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Abstract

This study compares the size of conflict based on non-conflicting parts of
belief functions Conf with the sum of all multiples of bbms of disjoint focal
elements of belief functions in question. In general, we make an effort to
reach a simple upper bound function for Conf. (Nevertheless, the maximal
value of conflict is, of course, equal to 1 for fully conflicting belief functions).
We apply both theoretical research using the recent results on belief functions
and also experimental computational approach here.

Keywords: Belief functions, Dempster-Shafer theory, Uncertainty, Conflict-
ing belief masses, Conflict between belief functions, Hidden conflict.

1 Introduction
Belief functions representing an uncertain and/or incomplete, imperfect informa-
tion about the object of interest may be, of course, in mutual conflict. The clas-
sic definition of conflict between belief functions is equivalent to the sum of all
multiples of conflicting belief masses of individual belief functions [17]; i.e. the
belief mass assigned to the empty set when non-normalized conjunction combina-
tion rule is considered (frequently denoted by m ∩⃝(∅)). After this measure was
observed to be inadequate for a correct representation of conflict between belief
functions [1, 14], several different measures were introduced in last dozen years,
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e.g. [6, 7, 12, 13, 14, 15, 16, 19]. Conflict between belief functions is usually
assumed to be less or equal to the belief mass appearing on the empty set m ∩⃝(∅).

One of the progressive current alternative conflict measures of the conflict be-
tween belief functions is based on their non-conflicting parts [7]. Despite the orig-
inal assumption, positive conflict was observed there even in situations when the
previously mentioned conflict measures were zero and belief functions in question
were considered to be non-conflicting. These so-called hidden conflicts were ana-
lyzed and presented in [8, 11]. In this paper we try to give a simple upper-bound
function of conflict based on non-conflicting parts and also of previous measures of
conflict, to obtain an improved general assumption for conflict measures.

We apply here both theoretical approach using our recent results on degrees of
hidden conflicts [11] and of degrees of non-conflictness [10] and also experimental
computational approach continuing our computations from [8, 9].

2 Preliminaries
We assume classic definitions and basic notion from the theory of belief functions
[17] on finite exhaustive frames of discernment Ωn = {ω1, ω2, ..., ωn}. P(Ω) =
{X|X ⊆ Ω} is a power-set of Ω.

A basic belief assignment (bba) is a mapping m : P(Ω) −→ [0, 1] such that∑
A⊆Ω m(A) = 1; the values of the bba are called basic belief masses (bbm). m(∅) =

0 is usually assumed.
A belief function (BF) is a mapping Bel : P(Ω) −→ [0, 1], such that Bel(A) =∑

∅̸=X⊆A m(X). A plausibility function Pl :P(Ω)−→ [0, 1], Pl(A)=
∑

∅̸=A∩X m(X).
Because there is a unique correspondence among m and corresponding Bel and Pl,
we often speak about m as of a belief function.

A focal element is a subset of the frame of discernment X ⊆ Ω, such that
m(X) > 0; if X ⊊ Ω then it is a proper focal element. If all focal elements are
singletons (i.e. one-element subsets of Ω), then we speak about a Bayesian belief
function (BBF); in fact, it is a probability distribution on Ω. If there are only
focal elements such that |X| = 1 or |X| = n we speak about quasi-Bayesian BF
(qBBF). In the case of m(Ω) = 1 we speak about vacuous BF. In the case of
m(X) = 1 for X ⊂ Ω we speak about categorical BF. If m(X) > 0 for X ⊂ Ω and
m(Ω) = 1 − m(X) we speak about simple support BF. If all focal elements have
a non-empty intersection, we speak about a consistent BF; and if all of them are
nested, about a consonant BF.

Dempster’s (normalized conjunctive) rule of combination ⊕: (m1 ⊕m2)(A) =∑
X∩Y=A Km1(X)m2(Y ) for A ̸= ∅, where K = 1

1−κ , κ =
∑

X∩Y=∅ m1(X)m2(Y ),
and (m1 ⊕m2)(∅) = 0, see [17]. Putting K = 1 and (m1 ∩⃝m2)(∅) = κ = m ∩⃝(∅) we
obtain the non-normalized conjunctive rule of combination ∩⃝ , see e. g. [18].

