
Preliminary Results from Experiments

on the Behavior under Ambiguity
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Abstract

In the literature, some experiments proving that human decision-makers
manifest an ambiguity aversion are described. In our knowledge, no one has
studied a possibility to measure the strength of this aversion and its stability
in time. The research, we have recently started to realize should find out
answers to these and similar questions. The goal of this paper is to present
some preliminary results to initiate a discussion that should help us to modify
either the process of data collection and/or the analysis of the collected data.

1 Introduction

One of the goals of the research project GAČR 19-06569S is to find out how to
construct normative models manifesting the same ambiguity aversion as human
decision-makers. This term is used when speaking about the behavior, which is
irrational if “rationality” means the behavior in agreement with the Savage’s pos-
tulates formulated in his famous book [10]. The term is connected with the fact
that human decision-makers do not like ignorance; they usually prefer uncertainty
connected with a random experiment to total ignorance. The difference will be clear
when describing the lotteries, which we use to test the behavior of experimental
persons.

One of the first authors who experimentally studied this phenomenon was Ells-
berg [4], and so it is not surprising that the behavior is often connected with the
term Ellsberg’s paradox . His experiments were often repeated [1, 5] but, in our
knowledge, nobody made the experiments to measure the strength of ambiguity
aversion. And this is why, during the first year of the above-mentioned project, we
realize several experiments, the results of which should help us to characterize the
concept of subjective ambiguity aversion. We want to find out to what extent we
can rely upon our starting assumptions:
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• In analogy to risk aversion, the ambiguity aversion is also a personal char-
acteristic; not all decision-makers are influenced by this phenomenon in the
same way.

• To some extent, it is possible to measure the strength of ambiguity aversion
for individual human decision-makers.

Nevertheless, even if the above-stated assumptions are not declined, currently no-
body knows to what extent the strength of the ambiguity aversion of a decision-
maker depends also on the type of a decision task, and to what extent it is stable in
time. All these are the open questions we are planning to study within the project
mentioned above. As the starting point of our experimental research, we have de-
signed the experiments, in which volunteers are asked to describe their behavior in
several situations.

All the considered situations are formulated in the form of lotteries, in which the
participants have a chance to win 100 CZK. At each of the situation, the content
of a lottery drum is partially described, and the participants are asked to decide
how much they are maximally willing to pay to be allowed to take part in the
specified lottery. Details from the organization of these experiments are described
in another paper presented at this conference. Here we just say that the following
14 situations are presented to experimental persons.

F1 The drawing urn contains 30 balls, five of each of the following colors: red,
black, yellow, white, green, and azure. How much are you maximally willing
to pay to take part in the lottery in which you win 100 CZK if the randomly
drawn ball is red?

F2 The drawing urn contains 30 balls, five of each of the following colors: red,
black, yellow, white, green, and azure. How much are you maximally willing
to pay to take part in the lottery in which you choose a color and get 100
CZK if the randomly drawn ball is of the color of your choice?

I1 The drawing urn contains 30 balls, they may be of the following colors: red,
black, yellow, white, green, and azure. You know nothing more, you even
do not know how much colors are present in the urn. How much are you
maximally willing to pay to take part in the lottery in which you win 100
CZK if the randomly drawn ball is red?

I1 The drawing urn contains 30 balls, they may be of the following colors: red,
black, yellow, white, green, and azure. You know nothing more, you even
do not know how much colors are present in the urn. How much are you
maximally willing to pay to take part in the lottery in which you choose a
color and get 100 CZK if the randomly drawn ball is of the color of your
choice?

Rn This represents 8 lotteries for n= 5, 6, 7, . . ., 12. The drawing urn contains n
balls, each of which is either red, or black, or yellow, or white, or green, or
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azure. You know that one and only one of them is red, nothing more. You
even do not know how many colors are present in the urn. How much are
you maximally willing to pay to take part in the lottery in which you choose
a color and get 100 CZK if the randomly drawn ball is of the color of your
choice?

E1 The drawing urn contains 15 red, black and yellow balls, you know that exactly
5 of them are red, you do not know the proportion of the remaining black
and yellow balls. How much are you maximally willing to pay to take part
in the lottery in which you choose a color and get 100 CZK if the randomly
drawn ball has the color of your choice?

