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Abstract. We present a new penalty term approximating the
Ciarlet-Nečas condition (global invertibility of deformations) as a
soft constraint for hyperelastic materials. For non-simple mate-
rials including a suitable higher order term in the elastic energy,
we prove that the penalized functionals converge to the original
functional subject to the Ciarlet-Nečas condition. Moreover, the
penalization can be chosen in such a way that for all low energy
deformations, self-interpenetration is completely avoided already
at all sufficiently small finite values of the penalization parame-
ter. We also present numerical experiments in 2d illustrating our
theoretical results.

Nonlinear elasticity, local injectivity, global injectivity, nonsimple ma-
terials, Ciarlet-Necas-condition, approximation

1. Introduction

Nonlinear elasticity models the behavior of a solid body subject to
relatively strong external forces causing large deformations, albeit not
large enough to cause irreversible damage. For a general introduction
to the topic, we refer to [25, 9, 3]. It is clear that the deformation
of such a body, the map y : Ω → Rd mapping the “reference configu-
ration” Ω ⊂ Rd to a deformed state. Here, typically d = 3 and Ω is
the domain occupied by the elastic body in its stress-free state before
external forces are applied. Clearly, any realistic deformation should
always be injective, i.e., the body should not interpenetrate itself in
any way. Here, we focus on the framework of hyperelasticity, that is,
models where the body does not dissipate energy when deformed, in-
stead simply storing in an internal elastic energy whose mathematical
description as a functional depending on y fully determines its response
to external forces. The existence of energy minimizers in this frame-
work was pioneered by John Ball [4]. This theory allows us to enforce a
weak form of local injectivity of the deformation, i.e., det∇y > 0 a.e. in
Ω for all deformation with finite internal energy, by using an elastic en-
ergy density which becomes infinite as det∇y → 0+. However, having
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Figure 1. Example of deformed domain with overlap-
ping ends.

det∇y > 0 a.e. is still not enough to ensure local injectivity everywhere,
and globally, a loss of injectivity by, say, two different ends of the body
overlapping each other (see Figure 1), is not automatically prevented
[2]. For instance, in addition to the positive determinant, to derive
local (and global) injectivity, the result of [2] requires global injectivity
of y on ∂Ω as a prerequisite, a feature hard to prove and difficult to
handle as a constraint (unless it is already given in form of a Dirichlet
condition). On the other hand, the positive determinant implies local
injectivity in a neigborhood of almost every point in Ω given quite nat-
ural assumptions on the regularity of the deformation [13]. A direct
approach to local injectivity everywhere was provided in [17], where a
uniform positive lower bound on det∇u is derived, but this only works
in the framework of so-called non-simple materials, where the internal
elastic energy is assumed to contain a suitable term involving second
order derivatives ∇2u (or higher order, and the coercivity conditions in
[17] automatically entail y ∈ C1 by embedding), as opposed to classical
hypereleasticity for which the energy only depends on ∇y. For further
information on the topic of locally injective deformations, we also refer
to [5, 14]. In addition, there is literature available discussing settings
that allow for cavitation (see, e.g., [18] and the references therein), but
we will rule that out by assumption in this article (coercivity in W 1,p

with p > d). The standard constraint nowadays used to ensure global
injectivity of the deformation is the Ciarlet-Nečas condition [10]:∫

Ω

det(∇y) dx = |y(Ω)| . (1.1)

The numerical treatment of this condition is not well understood, how-
ever. In particular, to our knowledge there is so far no example where
(1.1) is enforced as a hard constraint on the discrete level in a numerical
scheme with provable convergence.
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Artificially including terms with derivatives of second or higher order in
the energy, possibly multiplied with a small parameter, can also serve
as regularization, and among other thing, the results of [17] can then
be used to obtain local injectivity. However, with such a regularization,
there is a risk of a Lavrentiev phenomenon occuring, that is, the mini-
mal energy of the regularized problem might remain strictly above the
minimal energy for the original problem without the higher order term,
even if the regularization parameter converges to zero. In particular, it
is known that the infimum of the internal energy in spaces with higher
integrability of ∇y may be too large [15]. Similar issues might occur
when discretizing, as the typical finite element spaces are all subsets of
W 1,∞. For simple materials, i.e., models without higher order terms,
a way out was shown in [21], using an artificially introduced auxiliary
field, and similarly in [20]1. For the variant with a higher order term
also treated in [20], a Lavrentiev phenomenon cannot be ruled out.
In this article, we further elaborate on the approach of [20] in presence
of a higher order term

σ

∫
Ω

∣∣D2y
∣∣s dx (σ > 0 is a fixed parameter) (1.2)

using soft constraints, i.e., everywhere finite terms in the energy de-
pending on control parameters εi, converging to the singular deter-
minant term and the Ciarlet-Nečas condition (1.1), respectively, as
εi → 0, i = 1, 2. In particular, the penalization term for the latter in
[20] is defined as

1

ε2

(∫
Ω

det(∇y) dx− |y(Ω)|
)
. (1.3)

After a discretizing with mesh size h, it is shown in [20] that the en-
ergy minima converge for these approximations (the energies even Γ-
converge) as (ε1, ε2, h) → (0, 0, 0) in the scaling regime h

ε1
→ 0. They

also show that there is also convergence even for σ = 0, but then the
suitable scaling regime, while shown to exists, is not explicitly known
and therefore effectively impossible to exploit in practice.
How to actually compute (1.3) is not explained in [20], however, and
since this term is nonlocal and, in particular, not a standard integral
functional, this can in fact be quite problematic to implement. This
is further aggravated by the presence of a higher order term like (1.2)
which rules out the (direct) use of piecewise affine finite elements. An
alternative, more accessible penalization was recently proposed and
studied in [6], but only for beams (effectively 1d). Here, after precisely
outlining the model we work with in Section 2, we show that instead

1also for more complicated models including plasticity



4 STEFAN KRÖMER AND JAN VALDMAN

of (1.3), alternatives in the form of double integrals can be used (Sec-
tion 3), for example

1

ε2

∫
(Ω×Ω)

1

εd2

[
|x̃− x| − ε−1

2 |y(x̃)− y(x)|
]+

d(x, x̃). (1.4)

A more general class of such terms is defined in (3.3). We show that
such terms also lead to a limiting constraint equivalent to the standard
Ciarlet-Nečas condition (Theorem 3.3) while the energy minima con-
verge as before, at least for the regularized problem with fixed σ > 0
(Theorem 4.6). This new kind of soft constraint makes discrete compu-
tations easier and can even be handled by standard packages (although
inefficiently). Moreover, as we will see below, we have enough freedom
to choose something going along well with particular features of the
finite elements used, or to enforce other physically desirable proper-
ties like global injectivity even on the discrete level, and not just in
the limit (Corollary 3.8). Our theoretical results are complemented by
numerical computations carried out for two example problems in 2d,
presented in Section 5.

2. The model and structural assumptions

2.1. The elastic energy. As it is standard, we assume that for a
deformation y ∈ W 1,p(Ω;Rd), p > d, the elastic energy has the form

Eel(y) :=

∫
Ω

W (x,∇y) dx, y satisfies (1.1),

where

W : Ω× Rd×d → R ∪ {+∞} is a Carathéodory function, (2.1)

i.e., W (x, F ) is measurable in x and continuous in F . Moreover, for all
F ∈ Rd×d and all x ∈ Ω,

W (x, F ) = +∞ if detF ≤ 0,

W (x, F ) ≥ c1

(
|F |p + (detF )−q

)
− c2 if detF > 0,

(2.2)

with constants q > d (which is necessary for (2.5) below), c1 > 0 and
c2 ≥ 0. In addition, we assume that f is polyconvex, i.e.,

W (x, F ) = h(x,m(F )), with a function h such that
h(x, ·) is convex for each x,

(2.3)

wherem(F ) ∈ Rn(d), n(d) =
∑d

k=1

(
d
k

)2
, denotes the collection of all mi-

nors of F , i.e., all k×k sub-determinants with 1 ≤ k ≤ d. For instance,
m(F ) = (F, detF ) ∈ R5 for d = 2 and m(F ) = (F, cof F, detF ) ∈ R19

for d = 3. Here, for any d, cof F ∈ Rd×d denotes cofactor matrix so
that F−1 = (cof F )T (detF )−1 whenever F is invertible.
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Remark 2.1. Due to [4, 10] (for a proof of a related lower semicontinuity
property of the terms in the Ciarlet-Nečas condition also see [20]),
with the assumptions (2.1)–(2.3), Eel always has a minimizer y∗ in
W 1,p(Ω;Rd). Like all states with finite energy, it must satisfy

det∇y∗ > 0 a.e. in Ω.

2.2. Approximation including penalization and higher order
terms. Our regularized approximation of Eel is defined as follows:

Eε,σ(y) := Eel
ε1

(y) + ECN
ε2

(y) + Ereg
σ (y), ε = (ε1, ε2).

Here, the elastic energy reads

Eel
ε1

(y) :=

∫
Ω

Wε1(x,∇y) dx

whereWε1 : Ω×Rd×d → R can be any everywhere finite approximation
of W such that

Wε1 is a Carathéodory function and polyconvex;

c3(|F |p + max{ε1, detF}−q)− c4

≤ Wε1(x, F ) ≤ W (x, F ) + ε1 for all F ∈ Rd×d;

Wε1(x, F ) ≥ W (x, F )− ε1 if |F | ≤ 1

ε1

and det(F ) ≥ ε1.

(2.4)

with constants c3 > 0, c4 ≥ 0. The term ECN
ε2

(y) represents a pena-
lization term for the Ciarlet-Nečas condition which we will discuss in
detail in the next section. As the final piece of the energy, we added
the higher order term

Ereg
σ (y) := σ

∫
Ω

∣∣D2y
∣∣s dx

with some s > 1. Primarily, we intend to study the limit ε → 0 here,
with σ > 0 fixed. The limit σ → 0 would be interesting, too, but seems
out of reach a the moment.
We will always work with q, s admissible for the results of [17], which
further restricts these exponents. Altogether, our assumptions on the
exponents can be summarized as

p > d, s > d, q >
sd

s− d
. (2.5)

Remark 2.2. One possible choice for Wε1 can always be obtained by
replacing h(x, ·) in (2.3) for each x by the Yosida-type approximation

hε1(x,A) := min

{
h(x, Ã) +

1

ζ(ε1)

∣∣A− Ã∣∣p ∣∣∣∣ Ã ∈ Rn(d)

}
with ζ(ε1) > 0 chosen small enough to obtain (2.4); ζ(ε1)→ 0 as ε1 →
0. Of course, in many special cases of h, fully explicit approximations
are possible, too.
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Remark 2.3. Above, we omitted force terms in the energy, although
only to keep the notation short. Similarly, boundary conditions are
missing so far. These issues are discussed in greater detail in Re-
mark 4.2 and Remark 4.3 below.