Smets’ pignistic probability is given by BetP (ωi) =
∑

ωi∈X⊆Ω
1

|X|
m(X)

1−m(∅) , see
e.g. [18]. Normalized plausibility of singletons1 of Bel is a probability distribution

1Plausibility of singletons is called contour function by Shafer in [17], thus Pl_P (Bel) is a
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Pl_P such that Pl_P (ωi) =
Pl({ωi})∑
ω∈Ω Pl({ω}) [3, 4].

3 Conflicts of Belief Functions
Original Shafer’s definition of the conflict measure between two belief functions
[17] is the following: κ =

∑
X∩Y=∅ m1(X)m2(Y ) = (m′ ∩⃝m′′)(∅) = m ∩⃝(∅), more

precisely its transformation log(1/(1− κ)).
After appearing that m ∩⃝(∅) does not correctly represent conflict between BFs

[1, 14] a series of alternative approaches and measures of conflicts have appeared
in last dozen years, e. g. [2, 6, 7, 12, 14, 15]. Alternative approaches are often
somehow related to m ∩⃝(∅) or use it as one of its components [14].

In 2010, Daniel distinguished internal conflict inside an individual BF from the
conflict between them [5] and pointed out that m ∩⃝(∅) contains both individual
internal conflicts of BFs and conflict between them. Thus the usual assumption or
property of measures of conflict to be less or equal to m ∩⃝(∅) seemed to be natural.

Finally, Daniel’s conflict based on non-conflicting parts of BFs was introduced
in [7]. This last-mentioned measure motivated our research of hidden conflict [9],
hidden auto-conflict [8] and also current research of degrees of non-conflictness [10].

A conflict of BFs Bel′, Bel′′ based on their non-conflicting parts Bel′0, Bel′′0 is
defined by the expression Conf(Bel′, Bel′′) = (m′

0 ∩⃝m′′
0)(∅), where non-conflicting

part Bel0 (of a BF Bel) is unique consonant BF such that Pl_P0 = Pl_P (nor-
malized plausibility of singletons corresponding to Bel0 is the same as that corre-
sponding to Bel); m0 is a bba related to Bel0. For an algorithm to compute Bel0
see [7].

This measure of conflict between BFs in correspondence to Daniel’s approach
from [5] does not include internal conflict of individual BFs. And Theorem 4 from
[7] claims that

Conf(Beli, Belii) ≤ (mi ∩⃝mii)(∅) (∗)

holds true for arbitrary BFs Beli, Belii given by bbas mi,mii on any finite frame
of discernment Ωn. Nevertheless, during later analysis of Conf properties counter-
examples against general validity of (∗) have appeared, for some of them see the
next Section,

Similarly to plausibility conflict, measure Conf respects plausibilities equivalent
to the BFs; and it better generalises the original idea to general frame Ωn.

4 Counter-Examples against General Validity of
Inequality Conf ≤ m ∩⃝(∅)

There are plenty of counter-examples against general validity of inequality (∗),
thus against Conf ≤ m ∩⃝(∅). Counter-examples have started to appear when the
normalization of contour function in fact.
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first hidden conflicts had been observed. Any hidden conflict is a counterexample
against it. We can start with the first and simple Introductory Example from [8, 9]
on Ω3 and Little Angel example from [9], for both the examples see also [11]).

Example 1. Introductory example. Let us assume two simple consistent belief
functions Bel′ and Bel′′ on Ω3 = {ω1, ω2, ω3} given by the bbas m′({ω1, ω2}) = 0.6,
m′({ω1, ω3}) = 0.4, and m′′({ω2, ω3}) = 1.0.

We can display focal elements of BFs Bel′ and Bel′′ on Figure 1.

b

b bbb
∩⃝

b

b bbb
=

b

b bbb

Figure 1: Introductory Example: focal elements of m′,m′′, and of m′ ∩⃝m′′.

