] denote a subjective coefficient of ambiguity aversion α ∈ [0, 1].
Its introduction is inspired by the Hurwicz’s optimism-pessimism coefficient
[10,11]. In contrary to Hurwicz, who suggests that everybody can choose a
personal coefficient expressing her optimism, we assume that each person has
a personal coefficient of ambiguity aversion. The higher the aversion the higher
the coefficient α. The detection of this coefficient for experimental persons is one
of the goals why do we propose the described approach.

Notice that the amount of reduction realized in Formula (5) depends on the
ambiguity aversion coefficient α, and the amount of ignorance associated with
the state x. If we are certain about the probability of state x, it means that
Bet Pm(x) = Belm({x}), then the corresponding probability is not reduced:
rm,α(x) = Bet Pm(x). On the other hand, the maximum reduction is achieved
for the states connected with maximal ambiguity, i.e., for the states for which
Belm({x}) = 0.

Some trivial properties of function rm,α (we will call it r-weight function, or
simply r-weight, in the sequel) are as follows:

1.
∑

x∈Ω rm,α(x) ≤ 1; and
2. m is Bayesian if and only if m({x}) = Bet Pm(x) = rm,α(x) for all x ∈ Ω,

and α ∈ [0, 1].

This r-weight function is then used to compute expected subjective reward,
which is computed similarly to expected value, but the probabilities are substi-
tuted by the respective r-weights.

Rm,α =
∑

x∈Ω

rm,α(x)g(x), (6)

where g(x) denote the reward (gain) one expects in case x ∈ Ω occurs. Thus,
Rm,α does not express a mathematical expected reward, but a subjectively
reduced expectation of a decision maker, whose subjectivity, i.e., level of ambigu-
ity aversion, is described by α. Let us note that for α > 0, betting the amount
Rm,α guarantees a sure gain [1,15].

Let us now apply this computational process to the situations considered in
the preceding section. To proceed from simpler models to more complex ones,
let us consider the respective examples in reverse order.

6-Color Example. For this example, Ω = {r, b, y, w, g, a}. The knowledge
about the content of the drawing urn differs; in case of lottery F1, the situation
is described by a Bayesian bpa defined mφ({x}) = 1

6 for all x ∈ Ω; in case of
lottery F2, the situation is described by the vacuous bpa mι.
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For both the lotteries, the pignistic transforms coincide: Bet Pmφ
(x) =

Bet Pmι
(x) = 1

6 for all colors x ∈ Ω. However, the respective subjective r-weight
functions differ because the respective belief functions differ: Belmφ

({x}) = 1
6

for all x ∈ Ω, whilst Belmι
({x}) = 0 for all x ∈ Ω. Therefore, using Formula (5),

rmφ,α(x) = 1
6 , and rmι,α(x) = 1−α

6 for all x ∈ Ω.
Consider that a player chose, let us say, red color. Let g(x) denote the gain

received in case when color x is drawn, i.e., g(r) = 100, and for x �= r, g(x) = 0.
The expected subjective rewards are as follows:

Rmφ,α =
∑

x∈Ω

rmφ,α(x)g(x) =
∑

x∈Ω

1
6

g(x) =
100
6

,

Rmι,α =
∑

x∈Ω

rmι,α(x)g(x) =
∑

x∈Ω

1 − α

6
g(x) =

100 · (1 − α)
6

,

for F1 and F2, respectively. This can be interpreted as follows. If there were not
for the subjective utility functions and for a different subjective risk attitude, a
person should be willing to pay a maximum amount of 100

6 CZK and 100·(1−α)
6

CZK for taking part at lottery F1 and F2, respectively. The fact that in case
of lottery F1 the person is willing to pay maximally b �= 100

6 CZK is explained
by her personal risk attitude and utility functions. Nevertheless, the difference
between the amounts the person is willing to pay for F1 and F2 can be explained
only by her ambiguity aversion measured by the coefficient α. Assuming a linear
dependence, it gives us a possibility to estimate the value of a personal coefficient
of aversion. If a person is willing to pay a CZK for taking part at lotteries F1/F2
and b CZK for taking part at I1/I2 one can assume that her personal coefficient
of ambiguity is about

α =
a − b

a
. (7)

One Red Ball Example. For this example, again Ω = {r, b, y, w, g, a}, and
the uncertainty is described by the bpa m� as follows:

m�(a) =

⎧
⎨

⎩

1
n , if a = {r};
n−1

n , if a = {b, g, o, y, w};
0, otherwise.