Remark 2.4. More general forms of Ereg
σ can be used as well if this is

desired for modelling purposes. The only features we actually exploit
are that with σ > 0 and s as above,

(i) Ereg
σ (y) ≥ σ

∫
Ω
|D2y|s dx,

(ii) Ereg
σ (y) is uniformly continuous on bounded subsets of W 2,s

(cf. Proposition 4.14), and
(iii) y 7→ Ereg

σ (y), W 2,s(Ω;Rd) → R ∪ {+∞} is sequentially lower
semicontinuous with respect to weak convergence in W 2,s.

Moreover, (i) can be further weakened to Ereg
σ (y) ≥ σ

∫
Ω
|D2y|s dx−C

with some constant C which can easily be absorbed by other terms. For
(iii), it suffices to have Ereg

σ (y) as an integral functional depending on
D2y with a convex, polyconvex or gradient polyconvex energy density.
The notion of gradient polyconvexity and related results can be found
in [7].

3. Variants of the Ciarlet-Nečas condition and new
penalization terms

Our starting point for obtaining a new kind of penalization terms is the
observation that there are many equivalent ways of stating the Ciarlet-
Nečas condition (1.1). For instance, if y is regular enough such that
the coarea formula holds, in particular for y ∈ W 1,p with p > d [19],
(1.1) is equivalent to ∫

y(Ω)

(
Ny(z)− 1

)
dz = 0, (3.1)

where
Ny(z) := # {x̃ ∈ Ω | y(x̃) = z}

counts the number of times y (its continuous representative) reaches
the point z in the deformed configuration. There is self-contact at z if
and only if Ny(z) > 1. Yet another equivalent way of expressing (1.1)
is ∫

Ω∩{x|Ny(y(x))>1}
h(x) dx = 0, (3.2)

where h can be any measurable function with h > 0 a.e. in {Ny◦y > 1}.
Notice that the choice of such a function h does not matter, since (3.2)
effectively just states that {Ny ◦ y > 1} ⊂ Ω is a set of measure zero,
and by choosing h(x) = (Ny(y(x)))−1(Ny(y(x)) − 1), (3.2) reduces to
(3.1) by the coarea formula.
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We now introduce a new class of penalization terms ECN
ε2

(y) that – as
we will see later – lead to a condition of the form of (3.2) in the limit
as ε2 → 0. It is defined as follows:

ECN
ε2

(y) :=

1

εβ2

∫
(Ω×Ω)

1

εd2

[
g(|x̃− x|)− g

( 1

ε2

|y(x̃)− y(x)|
)]+

d(x, x̃),
(3.3)

where [a]+ := max{0, a} denotes the positive part, β > 0 is a constant
and

g : [0,∞)→ [0,∞) is a continuous,
strictly increasing function with g(0) = 0.

(3.4)

The choice of β and g is meant to give us some freedom to optimize the
behavior of numerical schemes, with prototypical examples for g being
g(t) := t or g(t) = t2.

Remark 3.1. The way ECN
ε2

is defined, its integrand only contributes in
O(ε2)-neighborhoods of the self-contact (or self-penetration) set. More
precisely, this “aura” never goes beyond a distance of diam(Ω) Lip(y−1)ε2

away from the self-contact set. Here, Lip(y−1) is a Lipschitz constant of
the local inverse y−1 (which is globally uniform, cf. Lemma 3.8 below).
When computing the integral by numerical integration, this also means
that a mesh size h of this order is needed, at least near self-penetration.
Otherwise, huge errors are likely.
In the example illustrated in Figure 2, the radius of the aura beyond the
self-contact is roughly ε2. In that particular case, Lip(y−1) is still quite
close to 1, and instead of diam(Ω) in the estimate mentioned above,
we may actually also use a number close to 1, namely, the distance
of the two disjoint subsets of the reference configuration (undeformed
domain) where the self-overlap happens (for which diam(Ω) is of course
an upper bound).

Remark 3.2. By default, all finite dimensional norms |·| appearing in
this article are assumed to be Euclidean. However, that choice does
not really matter. For instance, using a different norm inside of g in
(3.3) is possible. The proofs below are only affected insofar as all balls
or annuli in Rd or their intersections with Ω have to be interpreted as
balls (or annuli) with respect to that norm. Additional constants will
then appear in Cauchy-Schwarz type inequalities, but that only changes
the constants appearing in the results, not their general structure. In
particular, for discretizations with finite elements defined on cubes, it
can be quite convenient to use |x|∞ = max |xi|, x = (x1, . . . , xd)

T ∈ Rd,
instead of the Euclidean norm.

3.1. Illustration example: the penalization term for a pre-
scribed deformation. All pictures of this example are displayed in
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Figure 2. We assume a “pincers” domain Ω ∈ R2 covered in the rectan-
gle (−3, 2)× (−1.5, 1.5). Using rotated polar coordinates

r =
√
x2

1 + x2
2, t = arctan(−x2,−x1),

where x = (x1, x2) ∈ Ω we define the deformation in the form

y(r, t) = −r(cos(a t), sin(a t))

for some parameter a > 1. For a sufficiently high value of a (here we
choose a = 1.1) both pincers parts interpenetrate and the marginal
density

dCNε2,y(x) :=
1

εβ2

∫
Ω

1

εd2

[
g(|x̃− x|)− g

( 1

ε2

|y(x̃)− y(x)|
)]+

dx̃

of ECN
ε2

is evaluated and visualized for ε2 = 1/2 and ε2 = 1/4. In
both cases we consider β = 1/2 and g(t) := t. Marginal densities are
evaluated on rectangular elements by the method of finite elements.
Details on implementation are provided in Section 5.

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

(a) Undeformed domain.

0 0.5 1 1.5 2 2.5 3

(b) Density dCNε2,y(x) for ε2 = 1/2.

(c) Deformed domain.

0 1 2 3 4 5 6 7 8 9 10

(d) Density dCNε2,y(x) for ε2 = 1/4.

Figure 2. Pincers domain under given deformation.

3.2. Analytic investigation of the penalty term. We now analyze
the behavior of ECN

ε2
as ε2 → 0.
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Theorem 3.3 (convergence for penalty terms of type (3.3)). Let Ω ⊂
Rd be a bounded Lipschitz domain, let ECN

ε2
be the functional defined in

(3.3) with β > 0 and g satisfying (3.4), let 0 < α ≤ 1, 0 < δ,M1,M2,
and let R := diam(Ω) = supx1,x2∈Ω |x1 − x2|. Then there exist constants
r, a, A, ε̄ > 0 only depending on d, Ω, δ, α, M1, M2 and g such that for
every y ∈ C1,α(Ω;Rd) with

det∇y ≥ δ > 0 and |∇y| ≤M1 on Ω and ‖∇y‖Cα(Ω) ≤M2 (3.5)

and every 0 < ε2 ≤ ε̄,

εβ2E
CN
ε2

(y) ≥ a |Py(rε2)| (3.6)

εβ2E
CN
ε2

(y) ≤ A |Py(Rε2)| (3.7)

Here, for s ≥ 0 (with s = rε2 or s = Rε2 above),

Py(s) :=
{
x ∈ Ω

∣∣ ∃x̃ ∈ Ω : |y(x)− y(x̃)| ≤ s and |x− x̃| > %
2

}
,

where % = %(Ω, δ,M1,M2, α) > 0 denotes the radius of guaranteed local
injectivity from Lemma 3.6 below.

Remark 3.4. As a consequence of Lemma 3.6, Py(0) = {Ny ◦ y > 1},
i.e., it is precisely the subset in the reference configuration where global
injectivity of y fails. For s > 0, Py(s) is the set where y almost fails to
be injective up to an error of s. Moreover, Py(0) is the limit Py(s) as
s↘ 0 (i.e., their intersection for all s > 0; Py(s1) ⊂ Py(s2) if s1 ≤ s2).
Thus, both the upper and the lower bound for εβ2ECN

ε2
in (3.6) and

(3.7), respectively, converge as ε2 → 0 by monotone convergence:

a |Py(0)| = lim
ε2→0

a |Py(rε2)| ≤ lim
ε2→0

A |Py(Rε2)| = A |Py(0)|

Up to the constants, these limits coincide and are functionals of the
form of (3.2) with a constant integrand.

Remark 3.5. The assumption (3.5) holds in sets with bounded energy,
see Proposition 4.13.

For the proof of the theorem, we need the following version of the
Inverse Mapping Theorem with additional control, also near ∂Ω.

Lemma 3.6. Let Ω ⊂ RN be a bounded Lipschitz domain with local
Lipschitz constants bounded by a fixed L > 0, and let y ∈ C1,α(Ω;Rd)
such that (3.5) holds. Then there exists an % > 0 which only depends
on δ,M1,M2, α and Ω such that for every x̄ ∈ Ω̄, y is injective on
Ω(x̄, %) := B%(x̄)∩Ω. Moreover, y is bi-Lipschitz with explicitly known
constants:

1

2

δ

Md−1
1

|x1 − x2| ≤ |y(x1)− y(x2)| ≤M1

√
1 + L2 |x1 − x2| , (3.8)

for all x1, x2 ∈ Ω(x̄, %). In addition, the inverse y−1 of the restriction
of y to Ω(x̄, %) is of class C1,α.
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Proof. Since Ω is a Lipschitz domain, there exists an R0 = R0(Ω) > 0
such that for all x0 ∈ ∂Ω,

in a cuboid containing BR0(x0), ∂Ω is the graph
of a Lipschitz map with constant at most L = L(Ω).