ω1 is in both the focal elements of Bel′, thus Pl′({ω1}) = 0.6+0.4 = 1, and the
other two singletons each in the only focal element, thus simply Pl′({ω2}) = 0.6,
Pl′({ω3}) = 0.4 and after the normalization Pl_P ′ = (0.5, 0.3, 0.2). For Bel′′

analogously Pl′′({ω2}) = Pl′′({ω3}) = 1.0 and Pl_P ′′ = (0.0, 0.5, 0.5). Thus non-
conflicting parts of the BFs are given by the following bbms: m′

0({ω1}) = 0.5−0.3
0.5 =

2
5 = 0.4, m′

0({ω1, ω2}) = 0.3−0.2
0.5 = 1

5 = 0.2, and m′
0({ω1, ω2, ω3}) = 0.2

0.5 = 0.4, and
m′′

0({ω2, ω3}) = m′′({ω2, ω3}) = 1.0.
Hence we obtain Conf(Bel′, Bel′′) = m′

0({ω1})m′′
0({ω2, ω3}) = 0.4 · 1.0 = 0.4 >

0 = (m′ ∩⃝m′′)(∅).
Example 2. Little Angel example Let assume belief functions Beli and Belii on
Ω5 = {ω1, ω2, ω3, ω4, ω5} given by the bbas mi({ω1, ω2, ω3}) = 0.1, mi({ω1, ω2, ω3,
ω4}) = 0.3, mi({ω1, ω3, ω4, ω5}) = 0.6, and mii({ω2, ω3.ω4, ω5}) = 1.0.

Analogously to the previous case, we can display focal elements of BFs Beli

and Belii on Figure 2.

b

b

bb

b∩⃝

b

b

bb

b =

b

b

bb

b

Figure 2: Litte Angel Example: focal elements of mi,mii, and of mi ∩⃝mii.

Analogously to the previous case we obtain the following plausibility of single-
tons: Pli(1.0, 0.4, 0.9, 0.9, 0.7), Pl_P i( 1039 ,

4
39 ,

9
39 ,

9
39 ,

7
39 ) and mi

0({ω1}) = 10−9
10 =

0.1, mi
0({ω1, ω3, ω4}) = 9−7

10 = 0.2, mi
0({ω1, ω3, ω4, ω5}) = 7−4

10 = 0.3, mi
0({ω1, ω2,
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ω3, ω4, ω5}) = 4
10 = 0.4. For Belii there is mii

0 ({ω2, ω3, ω4, ω5}) = mii({ω2, ω3, ω4,
ω5}) = 1.0. Hence we obtain Conf(Beli, Belii) = mi

0({ω1})mii
0 ({ω2, ω3, ω4, ω5}) =

0.1 · 1 = 0.1.

Both these examples are simple with a few focal elements only. Nevertheless, we
can find plenty of the other examples moving small belief masses from the original
focal elements to the other subset of the frame and create new ones:
Example 3. Modified Introductory example. Let us suppose belied functions
Bel′, Bel′′ given by the modified bbas m′ and m′′, moving parts of the original
bbms to singletons and to entire Ω3 as it follows:

m′({ω1}) = 0.1 m′′({ω1}) = 0.1
m′({ω2}) = 0.1 m′′({ω2}) = 0.1
m′({ω3}) = 0.1 m′′({ω3}) = 0.1

m′({ω1, ω2}) = 0.4 -
m′({ω1, ω3}) = 0.2 -

- m′′({ω2, ω3}) = 0.6
m′({ω1, ω2, ω3}) = 0.1 m′′({ω1, ω2, ω3}) = 0.1

After this modification we obtain Pl_P ′ = ( 8
18 ,

6
18 ,

4
18 ), Pl_P ′′ = ( 2

18 ,
8
18 ,

8
18 ),

and further m′
0({ω1}) = 8−6

8 = 2
8 = 0.25, m′

0({ω1, ω2}) = 6−4
8 = 2

8 = 0.25, and
m′

0({ω1, ω2, ω3}) = 4
8 = 0.5, and m′′

0({ω2, ω3}) = 8−2
8 = 0.75, m′′

0({ω1, ω2, ω3}) =
2
8 = 0.25.
Hence we obtain Conf(Bel′, Bel′′) = m′

0({ω1})m′′
0({ω2, ω3}) = 0.25·0.75 = 0.1875.