E2 The drawing urn contains 15 red, black and yellow balls, you know that exactly
5 of them are red, you do not know the proportion of the remaining black
and yellow balls. How much are you maximally willing to pay to take part
at the lottery in which you choose a color and get 100 CZK if the randomly
drawn ball is either yellow or of the color of your choice?

2 Uncertain Knowledge representation

Considering the situations F1 and F2, the knowledge can fully be described by a
uniform probability distribution. Denoting the corresponding state space (i.e., a
set of possible outcomes of a random draw) Ω = {red, black, white, yellow, green,
azure} (Ω = {r, b, w, y, g, a} for short), for the uniform probability distribution
Pu(r) = Pu(b) =, . . . , Pu(a) = 1

6 . Notice that, due to additivity of probabilities,
we also know (for example) that Pu({r, g}) = 1

3 , and Pu({b, y, a}) = 1
2 . Generally,

for a ⊆ Ω, Pu(a) = |a|
6 . It is also clear that from the situations introduced in

the previous section, only the situations F1 and F2 can fully be described by
probability distributions. For the description of the remaining situations we have
to use another theoretical instrument.

2.1 Belief Functions

Consider the situation Rn describing One-red-ball example with n balls in a draw-
ing drum. In this case we know only the probability P%,n(r) = 1

n . We do not know
the probabilities of other colors. But, again thanks to additivity of probability, we
know that P%,n({b, w, y, g, a}) = P%,n(Ω\{r}) = 1− 1

n . And this is the information
that can be used to define a belief function. It is the information, which allows us
to define the basic notion from this theory, so called basic probability assignment .

Since there is abundant literature on belief function theory (e.g., [11, 3, 12], and
the papers introducing the models discussed in this paper [9, 8]), we presume that
the reader is familiar with at least the foundations of this approach. Therefore, we
introduce just the notation used in this paper.
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The fundamental notion is that of a basic probability assignment (bpa), which
describes all the information about the considered situation at our disposal. It is
a function1 m : 2Ω → [0, 1], such that

∑
a∈2Ω m(a) = 1 and m(∅) = 0.

For bpa m, a ∈ 2Ω is said to be a focal element of m if m(a) > 0. In what
follows we will consider the following two special classes of bpa’s representing the
extreme situations:

• m is said to be vacuous if m(Ω) = 1, i.e., m has only one focal element, Ω. A
vacuous bpa is denoted by mι. It represents total ignorance, i.e., it represents
the situations I1 and I2.

• m is said to be Bayesian, if all its focal elements are singletons, i.e., for
Bayesian bpa m, m(a) > 0 implies |a| = 1. Bayesian bpa’s represent ex-
actly the same knowledge as probability functions. As all focal elements of a
Bayesian bpa m are singletons, we can define probability distribution Pm for
Ω such that

Pm(x) = m({x}) (1)

for all x ∈ Ω. Thus, Bayesian bpa’s represent in our examples situations F1
and F2.

Exactly the same knowledge that is expressed by a bpa m can also be expressed
by a belief function, and by plausibility function.

Belm(a) =
∑

b∈2Ω:b⊆a
m(b). (2)

Plm(a) =
∑

b∈2Ω:b∩a6=∅
m(b). (3)

In this paper we take advantage of the fact that for each bpa there exists a
credal set, which is a convex set of probability distributions P on Ω defined as
follows (P denotes the set of all probability distributions on Ω):

P(m) =

{
P ∈ P :

∑

x∈a
P (x) ≥ Belm(a) for ∀a ∈ 2Ω

}
.

Notice that Pm defined by Equation (1) for a Bayesian bpa m is such that P(m) =
{Pm}, and that P(mι) = P. From Equations (2) and (3), it can easily be deduced
that for all P ∈ P(m)

Belm(a) ≤ P (a) ≤ Plm(a),

for all a ∈ 2Ω. Thus, if Bel(a) = Pl(a) then we are sure that the probability of
a equals Bel(a). Otherwise, the larger the difference Pl(a) − Bel(a), the more
uncertain we are about the value of the probability of a. Using the terminology

1As usually, 2Ω denote a set of all subsets of Ω.
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of Srivastava [15], the greater this difference, the more ambiguity one has for the
event (set of states) a.

The last notion we need in this paper is that of a famous pignistic trans-
form, which was introduced in [16] and for decision making strongly advocated
by Philippe Smets [13, 14]):

Bet Pm(x) =
∑

a∈2Ω:x∈a

m(a)

|a| . (4)

Notice, it defines for each bpa m a probability distribution, which is from the
corresponding credal set P(m).