(3.9)

For

r0 :=
1

1 + 2
√

1 + L2
R0,

an explicit path connecting x1, x2 ∈ Ω(x0, r0) in the larger set Ω(x0, R0)
is given by the “V”-shaped piecewise C1-path with slope L a.e., in
Ω(x0, R0) below the graph representing ∂Ω. The length of such a path is
at most

√
1 + L2 |x2 − x1|. In particular, if % ≤ r0 and x1, x2 ∈ Ω(x0, %),

such a path never leaves the set Ω(x0,
R0

r0
%). Hence, (3.9) implies that

1 ≤ dx0,% ≤
√

1 + L2 for all % ≤ r0, (3.10)

where

dx0,% := sup
x1,x2∈Ω(x0,%)

inf
p

 length(p)

|x1 − x2|

∣∣∣∣∣∣
p : [0, 1]→ Ω(x0,

R0

r0
%)

is piecewise C1,
p(0) = x1, p(1) = x2

 .

Notice that dx0,% is the worst possible ratio of intrinsic path distance
and Euclidean distance in Ω(x0,

R0

r0
%) for pairs of points in the smaller

set Ω(x0, %).
As a first consequence of (3.10), y is globally Lipschitz on Ω(x0, %) with
a Lipschitz constant of at most ‖Dy‖L∞(Ω(x0,%)) dx0,% ≤ M1

√
1 + L2,

which gives the second inequality in (3.8).
For the first inequality in (3.8) let x̄ ∈ Ω̄. If either B 1

2
r0

(x̄) ⊂ Ω

or x̄ ∈ ∂Ω, we may take x0 := x̄ and (3.10) holds for all % ≤ 1
2
r0.

In case we are given x̄ ∈ Ω̄ “in between” with B 1
2
r0

(x̄) ∩ ∂Ω 6= ∅,
there always exists x0 = x0(x̄) ∈ ∂Ω such that Ω(x̄, 1

2
r0) ⊂ Ω(x0, r0)

and we again have (3.10). In addition, for any x̄ ∈ Ω̄, all % ≤ r0

and any pair x1, x2 ∈ Ω(x̄, 1
2
%) ⊂ Ω(x0, %) connected with a C1-path

p : [0, 1]→ Ω(x0,
R0

r0
%), p(0) = x1, p(1) = x2, we have that

|y(x1)− y(x2)| =
∣∣∣∣∫ 1

0

Dy(p(t))ṗ(t) dt

∣∣∣∣
≥
∣∣∣∣∫ 1

0

Dy(x0)ṗ(t) dt

∣∣∣∣− ∣∣∣∣∫ 1

0

|Dy(p(t))−Dy(x0)| |ṗ(t)| dt
∣∣∣∣

≥
∣∣∣∣∫ 1

0

Dy(x0)ṗ(t) dt

∣∣∣∣−M2 ‖p− x0‖αL∞(0,1)

∫ 1

0

|ṗ(t)| dt

≥ |Dy(x0)(x2 − x1)| −M2

(
R0

r0

%

)α
length(p).
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Since this is true for all such paths p and dx0,% ≤
√

1 + L2 by (3.10),
we infer that

|y(x1)− y(x2)|

≥ |Dy(x0)(x2 − x1)| −M2

(
R0

r0

%

)α√
1 + L2 |x1 − x2|

(3.11)

As Dy(x0) is invertible with |Dy(x0)−1| ≤ MN−1
1

δ
, we also have that

|Dy(x0)(x2 − x1)| ≥ δ

MN−1
1

|x1 − x2| . (3.12)

We now choose % small enough so that M2

(
R0

r0
%
)α√

1 + L2 ≤ 1
2

δ

MN−1
1

,
and for that choice, (3.11), (3.12) yield that

|y(x1)− y(x2)| ≥ 1

2

δ

MN−1
1

|x1 − x2|

for all x1, x2 ∈ Ω(x̄, %
2
), proving the first inequality in (3.8). This in

turn implies that y is locally injective. Finally, to see the asserted C1,α-
regularity of y−1, observe that Dy−1(z) = Dy(y−1(z))−1. Therefore,
due to the Lipschitz regularity of y−1 provided by (3.8), Dy−1 ∈ Cα

just like Dy. �

Proof of Theorem 3.3. As before, we use the following shorthand
notation for x ∈ Ω and s > 0:

Ω(x, s) := Bs(x) ∩ Ω,

Next, we introduce and study a few auxiliary sets related to the defi-
nition Py(s) that will be needed in the rest of the proof.
(i) Auxiliary sets related to Py(s): Qy(s, x) and Xy(s, x).
For s ≥ 0 and x ∈ Py(s) let Qy(s, x) denote the set of all admissible
choices of x̃ in the definition of Py(s), additionally including those that
are close to x:

Qy(s, x) := {x̃ ∈ Ω | |y(x)− y(x̃)| ≤ s} .

We claim that for s small enough, Qy(s, x) is separated into subsets of
small balls that are pairwise far apart: For every

s < K% where K :=
δ

4Md−1
1

,

we have that

Qy(s, x) ⊂ (Ω \ Ω(x0, %)) ∪ Ω(x0, Ks) for all x0 ∈ Qy(s, x). (3.13)

For the proof of (3.13), take any z ∈ Ω, z /∈ (Ω \Ω(x0, %))∪Ω(x0, Ks).
Then

4Md−1
1

δ
s < |z − x0| ≤ %,
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and the uniform bi-Lipschitz property (3.8) entails that

2s < |y(z)− y(x0)| .
Since x0 ∈ Qy(s, x) and thus |y(x)− y(x0)| ≤ s, we infer that s <
|y(z)− y(x)|, i.e., z /∈ Qy(s, x).
As a consequence of (3.13), for s small enough as above, we can select
a finite set Xy(s, x) such that

Xy(s, x) ⊂ Qy(s, x), x ∈ Xy(s, x),

|x1 − x2| ≥ % for all x1, x2 ∈ Xy(s, x), x1 6= x2,
(3.14)

and Qy(s, x) is contained is a disjoint union of small balls centered at
points in Xy(s, x):

Qy(s, x) ⊂
⋃

x0∈Xy(s,x)

Ω (x0, Ks) . (3.15)

Finally, notice that by the definition of Py(s), Qy(s, x) \ Ω(x, %) 6= ∅.
Therefore, X(s, x) always contains at least one more point besides x:

]X(s, x) ≥ 2 for all x ∈ Py(s). (3.16)

(ii) Splitting ECN
ε2

.
For any s ≥ 0, splitting Ω = Py(s) ∪ (Ω \ Py(s)) gives that

εβ2E
CN
ε2

(y) =

∫
Py(s)

1

εd2
Jy,ε2(x) dx+

∫
Ω\Py(s)

1

εd2
Jy,ε2(x) dx, (3.17)

where

Jy,ε2(x) :=

∫
Ω

[
g(|x̃− x|)− g

( |y(x̃)− y(x)|
ε2

)]+

dx̃.

Below, we estimate the two terms on the right hand side of (3.17)
separately, for suitable choices of s depending on ε2.
(iii) Proof of (3.6).
We use s := rε2 in (3.17), with some constant 0 < r ≤ 1 to be deter-
mined later. Since Jy,ε2 ≥ 0, we get that

εβ2E
CN
ε2

(y) ≥
∫
Py(rε2)

1

εd2
Jy,ε2(x) dx. (3.18)

The integrand of Jy,ε2 is also non-negative, and therefore, using (3.15),
for each x ∈ Py(rε2) we also have that

Jy,ε2(x) ≥
∑

x0∈X(rε2,x)\{x}

Iy,x,x0(ε2) (3.19)

where

Iy,x,x0(ε2) :=

∫
Ω(x0,rε2)

[
g(|x̃− x|)− g

( 1

ε2

|y(x̃)− y(x)|
)]+

dx̃.

(3.20)
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We will now proceed to estimate Iy,x,x0(ε2) for all x ∈ Py(rε2) and x0 ∈
X(rε2, x)\{x}, which by (3.14) in particular implies that |x− x0| ≥ %.
For x̃ ∈ Ω(x0, rε2), the latter yields that

|x̃− x| ≥ |x− x0| − |x0 − x̃| ≥
%

2
as long as 2rε2 ≤ %. Later, it will be convenient to also have that
rε2 ≤ 1

2
R = 1

2
diam(Ω). As long as r ≤ 1, it altogether suffices if

ε2 ≤ ε̄ := min

{
%

2
,
R

2

}
Moreover, recall that x0 ∈ X(rε2, x) ⊂ Q(rε2, s). By the definition of
Q(rε2, s) in step (i), this entails that |y(x0)− y(x)| ≤ rε2, and conse-
quently,
|y(x̃)− y(x)| ≤ |y(x0)− y(x)|+ |y(x̃)− y(x0)|

≤ rε2 + |y(x̃)− y(x0)| ≤ rε2 +M1

√
L2 + 1 |x̃− x0| ,

where we also used the local Lipschitz continuity of y given by (3.8).
With these observation and the monotonicty of g, both expressions in
g can be estimated and in this way, (3.20) implies that

Iy,x,x0(ε2) ≥
∫

Ω(x0,rε2)

[
g
(%

2

)
− g
(
r +

1

ε2

M1

√
L2 + 1 |x̃− x0|

)]+

dx̃

≥
∫

Ω(x0,rε2)

[
g
(%

2

)
− g
(
r + rM1

√
L2 + 1

)]+

dx̃.

(3.21)

Here, r + rM1

√
L2 + 1 ≤ %

4
for

r := min
{
%
4
(1 +M1

√
L2 + 1)−1, 1

}
.

Substituting t := rε2 ≤ ε̄ ≤ 1
2
R, we conclude that

Iy,x,x0(ε2) ≥ aεd2 (3.22)

with the constant

0 < a := rd
(
g
(%

2

)
− g
(%

4

))
inf
t,x0

{
|Ω(x0, t)|

td

∣∣∣∣ 0 < t ≤ 1
2
R,

x0 ∈ Ω

}
.

Notice that the infimum above is a geometric constant which only de-
pends on Ω. It is determined by the smallest possible the volume frac-
tions |Ω ∩Bt(x0)| / |Bt(x0)|. Such fractions are bounded away from
zero because Ω, being a Lipschitz domain, satisfies an interior cone
condition.
Combined with (3.18), (3.19) and (3.16), (3.22) yields (3.6).
(iv) Proof of (3.7).
This time, we use (3.17) with s = Rε2, R = diam Ω, and distinguish
the cases x ∈ Py(Rε2) and x ∈ Ω \ Py(Rε2).
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Case 1: x ∈ Ω \ Py(Rε2). We claim that for such x, Jy,ε2(x) = 0
for sufficiently small ε2. If x ∈ Ω \ Py(Rε2) then for all x̃ ∈ Ω,

|y(x̃)− y(x)| > Rε2 or |x̃− x| < %

2
.