(m′ ∩⃝m′′)(∅) = 6×0.1·0.1+0.1·0.6+0.4·0.1+0.2·0.1 = 0.06+0.06+0.04+0.02 = 0.18.
Hence Conf(Bel′, Bel′′) = 0.1875 > 0.1800 = (m′ ∩⃝m′′)(∅).
Example 4. Modified Little Angel example For following modification of Little
Angel BFs we obtain counter-example again:

mi({ω1}) = 0.05 -
mi({ω2}) = 0.05 mii({ω2}) = 0.05

mi({ω1, ω2}) = 0.05 -
mi({ω2, ω4}) = 0.05 -

- mii({ω3, ω4}) = 0.10
mi({ω1, ω2, ω5}) = 0.10 -
mi({ω2, ω3, ω4}) = 0.05 -

mi({ω1, ω2, ω3, ω4}) = 0.20 -
mi({ω1, ω3, ω4, ω5}) = 0.40 -

- mii({ω2, ω3, ω4, ω5}) = 0.80
mi({ω1, ω2, ω3, ω4, ω5}) = 0.05 mii({ω1, ω2, ω3, ω4, ω5}) = 0.05

where Conf(Bel′, Bel′′) = 0.1114551 while (m′ ∩⃝m′′)(∅) = 0.0875.
After observation of the original examples, we had a working hypothesis of

validity of equality (∗) for all quasi Bayesian BFs on a general finite frame of
discernment, unfortunately, instead of proving the hypothesis we have found several
counterexamples for both qBBF and even for Bayesian BFs already on four-element
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frame of discernment Ω4. We have used a method described in Section 8. The first
counterexample found on Ω4 is shown in the next more general Example with
ε = 0 in which case both BFs are Bayesian and Conf(Beli, Belii) = 0.984375
while (mi ∩⃝mii)(∅) = 0.98.

Example 5. 8-1-1-0 Assume the following class of BFs on Ω4:

mi({ω1}) = 0.1 mii({ω1}) = 0.1
mii({ω2}) = 0.8− ε

mi({ω3}) = 0.8− ε
mi({ω4}) = 0.1 mii({ω4}) = 0.1

mi({ω1, ω2, ω3, ω4}) = ε mii({ω1, ω2, ω3, ω4}) = ε

Because the inequality (∗) holds for the majority of qBBFs on Ω4, i.e. for n = 4,
size of belief mass moved to the entire frame must be rather small. Indeed, note that
in case of ε < 0.008 the inequality (∗) does not hold (the exact bound is slightly
higher). For ε = 0.008 we obtain Conf(Beli, Belii) = 0.964475 > 0.964064 =
(mi ∩⃝mii)(∅).

Any of the above-presented examples can be easily extended for a greater frame
of discernment. For an extension of Example 8-1-1-0 to 10-element frame of dis-
cernment Ω10 see mi−0,mii−0 in Example 8-small-small: Example 6, Section 6.

5 Validity of Conf ≤ m ∩⃝(∅)
We can start from the simplest case of 2-element frame of discernment, which had
motivated too strong version of the statement about (∗) in Belief’14 [7]:

Lemma 1 Inequality Conf ≤ m ∩⃝(∅) holds true for arbitrary BFs on a 2-element
frame of discernment Ω2.

Proof. Let us denote (ai, bi) = (mi({ω1}),mi({ω2}), thus mi({ω1, ω2}) = 1 −
ai − bi. m(∅) = (m1 ∩⃝m2)(∅) = a1b2 + a2b1. Let us suppose a1 ≥ b1. If also
a2 ≥ b2 then both maximal plausibilities are higher for ω1, thus Conf(m1,m2) =
0 ≤ m(∅). Hence there still remain to prove the case a2 ≤ b2. There it holds:
Pli = (1 − bi, 1 − ai) and Pl_Pi = ( 1−bi

2−ai−bi
, 1−ai

2−ai−bi
). m01({ω1}) = a01 = a1−b1

1−b1
,

m01 = (a01, b01) = (a1−b1
1−b1

, 0), and analogously m02 = (a02, b02) = (0, b2−a2

1−a2
.). Thus

Conf(m1,m2) = (a1−b1
1−b1

)( b2−a2

1−a2
). Hence it remains to verify (a1−b1

1−b1
)( b2−a2

1−a2
) ≤

a1b2 + a2b1. We can show that (a1−b1
1−b1

) ≤ a1: (a1 − b1) ≥ a11− b1) = a1 − a1b1,
−b1 ≤ −a1b1, 0 ≤ b1(1 − a1), what follows 0 ≤ a, b ≤ 1, analogously we can show
that ( b2−a2

1−a2
) ≤ b2. Hence (a1−b1

1−b1
)( b2−a2

1−a2
) ≤ a1b2 ≤ a1b2 + a2b1.