2.2 Measuring Strength of Ambiguity

The proposed way of measuring the strength of individual ambiguity aversion is
based on the following mental model.

Consider situations I1 and F1 (or equivalently I2 and F2). Usually (and it
is confirmed also in our experiments) people are willing to pay more to take part
in the lottery F1 than in the lottery I1. This well known, seemingly paradoxical
phenomenon, can hardly be explained by different subjective utility functions or
by different subjective probability distributions. To explain this fact, we accepted
a hypothesis that humans do not use their personal probability distributions but
just capacity functions that do not sum up to one [6, 17]. Roughly speaking,
the subjective probability of drawing a red ball is 1

6 in the case that the person
knows that the number of balls of all colors are the same in the drum. However,
the respective “subjective probability” in the case of lack of knowledge is ε < 1

6 .
The lack of knowledge psychologically decreases the subjective chance of drawing
the selected color – it decreases the subjective chance of success. Thus, while we
can accept that in situation F2 the decision-maker considers that the probabilities
of individual colors are 1

6 ,
1
6 , . . . ,

1
6 , in situation I2 these “subjective probabilities”

are only ε, ε, . . . , ε. Assuming this decrease is linear with the subjective strength of
ambiguity, we can measure it by a personal coefficient of ambiguity α, which can
be expressed, in case that the person is willing to pay a CZK in situation F1 and
b CZK in situation I1, by the following simple formula

α =
a− b
a

. (5)

The higher this coefficient, the stronger the aversion. Namely, if the person is
willing to pay a CZK when her expected probability of success is 1

6 (situation F1),
then, in case of the decreased probability of success, which is (1−α) · 1

6 (in case of
I1), she is willing to pay

(1− α) · a = (1− a− b
a

) · a = a− (a− b) = b.
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Let us, now, show how this personal coefficient of ambiguity influences behavior
of an experimental decision maker in situations Rn.

As we have already said at the beginning of Section 2.1, in situation Rn, the
content of the drawing drum is described by bpa m%,n given as follows:

m%,n(a) =





1
n , if a = {r};
n−1
n , if a = {b, g, o, y, w};

0, otherwise,

and the corresponding belief function is Belm%,n
({x}) = 0 for all x ∈ {b, g, o, y, w},

and Belm%,n
({r}) = 1

n .
For the sake of simplicity let us accept here the Smets’ advice [14] saying that

for decision making one should compute the expected value using the pignistic
transform (for a survey of other probabilistic transforms see [2], and for more
discussion on the problem of a probabilistic transfrom selection see [7]), which is

Bet Pm%,n
(x) =

{
1
n , if x = r ;

n−1
5n , for x ∈ {b, g, o, y, w}.

If there were not for the ambiguity, we should use it directly for the computation
of the expected winnings. However, in our approach, we have to decrease it using
the personal coefficient of ambiguity aversion α. We have to decrease it at each
point of Ω proportionally to the strength of the ambiguity connected with the
considered point. Realize, that Bet Pm%,n

(x) − Belm%,n
({x}) ≥ 0, and equals 0

if and only if Plm%,n
(x) = Belm%,n

({x}). Thus, if Bet Pm%,n
(x) = Belm%,n

({x}),
we know the respective probability exactly, we do not have any ambiguity about
its value. However, the greater the difference Bet Pm%,n

(x) − Belm%,n
({x}), the

greater the ambiguity, and therefore we have to decrease probabilities Bet Pm%,n(x)
accordingly. After the decrease, they do not sum up to one, any more, and therefore
we call them reduced weights, and compute them according to the following formula:

rm,α(x) = (1− α)Bet Pm(x) + αBelm({x}). (6)

Thus, in situation Rn we get:

rm%,n,α(x) =

{
1
n , if x = r ;

(1− α) · n−1
5n , for x ∈ {b, g, o, y, w}.

Considering (for the sake of simplicity just two) gain functions gr(x), and gw(x)
(corresponding to betting on red and white color, respectively), the total subjective
rewards are as follows. When betting on red it equals

Rm%,n,α(r) =
1

n
gr(r) +

∑

x∈Ω:x 6=r

(1− α)(n− 1)

5n
gr(x) =

100

n
,
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Table 1: One Red Ball Example: Total subjective reward as a function of the
coefficient of ambiguity aversion α, and the number of balls n.