In the former case, the integrand in Jy,ε2(x) vanishes since |x− x̃| ≤
diam Ω = R. In the latter case, Lemma 3.6 can be applied, and due to
the monotonicity of g and the lower bound in (3.8), the integrand in
Jy,ε2(x) vanishes again, at least if

ε2 ≤ ε̃, ε̃ :=
δ

2Md−1
1

.

Hence,

Jy,ε2(x) = 0 if x ∈ Ω \ Py(Rε2) and ε2 ≤ ε̃. (3.23)

Case 2: x ∈ Py(Rε2). Let

ε2 ≤ ε̄ :=
%

R
K, with K =

δ

4Md−1
1

as in (3.13)

(ε̄ here differs from its old namesake). Since |y(x̃)− y(x)| < Rε2 if and
only if x̃ ∈ Qy(Rε2, x), the integrand in Jy,ε2(x) vanishes for all other
x̃:[
g(|x̃− x|)− g

( |y(x̃)− y(x)|
ε2

)]+

≤
[
g(R)− g

( |y(x̃)− y(x)|
ε2

)]+

= 0

if |y(x̃)− y(x)| ≥ Rε2, since g is increasing. For ε2 ≤ ε̄ and x ∈
Py(Rε2), we can therefore use (3.15) to estimate Jy,ε2(x) as follows:

Jy,ε2(x)

≤
∫
Qy(Rε2,x)

[
g(R)− g

( |y(x̃)− y(x)|
ε2

)]+

dx̃,

≤
∑

x0∈Xy(x,Rε2)

∫
Ω(x0,KRε2)

[
g(R)− g

( |y(x̃)− y(x)|
ε2

)]+

dx̃,

≤
∑

x0∈Xy(x,Rε2)

|Ω(x0, KRε2)| g(R).

≤ (]Xy(x,Rε2))(KR)d |B1(0)| g(R).

(3.24)

This is bounded by a suitable constant A because ]Xy(x,Rε2), the
number of elements of Xy(x,Rε2), is bounded by a constant only de-
pending on % and R = diam Ω, as a consequence of (3.14). �

Theorem 3.3 provides additional insights on the behavior of ECN
ε2

:
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Corollary 3.7. In the situation of Theorem 3.3, let ε2 ≤ ε̄ and suppose
in addition that y is more than a distance of Rε2 away from any self-
contact, i.e.,

|y(x1)− y(x2)| > Rε2 for all |x1 − x2| > %
2
, (3.25)

with R = diam Ω as before. Then ECN
ε2

(y) = 0.

Proof. This is a direct consequence of (3.7) and the definition of
Py(Rε2): (3.25) implies that Py(Rε2) = ∅. �

Another interesting consequence of Theorem 3.3 is

Corollary 3.8 (Global invertibility for finite ε2). Suppose that the
assumptions of Theorem 3.3 hold and let C > 0. If β > d in (3.3) then
there exists a constant 0 < ε̃ ≤ ε̄ which only depends on β, C, d, Ω,
δ, α, M1, M2 and g, such that for all ε2 < ε̃ and all y ∈ C1,α(Ω;Rd)
satisfying (3.5),

ECN
ε2

(y) ≤ C implies that y is globally injective. (3.26)

Proof. We will prove (3.26) indirectly. Suppose that y is not globally
injective, i.e., y(x1) = y(x2) for a pair of points x1, x2 ∈ Ω, x1 6= x2. In
view of (3.6), it suffices to show that then

ε−β2 a |Py(rε2)| > C for all ε2 < ε̃ (3.27)

with a suitable choice of ε̃ > 0. We claim that

|Py(rε2)| ≥ cεd2 for all ε2 ≤ ε̂ (3.28)

with constants ε̂ > 0, c > 0 yet to be determined. From (3.28), we
immediately get (3.27) with ε̃ := min

{
ε̂,
(
ca
C

) 1
β−d
}
> 0.

To prove (3.28), first notice that as a Lipschitz domain, Ω satisfies an
interior cone condition, i.e., there is a (cut off) cone of the form

V = Bµ(0) ∩ {z ∈ Rd | z · e > ν |z|}
(with a fixed unit vector e ∈ Rd and constants ν < 1, µ > 0) which only
depends on Ω such that for each x ∈ Ω, x + QV ⊂ Ω with a suitable
rotation Q = Q(x) ∈ SO(d). In particular, there is Q1, Q2 ∈ SO(d)
such that x1 +Q1V ⊂ Ω and x2 +Q2V ⊂ Ω. By Lemma 3.6, we know
that |x1 − x2| ≥ %, and therefore x1, x2 ∈ Py(0). By the local Lipschitz
continuity (3.8) of y with constant M1

√
1 + L2 and the definition of

Py(rε2) in Theorem 3.3, we see that as a consequence, for j = 1, 2,

(xj +QjV ) ∩Bλε2(xj) ⊂ Py(rε2), with λ :=
r

M1

√
1 + L2

, (3.29)

provided that ε2 ≤ ε̄ and λε2 ≤ %. If λε2 ≤ %
2
, we also know that

Bλε2(x1) and Bλε2(x2) are disjoint. Since |(xj +QjV ) ∩Bλε2(xj)| =
|V |
|Bµ(0)|(λr)

d as long as λε2 ≤ µ, (3.29) entails (3.28) with c := 2 |V |
|Bµ(0)|λ

d,
for all ε2 < ε̂ := min

{
ε̄, %

2λ
, µ
λ

}
. �
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Remark 3.9. The proof of Corollary 3.8 also works if x1, x2 ∈ ∂Ω, and
we take y(x1) and y(x2) as the the uniquely determined values of the
continuous extension of y ∈ C1,α to Ω̄. Hence, self-contact on the
surface is also prevented for all ε2 small enough. In fact, one can see
with similar arguments that whenever β > d, a universal bound on
the penalty term ECN

ε2
(y) as in (3.26) even enforces a positive minimal

distance between different pieces of the body’s surface (different in the
sense that they are not closer than the radius % of local invertibility in
the reference configuration). This minimal distance converges to zero
as ε2 → 0.

In the final piece of this section, we discuss the stability of ECN
ε2

(y)
with respect to perturbations in y. For fixed ε2, ECN

ε2
is obviously

continuous in L∞, but that continuity is not uniform in the limit ε2 →
0. From Theorem 3.3 and the definition of the sets Py(rε2), Py(Rε2)
we can infer that ECN

ε2
(y) does not change too much if y is replaced

by some perturbed deformation z with ‖y − z‖L∞ ≤
r
3
ε2, because then

Py(
r
3
ε2) ⊂ Pz(rε2) ⊂ Py(

5
3
rε2) (and similar inclusions also hold with

R instead of r). Here, z of course may depend on ε2. However, it is
important to be able to handle also perturbations that are small but
not controlled by ε2:

Proposition 3.10. In the situation of Theorem 3.3, suppose that y, z ∈
C1,α(Ω;Rd) both satisfy (3.5). Then for every 0 < γ < %

2
(with % from

Lemma 3.6), there exists a constant λ > 0 such that

P̃ (γ)
y (0) ⊂ Pz(0) if ‖y − z‖L∞ ≤ λ, (3.30)

where

P̃ (γ)
y (0) :=

{
x1 ∈ Ω

∣∣∣∣ ∃x2 ∈ Ω with dist (x2; ∂Ω) > γ,

y(x1) = y(x2) and |x1 − x2| > %
2

+ γ

}
.

Here, λ may depend on γ and the constants appearing in Theorem 3.3
but not on y, z or ε2.

Remark 3.11. Since Pz(0) ⊂ Pz(rε2), (3.30) and (3.6) in particular
imply that

ECN
ε2

(z) ≥ aε−β2 |P̃ (γ)
y (0)| if ‖y − z‖L∞ ≤ λ. (3.31)

Moreover, P̃ (γ)
y (0) is always an open set (because if y(x1) = y(x2), then

y also self-intersects on whole neighborhoods of x1 and x2 since y is
locally bi-Lipschitz due to Lemma 3.6). Therefore, whenever Py(0) 6= ∅
we can find γ = γ(y) > 0 such that P (γ)

y (0) 6= ∅ and thus |P (γ)
y (0)| > 0,

and the right hand side of the inequality in (3.31) then blows up as
ε2 → 0. Hence, only deformations y with Py(0) = ∅ (i.e., y is globally
invertible) can be reached in the limit along a sequence for which ECN

ε2
remains bounded.
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Proof of Proposition 3.10. Let x1 ∈ Ω with x1 ∈ P̃ (γ)
y (0). By def-

inition of P̃ (γ)
y (0), there exists x2 ∈ Ω with dist (x2; ∂Ω) > γ, y(x1) =

y(x2) and |x1 − x2| > %
2

+ γ. Both y and z are locally bi-Lipschitz due
to Lemma 3.6, and the constants explicitly given in (3.8) do not depend
on y or z. Hence, a whole neighborhood of y(x1) = y(x2) is contained
in y(Ω). More precisely,

Bτ (y(x2)) ⊂ y(Bγ(x2)) ⊂ y(Ω) where τ :=
γ

Ly−1

.

Here, Ly−1 ≥ 1 can be any Lipschitz constant of the local inverse y−1 of
y near x2, for instance Ly−1 := max

{
1,

2Md−1
1

δ

}
is admissible by (3.8),

and this particular choice is also independent of x2 and y. Analogously,

Bτ (z(x2)) ⊂ z(Bγ(x2)).

Therefore, for every z with |y(xi)− z(xi)| < γ := 1
2
τ , i = 1, 2, we

obtain that

z(x1) ∈ Bγ(y(x2)) ⊂ Bτ (z(x2)) ⊂ z(Bγ(x2)).