Lemma 2 Inequality Conf ≤ m ∩⃝(∅) holds for any pair of consonant BFs on any
finite Ωn.
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Proof. The statement follows the fact that there is the unique consonant non-
conflicting part of a BF. Consonant BFs are because of this uniqueness equal to their
non-conflicting parts. Hence Conf(Beli, Belii) = (mi

0 ∩⃝mii
0 )(∅) = (mi ∩⃝mii)(∅),

thus Conf = m ∩⃝(∅), hence inequality holds true.

Corollary 3 (i) Inequality Conf ≤ m ∩⃝(∅) holds for any pair of categorical BFs
on any finite frame of discernment Ωn.

(ii) Inequality Conf ≤ m ∩⃝(∅) holds for any pair of simple support BFs on any
finite frame of discernment Ωn.

Proof. Both categorical and simple support belief functions are consonant, thus
both (i) and (ii) are special cases of Lemma 2.

Unfortunately, as we have seen in Example 8-1-1-0, inequality (∗) does not
holds either for two arbitrary quasi Bayesian BFs on Ω4. Nevertheless, We have no
counter-example against validity of (∗) for qBBFs on Ω3 but we also do not have
a complete proof of its validity yet. That is why we moved the issue of qBBFs on
Ω3 to the next section about hypotheses. To complete this Section, we have to
mention the following trivial observation:

Observation 4 If one of the belief functions in question is vacuous, inequality
Conf ≤ m ∩⃝(∅) always holds. (Conf = 0 = m ∩⃝(∅) in that cases.)

6 Hypotheses
Hypothesis 5 Inequality Conf ≤ m ∩⃝(∅) holds true for any couple of quasi
Bayesian belief functions on any 3-element frame Ω3.

Partial proof. If we want to find a proof analogous to that for Ω2, there is no
problem with (mi ∩⃝mii)(∅): formula for its computation from input bbms is al-
ways the same for given cardinality n of Ωn. This is different for computation
of value Conf(Beli, Belii), where different focal elements appear in corresponding
Beli0, Belii0 , also focal element of cardinality 2, thus there is not only higher com-
plexity of formula for higher n, but the number of different formulas for different
orders of values of plausibility of singletons (for qBBFs equal to order of input
bbms). Moreover, neither analogy of proof on Ω2 has not been found for any of the
cases of formulas on Ω3. Nevertheless, we have some kind of proof for some special
cases of input qBBFs.

Two simplified cases have been already proven with the usage of WolframAplha
tool: https://www.wolframalpha.com just by checking if the formula corresponding
to the inequality (∗) has a solution in the [0, 1] interval of respective variables. Nev-
ertheless, a complete list of formulae for the general case has not been formulated
yet, thus either proved.
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Let us start from the case of Bayesian BFs with only two positive values: (a, 1−
a, 0|0), (0, 1−a, a|0) where the notation corresponds to (m(ω1),m(ω2),m(ω3)|m(Ω3)),
with maximal values assigned to different singletons (otherwise Conf = 0). If
a ≥ 1 − a, i.e. a ≥ 1/2, then we obtain: Conf :

(
2a−1

a

)2
+ 2

(
2a−1

a

) (
1−a
a

)
and

m(∅) = a2 + 2a(1− a) = 2a − a2.
Nevertheless, the inequality corresponding to the opposite of (∗):

(
2a−1

a

)2
+

2
(
2a−1

a

) (
1−a
a

)
− 2a + a2 > 0 has a solution only for a ̸∈ [−1, 1] and therefore no

counter-example can exists in this case.
Analogously we can consider BBFs one with three different values and the other
with opposite order of the same bbms, thus (a, b, 1−a−b|0), (1−a−b, b, a|0). In case
of a > b > 1−a−b we obtain:

(
a−b
a

)2
+2

(
a+2b−1

a

) (
a−b
a

)
−2a2−2ab+b2+2a−1 > 0

that is necessary to hold for a counter-example, but again, it has not solution for
0 <= b <= a <= 1− b. Therefore NO counter-example can exist here.