Using the pignistic transform, we get:

Bet Pm�
(x) =

{
1
n , if x = r ;
n−1
5n , for x ∈ {b, g, o, y, w}.

Since Belm�
({x}) = 0 for all x ∈ {b, g, o, y, w}, and Belm�

({r}) = 1
n we get the

following reduced weights:

rm�,α(x) =
{

1
n , if x = r ;
(1 − α) · n−1

5n , for x ∈ {b, g, o, y, w}.
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Considering (for the sake of simplicity just two) gain functions gr(x), and
gw(x), the total subjective rewards are as follows. When betting on red it equals

Rm�,α(r) =
1
n

gr(r) +
∑

x∈Ω:x�=r

(1 − α)(n − 1)
5n

gr(x) =
100
n

,

and analogously, for betting on white

Rm�,α(w) =
1
n

gw(r) +
∑

x∈Ω:x�=r

(1 − α)(n − 1)
5n

gw(x) =
100(1 − α)(n − 1)

5n
.

Table 1. One Red Ball Example: Total subjective reward as a function of the coefficient
of ambiguity aversion α, and the number of balls n.

n Rm�,α(r) Rm�,α(w)

α = 0 α = 0.1 α = 0.2 α = 0.28 α = 0.3 α = 0.4 α = 0.5

5 20.00 16.00 14.40 12.80 11.52 11.20 9.60 8.00

6 16.67 16.67 15.00 13.33 12.00 11.67 10.00 8.33

7 14.29 17.14 15.43 13.71 12.34 12.00 10.29 8.57

8 12.50 17.50 15.75 14.00 12.60 12.25 10.50 8.75

9 11.11 17.78 16.00 14.22 12.80 12.44 10.67 8.89

10 10.00 18.00 16.20 14.40 12.96 12.60 10.80 9.00

Some of the values of these functions are tabulated in Table 1. From this
table we see that, for example, a person with α = 0.28 should bet on red color
for n ≤ 7, because for these Rm�,α(r) > Rm�,α(x) (x �= r), and bet on any other
color for n ≥ 8, because for these n, Rm�,α(r) ≤ Rm�,α(x) (x �= r). This means
that for n ≤ 7, it is subjectively more advantageous to bet on the red color.

Ellsberg’s Example. Before showing how the idea of reduced weights is applied
to Ellsberg’s experiment, let us confess that to clear the main idea to the reader,
we have purposely simplified the exposition. The computation of a r-weight
function by Formula (5) and its application to computation of a total subjective
reward by Formula (6) can be used only in simple situations when the gain
function g : Ω → R does not assign the same positive value to two different
states from Ω, i.e.,

x1, x2 ∈ Ω, x1 �= x2, g(x1) > 0 =⇒ g(x1) �= g(x2). (8)

This condition was obviously met by the gain functions considered above because
the gain function was positive just for one state from Ω. Let us now introduce a
proper general belief function approach that can be used for any gain function.
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Generally, we have to consider distribution Bet Pm that is got from bpa m
by the pignistic transform as a set function, and, analogously, also the r-weight
function must be defined for all nonempty subsets a of Ω

rm,α(a) = (1 − α)Pm(a) + αBelm(a), (9)

with the same subjective coefficient of ambiguity aversion α. The reader can
easily show that this r-weight is monotonous and superadditive

1. for a ⊆ b, rm,α(a) ≤ rm,α(b);
2. for a ∩ b = ∅, rm,α(a ∪ b) ≥ rm,α(a) + rm,α(b).