This implies that x1 ∈ Pz(0): There exists x̃2 ∈ Bγ(x2) ⊂ Ω such that
z(x1) = z(x̃2) and |x1 − x̃2| ≥ |x1 − x2| − γ > %

2
. �

4. Convergence of energies

In this section, for y ∈ W 1,p(Ω;Rd), we prove that in the limit as
ε = (ε1, ε2)→ 0, the penalized energy

Eε,σ(y) =

{
Eel
ε1

(y) + Ereg
σ (y) + ECN

ε2
(y) if y ∈ W 2,s,

+∞ else,

with

Eel
ε1

(y) :=

∫
Ω

Wε1(x,∇y) dx,

converges to the original energy

Eσ(y) =

{
Eel(y) + Ereg

σ (y) if y ∈ W 2,s and (1.1) holds,
+∞ else,

which includes the Ciarlet-Nečas condition (1.1) as a built-in con-
straint. Here, recall that

Eel
ε1

(y) =

∫
Ω

Wε1(x,∇y) dx, Eel(y) =

∫
Ω

W (x,∇y) dx.

In addition, we also consider the convergence of discrete Galerkin ap-
proximations. For that, let h > 0 (typically a mesh size) and let Yh
denote associated finite dimensional subspaces of (W 2,s ∩W 1,p)(Ω;Rd)
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(typically Yh ⊂ W 2,∞) such that the maximal approximation error E(h)
satisfies

E(h) := sup
y∈W 2,s

inf
yh∈Yh

(
{‖y − yh‖W 2,s∩W 1,p

)
−→
h→0

0. (4.1)

The corresponding finite dimensional approximations of Eε,σ are

Eh
ε,σ(y) :=

{
Eel
ε1

(y) + Ereg
σ (y) + ECN

ε2
(y) if y ∈ Yh,

+∞ else,

As defined, Eh
ε,σ is assumed to be exact on Yh. In this context, we will

not discuss the question of how to of calculate the integrals in Eh
ε,σ in

practice. The easiest possible approach is of course based on additional
approximations using standard methods in numerical integration. For
our analysis, additional errors terms that might appear at this stage
do not matter as long as they still converge to zero as (h, ε) → 0.
However, it is useful to optimize the evaluation of the double integral
in ECN

ε2
for performance reasons, since only small neighborhoods of the

self-contact set (or any almost self-contact) actually contribute.

Remark 4.1. Artificially assigning the value +∞ in the definitions of
the functionals is just a way of encoding a restricted class of admissible
functions. Be warned that there are still other “inadmissible” deforma-
tions with infinite energy in case of Eσ, namely any y ∈ W 2,s ∩W 1,p

for which
∫

Ω
W (x,∇y) dx = +∞ because det∇y is too close to zero or

even non-positive on a non-negligible set.

Remark 4.2 (additional force terms). As already briefly mentioned, we
did not add any terms corresponding to exterior forces, but only to keep
the notation short. Since we actually prove Γ-convergence, our results
are stable with respect to the addition of any term that is continuous
with respect to the topology used for the states in the Γ-limit (see [12],
e.g.). For us, that is the weak topology of W 2,s (or the weak topology
ofW 1,p, which is a weaker topology but still leads to the same result for
fixed σ > 0). Continuous pertubations in the weak topology of W 1,p in
particular include linear body force terms like∫

Ω

y · gbody dx, with a gbody ∈ L1(Ω;Rd). (4.2)

Similarly, one can add linear boundary force terms like∫
∂Ω

y · gsurface dHd−1(x), with a gsurface ∈ L1(∂Ω;Rd), (4.3)

where the space L1 on ∂Ω is understood with respect to the Hausdorff
measure (surface measure) Hd−1. Moreover, since p > d and Ω ⊂ Rd

is Lipschitz, W 1,p(Ω) is compactly embedded into C(Ω̄). Due to this
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compact embedding, any nonlinear force terms that are continuous on
C(Ω̄;Rd) or C(∂Ω;Rd) are allowed as well, like∫

Ω

Gbody(x, y) dx, with a Gbody ∈ C(Ω̄× Rd), or∫
∂Ω

Gsurface(x, y) dHd−1(x), with a Gsurface ∈ C(∂Ω× Rd).

Finally, we could exploit the added regularity in form of terms that
are weakly continuous in W 2,s, which allows even bulk and boundary
terms involving ∇y.

Remark 4.3 (boundary conditions). We also did not add any explicit
boundary condition so far. Still, a weak form of a natural Neumann
type boundary condition with the outer normal ν to ∂Ω is built in on
all pieces of the boudary ΛN ⊂ ∂Ω where y is not subject to explicit
other boundary conditions (if any), e.g.:
σ

s

∣∣D2y
∣∣s−2

D2y : (ν ⊗ ν) +DFW (x,∇y) · ν + gsurface = 0 on ΛN .

Here, we assumed that exactly one surface term was added to the en-
ergy, namely (4.3). Dirichlet conditions on ΛD, the rest of the bound-
ary, could be added. The limit of ECN

ε2
is not directly affected by that

since the results of Section 3 obviously also hold for any restricted
class of states. Still, extra efforts in the proof of Theorem 4.6 (ii)
below would be required to make sure that the Dirichlet condition is
always respected when we manipulate states. The extra requirements
for the boundary data that would be needed then are the following: If
we impose

y = y0 on ΛD, with ΛD ⊂ ∂Ω relatively open,
the given boundary data y0 : ΛD → Rd must have an extension to a
state y0 ∈ W 2,s(Ω;Rd) which is far enough from any self-penetration
so that

(i) Eσ(y0) < +∞;
(ii) ECN

ε2
(y0)→ 0 as ε2 → 0.

In particular, y0 must satisfy the Ciarlet-Nečas condition (1.1), and if
β > d (recall that β is the parameter formally governing the blow-up
rate of ECN

ε2
), y0 must not have self-contact on the boundary, cf. Corol-

lary 3.8.

Remark 4.4. In their basic form without additional terms, Eε,σ and
Eσ are translation invariant, i.e., constant vectors can be added to y
without changing the energy. In particular, Eε,σ and Eσ are only coer-
cive when these constants are removed. This can be easily achieved by
working in the quotient space W 2,s(Ω;Rd)/Rd or W 1,p(Ω;Rd)/Rd. Al-
ternatively, if translation invariance is broken by boundary conditions
or additional terms in the energy, it suffices if these somehow fix the
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constant (e.g., by a Dirichlet condition) or control it (e.g., by a coercive
nonlinear force term).

For fixed ε and h, we always have the existence of an energy minimizer:

Proposition 4.5 (existence of minimizers). Let σ > 0 be fixed and
suppose that (2.1)–(2.3), (2.4) and (2.5) hold. Then for every fixed
h, ε1, ε2 > 0, Eε,σ and Eh

ε,σ attain their minima in W 2,s and Yh ⊂ W 2,s,
respectively.

Proof. All three summands of Eε,σ (or Eh
ε,σ) are weakly lower semi-

continuous in W 2,s: Ereg is convex and thus weakly lower semicontin-
uous. The other two terms are even weakly continuous, because W 2,s

(or its closed subspace Yh) is compactly embedded in W 1,∞ and L∞,
y 7→

∫
Ω
Wε1(x,∇y) dx is continuous in W 1,∞ and y 7→ ECN

ε2
(y) is con-

tinuous in L∞. Due to the definition of Ereg and the lower bounds for
W and Wε, Eε,σ and Eh

ε,σ are also coercive with respect to the semi-
norm ‖y‖ := ‖D2y‖Ls+‖Dy‖Lp onW 2,s, which by Poincaré’s inequality
is a norm on the quotient space W 2,s/Rd where functions differing only
up to an additive constant vector are considered equivalent. (The quo-
tient space is only needed when the translation invariance of the energy
is not broken by boundary conditions or force terms.) Hence, we get
the existence of minimizers by the direct method of the calculus of
variations. �

Our main results provides convergence of Eh
ε,σ and its minimum as

(h, ε)→ 0:

Theorem 4.6. Let σ > 0 be fixed and suppose that (2.1)–(2.3), (2.4)
and (2.5) hold. Then for every (h(k), ε(k)) = (h(k), ε1(k), ε2(k)) ∈
(0,∞)3, k ∈ N, with h(k) → 0, ε1(k) → 0 and ε2(k) → 0 as k → ∞,
we have the following two properties for all y ∈ W 2,s(Ω;Rd):

(i) For every sequence yk ⇀ y in W 2,s (weakly),

lim inf
k→∞

E
h(k)
ε(k),σ(yk) ≥ Eσ(y);

(ii) there exists a sequence yk → y in W 2,s (strongly) such that

lim
k→∞

E
h(k)
ε(k),σ(yk) = Eσ(y).

This also remains true for the case h = 0 if we define E0
ε,σ := Eε,σ.

Remark 4.7 (Γ-convergence). If (ii) is slightly weakened to

(ii)’ there exists a sequence yk ⇀ y in W 2,s (weakly) such that

lim
k→∞

E
h(k)
ε(k),σ(yk) = Eσ(y),

then (i) and (ii)’ are exactly the definition of Γ(W 2,s-weak)-convergence
of Eh

ε,σ to Eσ as (h, ε)→ 0, i.e., Γ-convergence with respect to the weak
topology in W 2,s.
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Remark 4.8 (convergence of minimizers). For σ > 0 fixed, the family
of functionals (Eh

ε,σ)(ε,h) is equi-coercive in W 2,s/Rd due to (2.4) and
the obvious properties of Ereg

σ . As a consequence, Γ-convergence auto-
matically implies that up to a subsequence (and subtracting suitable
constants if necessary), minimizers of Eh

ε,σ weakly converge in W 2,s

to a minimizer of the limit functional Eσ. Moreover, Γ(W 2,s-weak)-
convergence of Eh

ε,σ to Eσ is equivalent to Γ(W 1,p-weak)-convergence.

Remark 4.9. Unlike the corresponding result in [20], we do not need to
prescribe any “stability criterion” linking ε1 and h. This is essentially a
consequence of Lemma 4.11 below that was slightly improved compared
to its predecessor in [17], see also Remark 4.12. However, if ECN

ε2
or

other integrals in the energy are not computed exactly as assumed
within this section, but only approximated by numerical integration
(even in Yh), we typically need h of the order of ε2 or smaller to keep
the approximation error on a tolerable level, cf. Remark 3.1.