In the completely general case for qBBFs on Ω3 it is necessary to verify sev-
eral inequalities with 6 variables. As an example we can present the inequality
( a−b
1−b−c )(

f−e
1−d−e )+( a−b

1−b−c )(
e−d

1−d−e )+( b−c
1−b−c )(

1−d−2e
1−d−e )−(ae+af+bd+bf+cd+ce)≤0,

which should be verified for the case (a, b, c|1− a− b− c) and (c, d, e|1− c− d− e)
where a > b > c and c < d < e.

In the future, we would like to analogously check all the possible Ω3 cases.

Hypothesis 6 Inequality Conf ≤ m ∩⃝(∅) holds true for any couple of quasi
Bayesian belief functions, having all singletons (m({ωi}) > 0 for any ωi ∈ Ωn)
on any finite frame of discernment Ωn.

Arguments for this hypothesis are as follows:

(i) We have not found any counter-example on Ωn for n <= 5 yet.

(ii) When moving some positive mass to any singletons in Example 8-small-small,
Conf decreased bellow m(∅), thus counter-example disappears. This was
checked both for BBF and qBBF counter-examples with BFs without some
singletons on Ω10.

(iii) It is a sort of generalization of the previous hypothesis.

Example 6. Example 8-small-small Let suppose BBFs mi−0 and mii−0 which
are extensions of BFs from Example 8-1-1-0 to Ω10. And their further extension
to qBBFs (thus qBBFs ’with 0’, i.e. without some singleton focal elements, mi−2

and mii−2; (zeros are not typed to be more visible). We can verify, that these are
really counter-examples against general validity of Conf ≤ m ∩⃝(∅):
Conf(mi−0,mii−0) = 0.9982937 > 0.995608 = (mi−0 ∩⃝mii−0)(∅) and also
Conf(mi−2,mii−2) = 0.9884347 > 0.98788 = (mi−2 ∩⃝mii−2)(∅).
When we remove some belief masses to missing singletons we obtain BBFs ’with-
out zero’ mi−1, mii−1 and qBBFs ’without zero’ mi−3, mii−3 in both these cases
counter-examples against Conf ≤ m ∩⃝(∅) disappear:
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Conf(mi−1,mii−1) = 0.9841313 < 0.986424 = (mi−1 ∩⃝mii−1)(∅)and also
Conf(mi−3,mii−3) = 0.9744128 > 0.978536 = (mi−3 ∩⃝mii−3)(∅).
X ⊆ Ω10 BBF with 0 BBF without 0 qBBF with 0 qBBF without 0
X ⊆ Ω10 mi−0 mii−0 mi−1 mii−1 mi−2 mii−2 mi−3 mii−3

{ω1} 0.800 0.800 0.006 0.800 0.800 0.006
{ω2} 0.040 0.012 0.040 0.010 0.040 0.012 0.038 0.010
{ω3} 0.034 0.016 0.034 0.014 0.034 0.014 0.032 0.014
{ω4} 0.030 0.020 0.030 0.018 0.030 0.018 0.030 0.018
{ω5} 0.026 0.022 0.026 0.022 0.026 0.022 0.026 0.022
{ω6} 0.022 0.026 0.022 0.026 0.022 0.026 0.022 0.026
{ω7} 0.020 0.030 0.018 0.030 0.018 0.030 0.018 0.030
{ω8} 0.016 0.034 0.014 0.034 0.014 0.034 0.014 0.032
{ω9} 0.012 0.040 0.010 0.040 0.012 0.040 0.010 0.028
{ω10} 0.800 0.006 0.800 0.800 0.006 0.800
Ω10 0.004 0.004 0.004 0.004

Thus we have a couple of similar BFs, one without some singleton, which is
counter-example and the other with all singletons (positive bbms for all elements of
the frame of discernment), which is not a counterexample. The same we have both
for general qBBFs and BBFs. Note that there are also extensions of mi−0,mii−0 to
qBBFs which are not counter-examples either ’with 0’ or ’without 0’, nevertheless
these are not interesting for us w.r.t. to Hypothesis 6.

7 Open Problems

There are plenty of open problems related to this topic, especially (i) to decide
whether the hypotheses from the previous section hold true or not, and (ii) for
which sets of belief functions inequality (∗) holds true and for which does not.