Rm%,n,α(w)
n Rm%,n,α(r) α=0 α=0.1 α=0.2 α=0.3 α=0.4 α=0.5 α=0.6

5 20.00 16.00 14.40 12.80 11.20 9.60 8.00 6.40

6 16.67 16.67 15.00 13.33 11.67 10.00 8.33 6.67

7 14.29 17.14 15.43 13.71 12.00 10.29 8.57 6.86

8 12.50 17.50 15.75 14.00 12.25 10.50 8.75 7.00

9 11.11 17.78 16.00 14.22 12.44 10.67 8.89 7.11

10 10.00 18.00 16.20 14.40 12.60 10.80 9.00 7.20

11 9.09 18.18 16.36 14.55 12.73 10.91 9.09 7.27
12 8.33 18.33 16.50 14.67 12.83 11.00 9.17 7.33

and analogously, for betting on white

Rm%,n,α(w) =
1

n
gw(r) +

∑

x∈Ω:x6=r

(1− α)(n− 1)

5n
gw(x) =

100(1− α)(n− 1)

5n
.

Some of the values of these functions are tabulated in Table 1. From this table
we see that, for example, a person with α = 0.4 should bet on red color for n ≤ 9,
because for these Rm%,n,α(r) > Rm%,n,α(x) (x 6= r), and bet on any other color for
n ≥ 10, because for these n, Rm%,n,α(r) ≤ Rm%,n,α(x) (x 6= r). This means that for
n ≤ 9, it is subjectively more advantageous to bet on the red color. In the next
section we say that the computed breaking point of such a person is 10.

We conclude this section mentioning that the description of the reduced function
for the Ellsberg’s examples is more complicated, because the gain function for the
situation E2 equals 100 for two values. In this case, we have to consider both
pignistic transform and reduced weights functions as mappings on 2Ω. Since we
do not necessarily need it in the rest of this paper, we do not describe it here and
refer the interested reader to [9, 8].

3 Results from Experiments

At the time of preparation of this paper, we have data from 49 respondents. Nat-
urally, not all the respondents undertook the task with the same responsibility. It
can be seen, among others, from the time, which they needed for finishing the task.
In average, the respondents needed 5 minutes, and 19 seconds, but two of them
finished the whole task in less then one minute (33 and 36 seconds). A similarly ir-
responsible attitude may be expected from the respondents who were willing to bet
just one CZK (or 0 CZK) for all twelve situations. Naturally, for correct statistical
data processing we should clean the data, and delete these obviously misleading
responses. Because we do not have enough data and we do not have criteria how
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to detect misleading data, for this preliminary discussion we keep all the data as
they were collected.

3.1 First Glance Comments

The reader certainly noticed that in situations F1 and F2 (in the same way as
in situations I1 and I2) the participants have the same information about the
content of the drawing drum. The difference is just that in F1 the winning color
is predetermined (red), while in F2 the participant determines the winning color
herself. We included both of them into the battery of the considered situations,
because we were not sure whether the participants would not suspect the organizers
to exclude red color from the drawing drum in case that the winning color (red)
is predetermined. This suspicious appeared false. The total amount of money bet
in I1 was 292 CZK, while in I2 they altogether bet 290 CZK (for F1 and F2 the
total amounts were 584 and 557 CZK, respectively).

The only observation, which surprised us at the first glance, concerns the be-
havior of the respondents in situations E1 and E2. The reader familiar with the
famous Elsberg’s paper [4] already noticed that these situations were designed to
repeat the Eslberg’s experiment. Let us briefly recollect his example.

In [4] (pp. 653–654), Ellesberg considers the situation with a drawing drum con-
taining 30 red balls and 60 black or yellow balls, the latter in unknown proportion.
With this drum, Ellsberg considers two experiments. The first experiment (which
we repeat as E1 in our study) finds out whether people prefer betting on red or
black ball, in the case they get the reward if the ball of the respective color is drawn
at random. According to his observations, “very frequent pattern of response is
that betting on red is preferred to betting on black”. This corresponds also with
our results, in which 36 (out of all 49) respondents bet on black color. In the second
Ellsberg’s experiment (simulated in our experiments as E2), a decision-maker can
bet on red and yellow, or on black and yellow. Again, the participant gets the
reward in case that the randomly drawn ball is of one of the selected colors. In this
case, the Ellsberg’s observation is that “ betting on black and yellow is preferred
to betting on red and yellow”, which is not in the agreement with the results we
have achieved. In our case, only 16 participants betted on black color.