Remark 4.10. In [23] (also see [22] for domains with Lipschitz bound-
aries), equilibrium equations for hyperelastic minimizers were derived.
The Ciarlet-Nečas condition there gives rise to a boundary force term
with a force density given in form of a Radon measure concentrated on
the self-contact set on the boundary (if any). In a sense, our penalty
term in the limit as ε2 → 0 should represent an associated energy.
However, a direct connection on the technical level is not quite obvi-
ous.

For the proof of Theorem 4.6, we strongly rely on a result of [17] that
yields a uniform positive lower bound det∇y ≥ δ > 0 for all deforma-
tions with bounded energy, provided that the energy contains a higher
order term that controls the norm of J(x) := det∇y(x) in a Hölder
space. This also uses that as a Lipschitz domain, Ω has an interior
cone property: For each x ∈ Ω, there exists a rotation Qx ∈ SO(d)
such that x+QxV ⊂ Ω, where

V := Bµ(0) ∩ {z = (z1, . . . , zd) ∈ Rd | z1 > ν |z|} ⊂ Rd,

is a fixed (cut-off) cone given by suitable constants µ > 0, ν < 1
independent of x. For such domains, we have the following variant
of [17, Lemma 4.1]. Here, we also use slightly weaker assumptions
and state additional explicit information about the constant δ, but
essentially, it is still based on the same ideas.

Lemma 4.11. Suppose that Ω ⊂ Rd is bounded domain with an interior
cone property as introduced above, and let J ∈ Cα(Ω), α ∈ (0, 1). In
addition, suppose that∫

Ω

max{δ, J(x)}−q dx ≤ C and sup
x1,x2∈Ω

|x1−x2|<µ

|J(x1)− J(x2)|
|x1 − x2|α

≤M (4.4)
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where q ≥ d/α, M > 0 are constants and

δ := κ−1(C), κ(t) := d
|V |
µd

∫ µ

0

(t+M |r|α)
−q
rd−1 dr, t > 0.

Then J(x) > δ > 0 for all x ∈ Ω.

Remark 4.12. Since δ depends on C, the first condition in (4.4) looks
somewhat implicit. Typically, we a priori have it with some other
constant instead of δ, say, γ ≥ 0. One can then compute δ (which
does not depend on γ) and check a posteriori whether γ ≤ δ. If this is
the case, we automatically get (4.4) with δ, too, because then trivially∫

Ω
max{δ, J(x)}−q dx ≤

∫
Ω

max{γ, J(x)}−q dx ≤ C. We state (4.4) in
this slightly complicated form to point out that the singular function
J 7→ J−q appearing there can be modified near the origin, removing
the singularity, as long as one does not change the value for J ≥ δ. As
we show in detail in Proposition 4.13 below, this is quite useful because
it means we can verify (4.4) for J = det∇y also using energy bounds
for our approximate elastic energy functionals involving the modified
energy densities Wε1 , at least if ε1 is small enough.

Proof of Lemma 4.11. First notice that κ is a strictly decreasing
function with κ(t) → 0 as t → +∞, and κ(t) → +∞ as t ↘ 0 since
q ≥ d/α. Hence, κ−1 : (0,∞)→ (0,∞) is well defined and also strictly
decreasing. Moreover, while κ was defined using polar coordinates, the
integral also can be written in standard coordinates:

κ(t) =

∫
V

(t+M |x|α)
−q
dx =

∫
QV

(t+M |x|α)
−q
dx, (4.5)

for all Q ∈ SO(d). Now let x0 ∈ Ω and choose Q = Q(x0) ∈ SO(d)
such that x0 +QV ⊂ Ω. Depending on x0, we define K ∈ Cα(Ω),

K(x) :=

{
J(x) if J(x0) ≥ δ,
J(x) + δ − J(x0) if J(x0) < δ.

Since K ≥ J and their difference is a constant, (4.4) implies that∫
Ω

max{δ,K(x)}−q dx ≤ C and sup
x1,x2∈Ω

|x1−x2|<µ

|K(x1)−K(x2)|
|x1 − x2|α

≤M

(4.6)

In addition, K(x0) ≥ δ, and from (4.6) and (4.5) we thus get that

κ(K(x0)) ≤
∫

Ω∩Bµ(x0)

(K(x0) +M |x− x0|α)−q dx

=

∫
Ω∩Bµ(x0)

max{δ,K(x0) +M |x− x0|α}−q dx

<

∫
Ω

max{δ,K(x)}−q dx ≤ C.
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Hence, K(x0) > κ−1(C) = δ, and therefore J(x0) = K(x0) > δ. �

We can now derive additional properties for deformations with bounded
energy.

Proposition 4.13. Let Ω ⊂ Rd be a bounded Lipschitz domain, let
σ > 0, suppose that (2.1), (2.2), (2.4) and (2.5) hold, and let K > 0.
Then there is a constant ε̄1 > 0 such that for every 0 < ε1 ≤ ε̄1 and
every

y ∈ BK(ε1) :=
{
y ∈ W 2,s(Ω;Rd)

∣∣Ereg
σ (y) + Eel

ε1
(y) ≤ K

}
,

(3.5) holds with α := s−d
s

and suitable constants δ > 0, M1,M2 ≥ 0
independent of y and ε1. That is,

det∇y ≥ δ > 0 and |∇y| ≤M1 on Ω, and ‖∇y‖Cα(Ω) ≤M2. (4.7)

This also holds for ε1 = 0 if we replace Eel
ε1

by Eel.

Proof. We only discuss the case ε1 > 0; the case ε1 = 0 is a similar
and more straightforward application of Lemma 4.11. Since Ereg

σ (y) =
σ
∫

Ω
|D2y|s dx and Wε1 satisfies the lower bound stated in (2.4), y ∈

BK(ε1) implies that ‖D2y‖sLs + c3 ‖∇y‖pLp ≤ K + c4. In particular,
∇y is bounded in W 1,s(Ω;Rd×d), which is continuously embedded in
Cα(Ω;Rd×d) and C(Ω̄;Rd×d). Hence, we immediately get the last two
inequalities in (4.7). It remains to show the lower bound for det∇y.
This will be obtained by applying Lemma 4.11, and we therefore have
to verify (4.4) for J := det∇y. Since ‖∇y‖L∞ ≤ M1 and ‖∇y‖Cα ≤
M2, the Hölder semi-norm of det∇y (a polynomial of degree d in ∇y)
appearing in (4.4) is bounded by

M := dMd−1
1 M2.

For a proof of the first inequality in (4.4), let γ > 0. For y ∈ BK(ε1),
we have that

∫
Ω
Wε1(x,∇y) dx ≤ K, and as a consequence of this and

(2.4), we obtain the following estimate for all ε1 ≤ γ:∫
Ω

max{γ, det∇y(x)}−q dx ≤ c4

c3

|Ω|+ 1

c3

∫
Ω

Wε1(x, det∇y) dx ≤ C

with C :=
c4

c3

|Ω|+ 1

c3

K.

Notice that C does not depend on γ or ε1. Hence, we may use ε̄1 :=
γ := δ, with the constant δ of Lemma 4.11 (with C and M as defined
above). The lemma then entails that J = det∇y ≥ δ > 0, i.e., the first
inequality in (4.7). �

The final missing ingredients for the proof of Theorem 4.6 are some
uniform continuity properties of the terms in the energy.

Proposition 4.14. Let Ω ⊂ Rd be a bounded domain, σ > 0 and
s ≥ 1. Then y 7→ Ereg

σ (y) = σ
∫

Ω
|D2y(x)|s dx is uniformly (Lipschitz)

continuous on all bounded subset of W 2,s(Ω;Rd).
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Proof. This is a simple consequence of Hölder’s inequality and the
elementary s-Lipschitz continuity of G 7→ |G|s, Rd×d×d → R:
||G1|s − |G2|s| ≤ s(|G1|s−1 + |G2|s−1) |G1 −G2|. �

Proposition 4.15. Let Ω ⊂ Rd be a bounded Lipschitz domain, sup-
pose that (2.1), (2.2), (2.4) and (2.5) hold, and let K > 0. Then
there exists a constant ε̄1 > 0 and a modulus of continuity θ (i.e.,
θ : [0,∞)→ [0,∞) continuous and increasing with θ(0) = 0) such that
for every 0 < ε1 ≤ ε̄1,∣∣Eel

ε1
(y1)− Eel(y2) dx

∣∣ ≤ |Ω| ε1 + θ(‖y1 − y2‖W 1,∞)

for all y1, y2 ∈ BK(ε1),
(4.8)

where BK(ε1) is the set defined in Proposition 4.13. We emphasize that
θ is independent of y1, y2 and ε1.

Proof. By (2.4),

|Wε1(x, F )−W (x, F )| ≤ ε1 if |F | ≤ 1

ε1

and detF ≥ ε1.

In view of Proposition 4.13, it therefore suffices to show that for a
suitable modulus of continuity θ,∣∣∣∣∫

Ω

W (x,∇y1(x)) dx−
∫

Ω

W (x,∇y2(x)) dx

∣∣∣∣
≤ θ(‖∇y1 −∇y2‖W 1,∞) for all y1, y2 ∈ B̃K ,

(4.9)

i.e., the uniform continuity of y 7→
∫

Ω
W (x,∇y) dx with respect to the

topology of W 1,∞ on the set

B̃K :=
{
y ∈ W 2,s(Ω;Rd) | |∇y| ≤M1 and det∇y ≥ δ in Ω

}
.