In the context of Lemma 2 it seems to be interesting to decide, whether the
inequality holds also for any couple of consonant BFs. Nevertheless, this is not
the case, as in both Examples 1 and 2 both BFs are consonant and therefore we
already have counter-examples on Ω3 and Ω5.

A completely different question we did not study so far is whether inequality
(∗) holds for separable support belief functions (i.e. Dempster’s ⊕-sum of simple
support functions). Note that it has a relation to statement (ii) in Corollary 3.

Because the inequality Conf ≤ m ∩⃝(∅) holds only for some types of BFs, we
have to weaken the inequality for more general validity. Perspective/prospective
seems to be question of validity Conf ≤ ( ∩⃝k

1(m1 ∩⃝m2))(∅) for a convenient k.
( ∩⃝k

1(m1 ∩⃝m2))(∅) is related to the hidden conflicts and looking for full non-conflict-
ness [8, 9]. We can see that (∗) is this inequality for k = 1. Due to a new parameter
k in the inequality this is rather complex challenging topic for our future research.
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8 Computation
We have performed many computational experiments to find a counterexample to
(∗) for different classes of BFs on different Ωn. To do so, we have used R-Project, a
free tool for statistical computing and we have implemented all procedures needed
to calculate various conflicts of BFs. BFs are represented using an object based on
several database tables and we have employed the effective implementation of the
join operation for relational databases.

The plan was to systematically search the whole space of BFs of a certain class.
In our search for counterexamples we took BFs being on a grid defined using a
fixed step for bbm values taken in consideration (e.g. 0.1). Then we generated all
BFs with bbms which are multiples of the step. As an example of such BFs you
can take m′ and m′′ from Example 1.

The idea of the grid is quite simple. In the case of n = 3 and general BFs you
have 8 possible focal elements, i.e. up to 8 bbms. Assume step 0.1. Then we can
divide the total belief mass of 1 into 10 pieces. Find all sets of integers that sum
to 10 and limit your search to sets of cardinality 8 and less. Then, to find all BFs
with bbms divisible by the step, you just take all permutations of respective sets
of integers multiplied by the step and use them as bbms.

Because of the exponential increase in the number of focal elements and the
number of permutations, the amount of different BFs is overwhelming even for
small n regardless of the step. We were only able to go through a few classes.
In the case of the other classes, we will have to run through the grid at random.
Another method, which we successfully applied in Examples 5 and 6, is to identify
an area with a chance of success and pass it with another step.

To illustrate the calculations, let us provide several numbers. Note that in case
of n = 3 and step 0.1, there are 8.046 general BFs and 552 qBBFs. By decreasing
the step to 0.01 we have 1011 BFs and 8.037 qBBFs. Note that out of these 64 ·106
combinations of qBBFs (n = 3, step: 0.01) 706.751 represent counterexamples.

In case of n = 4, there are 5 · 1013 general BFs with step 0.1 and 3.600 qBBFs.
In case of qBBFs we can decrease the step to 0.025 (136.824 qBBFs), 0.02 (318.269
qBBFs), or 0.01 (4.598.126 qBBFs).

In case of n = 5 and step 0.1 there are 1037 general BFs and 4.200 qBBFs.

9 Conclusion
Motivated by appearing of counter-examples against general validity of inequality
Conf ≤ m ∩⃝(∅), relations of value of conflict between belief functions based on
non-conflicting parts Conf and of sum of all multiples of disjoint focal elements of
belief functions in question m ∩⃝(∅) have been analysed.

It has been proven that inequality Conf ≤ m ∩⃝(∅) holds for any couple of BFs
on Ω2, it was partially proved that it holds for any quasi Bayesian BFs on Ω3 and
hypothesis that the inequality holds for any couple of quasi Bayesian BFs with
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positive values for all singletons on any finite frame Ωn was formulated. Further,
it was proven that it holds for any couple of consonant BFs on any finite frame Ωn.

Besides it was shown, where the inequality does not holds: e.g. general BFs,
on Ω3, quasi Bayesian BFs without some singleton on Ω4, etc. Several still open
issues were formulated.

This study enables a better understanding of the measure of conflict Conf and
to understanding of conflicts between belief function in general.
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