3.2 Coefficient of Ambiguity α

Let us turn our attention to what can be said about the coefficient of ambiguity
on the basis of the considered preliminary data. As a starting point, we computed
this coefficient according to Formula (5) for all respondents. Having two pairs of
situations, we computed two such coefficients; one from the bets in situations F1
and I1, the other from bets in situations F2 and I2. The situations are submitted
to the participants in a random order, so it is quite interesting to what extent the
two coefficients differ from each other. The results are depicted in Figure 1. Each
point corresponds to one respondent (or several, if both coefficients coincide for
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Figure 1: Comparison of coefficients α computed from bets in F1, I1 and F2, I2.

several respondents), who took part in our experiments. The coordinates of each
point are the respective coefficients α. From this figure, we see several unexpected
facts. First, a few participants are exhibiting ambiguity inclination; their coefficient
of ambiguity α is negative. Second, there is not a small part of participants, who
manifest the ambiguity aversion just in one pair of situations (either in F1, I1, or in
F2, I2) – see the points on the axes. For only a small number of participants, both
coefficients are close to each other. Naturally, we have only a small amount of data
(some of which should be removed because of the reasons mentioned above), so we
cannot make any final conclusions. Therefore, in what follows, we consider just one
coefficient of ambiguity, which is computed from sum betted together in F1 and
F2, and the sum betted in I1 and I2 together. To simplify the next exposition, let
us call these coefficients the joint coefficients of ambiguity .

Going back to situations Rn, and assuming that the joint coefficient α expresses
the strength of the ambiguity aversion of the individual respondents, we can, using
Table 1, estimate the breaking point, i.e., the number of balls when the partici-
pants start betting on another color than the red one. We compute it for each
experimental person using her personal joint coefficient of ambiguity. Comparing
the computed breaking point with that, which can be read from data, we have
found out that for half of the respondents (more precisely, for 25 out of 49) the
breaking point computed from the models does not differ from the actual breaking
point by more than one.

It is worth mentioning that from three respondents with negative joint coeffi-
cient of ambiguity, one did not bet on red color even for n = 5, and another betted
on blue color already for n = 6. Thus, these two respondents displayed their ambi-
guity inclination even when reacting in situations Rn. Again, even this surprising
result must be taken with a great care because of a small amount and not cleaned
data.

Though the amount of money, the respondents are maximally willing to pay to
take part in lotteries, is not in the center of our interest, the question is whether
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Figure 2: Maximal and average bets on individual lotteries.

these numbers should be taken into consideration when evaluating the quality of
data. For example, is it meant seriously, if an experimental person claims that she
is willing to pay 5, 8, 10, 15, 20, 30, 40 CZK in situations R5, R6, . . ., R12, respec-
tively? Some irrational behavior of respondents can also be read from Figure 2, in
which each situation (lottery) is described with two boxes. Left-hand box corre-
sponds to those 25 respondents, for which the breaking point from lotteries R5 –
R12 does not differ from that computed using the joint coefficient α by more than
one. The right-hand box is computed from data of the rest of 24 respondents. The
lower edge of each box shows the average of the amounts the respondents are will-
ing to pay for taking part in the lottery, the upper edge shows the maximal value
(it does not have the sense to depict the minimum because of the above-mentioned
respondents stating that they are willing to pay just 1 CZK ( or 0 CZK) in all
situations).

4 Conclusions

In the paper, we described the experiments we are realizing to better understand
the concept of individual subjective ambiguity aversion. The analysis of first data
arises more questions than answers, and this is the main reason, why we present
this paper at the Czech-Japan seminar. We want to initiate the discussion that
should help us to find answers to the following questions:

• Is it possible to minimize the number of respondents replying the questions
without thinking?

• Should the data be cleaned before their processing?
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• If yes, what criteria should be used to clean the data?
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[8] R. Jiroušek and V. Kratochv́ıl. On expected utility under ambiguity. In 15th
European Conference on Symbolic and Quantitative Approaches to Reasoning
with Uncertainty (ECSQARU 2019). Springer, 2019, to appear.
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