If W does not depend on x, (4.9) is obvious as for each x, W (x, ·) :
Rd×d → R ∪ {+∞} is continuous and therefore uniformly continuous
on any compact set where it is finite. For a general Carathéodory
function W , (4.9) still follows from similar reasoning, as a consequence
of the Scorza-Dragoni theorem (continuity of W on compact sets with
complements of arbitrarily small measure in Ω, see [11], e.g.). �

Proof of Theorem 4.6. We will only provide a proof for the case
involving Galerkin approximations with h(n) > 0, h(n)→ 0. The case
h = 0 is similar and slightly simpler.
(i) “Lower bound”: Let yn ⇀ y as n → ∞, weakly in W 2,s. By
compact embedding, this implies that yn → y strongly in W 1,∞. Pass-
ing to a suitable subsequence (not relabeled), we may assume that
e0 := lim inf E

h(n)
σ,ε(n)(yn) = limE

h(n)
σ,ε(n)(yn). In addition, we may as-

sume that e0 < +∞ because otherwise there is nothing to show. With
K := e0 + 1, we have Eh(n)

σ,ε(n)(yn) ≤ K for all n sufficiently large. Since
ECN
ε2(n) ≥ 0, we infer that yn ∈ BK(ε1(n)) for all such n, where BK(ε1(n))
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is the set introduced in Proposition 4.13. Due to Proposition 4.15, we
therefore have that

lim
n→∞

∫
Ω

Wε1(n)(x,∇yn) dx =

∫
Ω

W (x,∇y) dx. (4.10)

Moreover, by weak lower semicontinuity of the convex functional Ereg
σ ,

lim inf
n→∞

Ereg
σ (yn) ≥ Ereg

σ (y). (4.11)

Besides (4.10) and (4.11), it also trivially holds that ECN
ε2(n) ≥ 0. We

thus get lim inf E
h(n)
σ,ε(n)(yn) ≥ Eσ(y) as asserted, provided that y satisfies

the Ciarlet-Nečas condition. For the proof of the latter, first observe
that due to Proposition 4.13, (3.5) is satisfied for each yn (in place of y),
and Theorem 3.3 is applicable, at least as long as n is also large enough
so that ε2(n) ≤ ε̄. We also know that ECN

ε2(n)(yn) is bounded from above
because e0 < +∞ and the other terms in Eh(n)

σ,ε(n)(yn) are bounded from
below. Since yn → y in L∞, Proposition 3.10 and Remark 3.11 therefore
yield that {Ny ◦ y} = Py(0) = ∅. In particular, y is globally invertible
and the Ciarlet-Nečas condition holds for y.
(ii) Existence of a (strongly converging) “recovery sequence”:
Let y ∈ W 2,s(Ω;Rd). If Eσ(y) = +∞, any sequence (yn) ⊂ Yh(n) with
yn → y in W 2,s is suitable, in particular limE

h(n)
σ,ε(n)(yn) = +∞ = Eσ(y)

as a consequence of (i). We thus may assume that Eσ(y) < +∞. In
particular, the Ciarlet-Nečas condition holds for y and Proposition 4.13
(for the case h = 0) is applicable with K := Eσ(y), which yields (4.7).
Due to (4.7), Lemma 3.6 can be applied. Hence, y is also locally bi-
Lipschitz, and for such maps, the Ciarlet-Nečas condition is equivalent
to global invertibility in the classical sense.
Nevertheless, y may still exhibit self-contact on the boundary. This
is problematic for our construction because we might lose control of
ECN
ε2(n). We therefore first artificially create a little gap around the

boundary, with the ultimate goal of finding a suitable sequence yn ∈
Y(h(n)) approximating y and its energy while ECN

ε2
(yn) = 0 for all n

(large enough). To create this gap, let Ψj : Ω → Ω be a sequence of
globally invertible maps of class C∞ which “shrink” Ω into a slightly
smaller set and converge to the identity, more precisely,

Ψj(Ω) ⊂ Ω(j) :=

{
x ∈ Ω

∣∣∣∣ dist (x; ∂Ω) >
1

j

}
,

‖Ψj − id‖W 2,∞ −→
j→∞

0.
(4.12)

Such maps Ψj are easy to define locally in a neighborhood of a boundary
point where ∂Ω can be represented as the graph of a Lipschitz function.
Globally, the local pieces can be glued together using a decomposition
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of unity; we omit the details. As a consequence of (4.12),

zj −→
j→∞

y in W 2,s (and W 1,∞) for zj := y ◦Ψj. (4.13)

The function zj, like other possible perturbations z of y inW 2,s, inherits
(4.7) with slightly modified constants: There is a constant κ > 0 such
that for all z ∈ W 2,s ⊂ C1,α ⊂ W 1,∞ with ‖z − y‖W 2,s ≤ κ,

det∇z ≥ δ̃ > 0 and |∇z| ≤ M̃1 on Ω, and ‖∇z‖Cα(Ω) ≤ M̃2, (4.14)

where δ̃ := 1
2
δ, M̃1 := M1 + 1 and M̃2 := M2 + 1. In particular,

z = zj is admissible if j is sufficiently large. Due to (4.13), (4.14) and
Proposition 4.15,∣∣Eel

ε1(n)(z)− Eel(y)
∣∣ ≤ |Ω| ε1(n) + θ(c ‖z − y‖W 2,s),

for all z ∈ W 2,s with ‖z − y‖W 2,s ≤ κ.
(4.15)

Here, c > 0 denotes the embedding constant such that c ‖z − y‖W 2,s ≤
‖z − y‖W 1,∞ , and κ > 0 is the constant governing the admissible func-
tions in (4.14).
Next, we claim that essentially due to the gap around the boundary we
have for any fixed j, there exists n0 = n0(j) such that for all n ≥ n0,
ECN
ε2(n)(zj) = 0, and the same also holds for close enough perturbations

z of zj:

ECN
ε2(n)(z) = 0 for n ≥ n0(j), z with ‖z − zj‖W 2,s < 2E(h(n)), (4.16)

where E(h(n)) is the maximal Galerkin approximation error from (4.1).
We choose n0 = n0(j) (w.l.o.g. increasing) such that for all n ≥ n0,

1

j
≥ s(n) :=

2Md−1
1

δ
t(n), t(n) := Rε2(n) + 2E(h(n)). (4.17)

and s(n) ≤ %. Here, R := diam(Ω), δ > 0, M1 > 0 are the constants
from (4.7), and % is the radius of local invertibility from Lemma 3.6.
We claim that for any such n, all z with ‖z − zj‖W 2,s < 2E(h(n)) and
any pair x1, x2 ∈ Ω with |x1 − x2| > %

2
,

|z(x1)− z(x2)| ≥ |zj(x1)− zj(x2)| − 2E(h(n)) ≥ Rε2(n). (4.18)

Given (4.18), Corollary 3.7 immediately implies (4.16). We prove (4.18)
indirectly (the second inequality; the first follows from the triangle
inequality). Suppose that

|zj(x1)− zj(x2)| < t(n) = Rε2(n) + 2E(h(n)). (4.19)

Since Ψj(x1) ∈ Ωj ⊂ Ω (and Ψj(x2) likewise), we have that

dist (Ψj(x1); ∂Ω) >
1

j
≥ s(n) (4.20)

by (4.12) and (4.17). But on the other hand, if (4.20) holds, then
Bs(n)(Ψj(x1)) ⊂ Ω. Since y is bi-Lipschitz on Bs(n)(Ψj(x1)) (s(n) ≤ %;



GLOBAL INJECTIVITY AND APPROXIMATION 27

also notice that the constant factor linking s(n) and t(n) is exactly the
constant from the lower bound in (3.8)), we infer from (4.19) that

zj(x2) ∈ Bt(n)(zj(x1)) = Bt(n)(y(Ψj(x1))) ⊂ y(Bs(n)(Ψj(x1))).

This is impossible because zj(x2) = y(Ψj(x2)) and y and Ψj are injec-
tive, which concludes the proof of (4.16).

In particular, we may use z = z
(h(n))
j in (4.16) with a sufficiently close

Galerkin approximation z
(h(n))
j ∈ Yh(n) of zj. Now take j(n) → ∞ as

n→∞, but slow enough so that n0(j(n)) ≤ n. With this choice,∥∥yn − zj(n)

∥∥
W 2,s < 2E(h(n)) →

n→∞
0 for yn := z

(h(n))
j(n) ∈ Yh(n)

which together with (4.13) implies that yn → y in W 2,s. By Proposi-
tion 4.14, we see that

Ereg
σ (yn)→ Ereg

σ (y) as n→∞, (4.21)

and from (4.15), we infer that

Eel
ε1(n)(yn)→ Eel(y) as n→∞. (4.22)

Finally, (4.16) yields that

ECN
ε2(n)(yn) = 0 for all n large enough (4.23)

(more precisely, n large enough so that (4.14) holds for z = zj(n) and
z = yn). Altogether, E

h(n)
σ,ε(n)(yn)→ Eσ(y) as asserted. �

5. Numerical experiments

We consider d = 2 and the approximate deformation

y = (y1, y2) ∈ W 2,s(Ω;R2)

is searched for as the (ideally global) minimizer of

Eε,σ,µ(y) = Eel
ε1

(y) + µECN
ε2

(y) + Ereg
σ (y) + Ebody(y) (5.1)

over a finite dimensional space. Both deformation components y1, y2 are
discretized in the space of the Bogner-Fox-Schmit (BFS) rectangular
elements [8] that provide continuous differentiability of approximations.
Here,

Ebody(y) :=

∫
Ω

gbody(x) · y(x) dx

is the energy contribution of a body force of type (4.2), with gbody as
specified below (in Model II; gbody = 0 in Model I). We here fix the
constants

ε1 :=
1

100
, σ := 1, s := 4, p := 4 and q := 6

(in particular, (2.5) is satisfied for d = 2). The Ciarlet-Nečas penalty
term ECN

ε2
is included with a weight µ for which we tested several values
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between 0 and 1; notice that µ = 0 completely switches off the penalty
term. As before, ECN

ε2
is given by (3.3), and for the computational

tests, we chose g(t) = t, β = 1.8 or β = 2.2 (two values close to d = 2,
the threshold for Corollary 3.8), and also experiment with different
values for ε2, typically adapted to the grid size h. As an example for
the higher order term, we employ

Ereg
σ (y) = σ

∫
Ω

|D2y(x)|s dx.

Finally, we use the elastic part of the energy

Eel
ε1

(y) =

∫
Ω

W el
ε1

(∇y(x)) dx

with density chosen as follows, for all F ∈ R2×2 and J := detF :

W el
ε1

(F ) :=|F |p − d
p
2

− p

q
d
p
2
−1 +

p

q
d
p
2
−1

{
J−q if J ≥ ε1,

− qε−q−1
1 (J − ε1) + ε−q1 if J < ε1.

Here, recall that d = 2, although the example could also be used for
higher dimensions. Above,

∇y(x) ∈ R2×2, D2y(x) ∈ R2×2×2

and denote the gradient and the Hessian of y : Ω → R2, respectively,
and the norms |·| are euclidean (Frobenius): |F | :=

(∑
i,j F

2
ij

) 1
2 for

F = (Fij) ∈ R2×2, |G| :=
(∑

i,j,kG
2
ijk

) 1
2 for G = (Gijk) ∈ R2×2×2.