Realize also that we can use the same symbol to denote it, because for singletons
it coincide with Formula (5).

As it can be expected, this r-weight set function is used to compute the
expected subjective reward. For this, denote Γ = {g(x) : x ∈ Ω} \ {0}, then

Rm,α =
∑

γ∈Γ

γ rm,α(g−1(γ)), (10)

where g−1(γ) = {x ∈ Ω : g(x) = γ}. Notice that most of authors use for this
purpose Choquet integral [3,16], which is not, in our opinion, as intuitive as the
proposed formula, and which can be shown to be always less or equal to the
introduced Rm,α.

Now, let us apply this general approach to the belief function model corre-
sponding to E1 and E2 lotteries. For this, Ω = {r, b, y} and the bpa mε is as
follows:

mε(a) =

⎧
⎪⎪⎨

⎪⎪⎩

1
3 , if a = {r};
2
3 , if a = {b, y};

0, otherwise.

Its pignistic transform yields a uniform distribution Bet Pmε
(x) = 1

3 for all
x ∈ Ω. The corresponding belief function is Belmε

({r}) = 1
3 , and Belmε

({b}) =
Belmε

({y}) = 0, Belmε
({r, b}) = Belmε

({r, y}) = 1
3 , Belmε

({b, y}) = 2
3 , and

Belmε
(Ω) = 1. Therefore,

rmε,α(a) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
3 , if a = {r};

(1−α)
3 , for a = {b}, {y};

(2−α)
3 , for a = {r, b}, {r, y};

2
3 , if a = {b, y}.

For E1, we have to consider two gain functions: gr(x), and gb(x) for betting
on red and black balls, respectively. These functions are as follows:

gr(r) = 100, gr(b) = gr(y) = 0,

gb(b) = 100, gb(r) = gb(y) = 0.
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Using Formula (10), the total subjective reward for betting on red ball is

Rmε,α(r) = 100 rmε,α((gr)−1(100)) = 100 rmε,α({r}) =
100
3

,

and analogously, for betting on black ball is as follows:

Rmε,α(b) = 100 rmε,α((gb)−1(100)) = 100 rmε,α({b}) =
100(1 − α)

3
.

Thus, for positive α, we get Rmε,α(r) > Rmε,α(b), which is consistent with the
Ellsberg’s observation that “very frequent pattern of response is that betting on
red is preferred to betting on black.”

Let us consider the lottery E2, which involves betting on a couple of colors. In
comparison with the first experiment, the situation changes only in the respective
gain functions; denote them gry(x) and gby(x) for betting on red and yellow, and
for betting on black and yellow balls, respectively.

gry(r) = gry(y) = 100, gry(b) = 0,

gby(b) = gby(y) = 100, gby(r) = 0.

Thus, the expected subjective rewards are as follows:

Rmε,α(ry) = 100 rmε,α((gry)−1(100)) = 100 rmε,α({ry}) = 100
(2 − α)

3
,

Rmε,α(by) = 100 rmε,α((gby)−1(100)) = 100 rmε,α({by}) = 100
2
3
.

Thus, we observe that, for positive α, Rmε,α(by) > Rmε,α(ry), which is consistent
with Ellsberg’s observations that “betting on black and yellow is preferred to
betting on red and yellow balls.”

5 Conclusions

In the paper, we have introduced a belief function model manifesting a similar
ambiguity aversion as human decision-makers. The intensity of this aversion is
expressed by the subjective coefficient α ∈ [0, 1] with the semantics: the higher
the aversion, the higher the coefficient. In the time of submitting the paper for
the conference, we have data about the behavior of 32 experimental subjects
(university and high school students), who were offered a possibility to take part
at the lotteries described in Sect. 3. Thus, one can hardly make serious conclu-
sions. Nevertheless, it appears that computing the ambiguity aversion coefficient
as suggested in Formula (7), the experimental subjects show a great variety of
the intensity of ambiguity aversion; in fact, the individual coefficients are from
the whole interval [0, 1], including both extreme values. The average value of this
coefficient is about 0.36.
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