Remark 5.1. W el
ε1

is polyconvex and frame indifferent. Moreover, if 0 <
ε1 < 1, W el

ε1
(F ) ≥ 0 with equality if and only if F is a rotation matrix.

The second part of W el
ε1

is a C1-function in J = detF , and the two
cases define a truncated version of J 7→ J−q using an affine extension
for J < ε1. For the shapes, body forces and boundary conditions
used in our examples, there is no incentive for the material to create
spots with high local compression. As a consequence, the results are
independent of the choice of ε1 << 1, as the computed deformations
stay far away from the regime det∇y < ε1 anyway (as the optimal
deformations are expected to), for any reasonably small choice of ε1.

Remark 5.2. For the actual computations, we have replaced the non-
differentiable functions [·]+ and g(|·|) appearing in the definition of
ECN
ε2

by C1-approximations h([·]+) and h(g(|·|)), where

h(x) :=


0, for x ≤ 0,

x2/(2a) for 0 ≤ x ≤ a,

x− a/2, for a ≤ x
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for some small parameter a > 0 (we set a = 1/10 in all computations).
This smoothing is introduced in order to avoid the risk that the actual
minimizer sits at a point where the functional does not have a well
defined derivative. The latter could cause serious problems for the
solver. While changing g is fully covered by the theory developed above
and can at most affect constants appearing in the theoretical results,
changing [·]+ even slightly around zero can potentially effect the scaling
of ECN

ε2
as ε2 → 0. But in practice the asymptotics as ε2 → 0 cannot

easily be observed numerically anyway.

5.1. Model I. We consider a reference configuration Ω = Ω1 ∪ Ω2 ⊂
R2 which consists of two rectangular boxes Ω1 = (0, 2)× (0.5, 1.5) and
Ω2 = (0, 2)× (−1.5, 0.5). See Figure 3 for illustration. We impose non-

0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 3. Model I : Coarse rectangular mesh with
Dirichlet boundary nodes indicated by full dots.

homogeneous Dirichlet boundary conditions on a part of the boundary:

y1 = x1 +m1, y2 = x2 −m2 for (x1, x2) ∈ ΛD,1,

y1 = x1, y2 = x2 +m2 for (x1, x2) ∈ ΛD,2,

where ΛD,1 := (0, 2)× {1.5} and ΛD,1 := (0, 2)× {−1.5} and m1,m2 ∈
R are parameters. There is no linear body force term considered in
this model. We consider a sequence of minimization problems with
parameters

m2 ∈ {0.4, 0.5, 0.6, 0.7}
and the same parameters m1 = 0.2 and µ = 1 in two different cases

ε2 = 1/4, ε2 = 1/8.

Figure 5 displays how much the total energy Eε,σ,µ(y) and the scaled
penetration energy ECN

ε2
(y) depend on the parameter m2. Unsurpris-

ingly, both the energy and the influence of ECN
ε2

(y) grow the larger m2

gets, i.e., the more the two pieces are pushed against each other by the
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boundary conditions. Since there is no linear body force term consid-
ered in this model, the difference energy Eε,σ,µ(y)−ECN

ε2
(y) converts to

Eel
ε1

(y) and Ereg
σ (y). Figure 4 shows a few resulting optimized domains.

Choosing ε2 = 1/8 is more or less the smallest reasonable choice for ε2

given the grid size (cf. Remark 3.1). In this case, one can already see
effects of errors due to the the numerical integration in the marginal
density of ECN

ε2
, which is much more uniform and intuitive for ε2 = 1/4.

(a) m2 = 0.5, ε2 = 1/4.

(b) m2 = 0.6, ε2 = 1/4.

(c) m2 = 0.7, ε2 = 1/4.

(d) m2 = 0.5, ε2 = 1/8.

(e) m2 = 0.6, ε2 = 1/8.

(f) m2 = 0.7, ε2 = 1/8.

Figure 4. Model I: Optimized deformed domains with
underlying marginal density of ECN

ε2
(y).
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Figure 5. Model I: Total energy Eε,σ,µ(y) and penetra-
tion energy ECN

ε2
displayed versus the parameter m2. We

consider the case ε2 = 1/4.

5.2. Model II. We consider the same “pincers” domain Ω ⊂ R2 as
in example of Subsection 3.1 and subject Ω to the linear body force
density

gbody(x1, x2) = ν(0,−H(x1) sign(x2)) on (x1, x2) ∈ Ω,

where H denotes the Heaviside step function. In addition, we impose
Dirichlet boundary conditions on a part of the boundary:

y1 = x1, y2 = x2 for (x1, x2) ∈ ΛD,

where ΛD := {0} × (−1/2, 1/2). See Figure 6 for illustration.
In this model, we measure the response of an elastic continuum to
various scaling of the Ciarlet-Nečas penalty term µECN

ε2
. We consider

a sequence of minimization problems with various multipliers

µ ∈ {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1}

in two different cases

ε2 = 1/2, ε2 = 1/4.

and the same loading given by ν = 0.2. Figure 7 displays how much
the total energy Eε,σ,µ(y) and the scaled penetration energy µECN

ε2
(y)

depend on the multiplier µ.
For lower values of µ the scaled penetration term allows for a penetra-
tion of both pincers parts. For higher values of µ the scaled penetration
term one can usually prevent penetration altogether. Here, recall that
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Figure 6. Model II : body force density in x2 direction
forcing both pincers part to move against each other and
Dirichlet boundary nodes indicated by full dots.
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Figure 7. Model II: Total energy Eε,σ,µ(y) and pene-
tration energy µECN

ε2
displayed versus the parameter µ.

We consider the case ε2 = 1/2.

from the point of view of the theory, we only know for sure that reduc-
ing ε2 will eventually prevent penetration if the scaling exponent β in
ECN
ε2

is big enough (Corollary 3.8). Of course, at finite scales increasing
µ has a similar effect, and as long as the grid size h is fixed, we cannot
arbitrarily reduce ε2.
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(a) µ2 = 10−4, ε2 = 1/2.

(b) µ2 = 10−3, ε2 = 1/2.

(c) µ2 = 10−2, ε2 = 1/2.

(d) µ2 = 10−1, ε2 = 1/2.

(e) µ2 = 10−4, ε2 = 1/4.

(f) µ2 = 10−3, ε2 = 1/4.

(g) µ2 = 10−2, ε2 = 1/4.

(h) µ2 = 10−1, ε2 = 1/4.

Figure 8. Model II: Optimized deformed domains with
underlying marginal density of µECN

ε2
(y).
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Figure 9. Model I : Four Gauss integration points (left)
used for evaluation of all energy parts except the penalty
term, midpoints (right) used in the evaluation of the pen-
etration penalty term.

5.3. Remarks on implementation. Our Matlab code is based on
former codes related to [1, 16, 24] that allow for a vectorized assembly of
finite element matrices. The code available for download and includes
an own implementation of the Bogner-Fox-Schmit (BFS) rectangular
elements for a uniformly refined rectangular mesh, where all rectangular
elements are for simplicity of the same size hx1×hx2. Both Model I and
Model II rectangular meshes are of this kind. The basis functions on
each rectangle are based on bicubic polynomials, i.e. tensor products
of 4 cubic (Hermite) polynomials. They have 16 degrees of freedom
with 4 degrees in each of its 4 corner nodes approximating: a function
value, its gradient and the second mixed derivative. Therefore, a given
scalar function u ∈ C1(Ω) is represented by a matrix of the size nn× 4
in the form

u =

 u(x1
1, x

1
2) ∂u

∂x1
(x1

1, x
1
2) ∂u

∂x2
((x1

1, x
1
2) ∂2u

∂x1∂x2
(x1

1, x
1
2)

. . . . . . . . . . . .

u(xnn1 , xnn2 ) ∂u
∂x1

(xnn1 , xnn2 ) ∂u
∂x2

((xnn1 , xnn2 ) ∂2u
∂x1∂x2

(xnn1 , xnn2 )

 ,

where nn denotes the total number of mesh nodes and (xi1, x
i
2) for

i = 1, . . . , nn their corresponding coordinates. The construction of
BFS elements additionally guarantees ∂2u

∂x1∂x2
∈ C(Ω) but the remain-

ing second-order derivatives are generally discontinuous. Based on a
global numbering of nodes, the matrix u is further reformated as a
column vector u with 4 · nn entries. For our 2d nonlinear elasticity
computations, we approximate both components y1, y2 by the BFS el-
ements and resulting vector variable y = (y1, y2) ∈ C1(Ω;R2) has 8 ·nn
entries.
Since energy parts of Eε,σ are generally non-quadratic functionals, all
two-dimensional integrals are evaluated using the Gaussian quadrature,
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where integration points are tensor products of one-dimensional Gauss
integration points. We deploy four Gauss quadrature points in each
rectangle as illustrated in Figure 9 (left).
The penetration penalty term ECN

ε2
is a nonlocal functional. We make

no additional assumptions on the location of the penetration and eval-
uate all pairwise euclidean distances

|(xi1, xi2)− (xj1, x
j
2)|, |(yi1, yi2)− (yj1, y

j
2)|

in a double loop over i, j = 1, . . . , ne. Here, vectors above denote co-
ordinates of rectangles midpoints (cf. the right part of Figure 9) and
their corresponding deformations and ne the number of mesh rectan-
gles. The x-distances above are precomputed, the y-distances need to
be recomputed in every evaluation of the penetration penalty term.

Remark 5.3 (Possible implementation improvement). Even if no as-
sumptions are made on the location of the penetration, it is possible
(but not implemented here) to optimize the evaluation of ECN

ε2
as fol-

lows:

• Instead of a full double loop, first only go through all pairs of
elements located at the boundary of the domain. Create a list
of those elements that contribute to ECN

ε2
.

• Then start to search for other contributing elements in the in-
terior by repeatedly checking all elements that are neighbors of
those that are already known to give a positive contribution.
• Stop when no new contributing neighbor elements are found.

While the full double loop requires a number of steps of the order of
h−2d for the mesh size h, the double loop through the elements at the
boundary only needs h−2(d−1). As long as there is no deep penetration
(penetration depth of the order of h or less) and ε2 = O(h) (ε2 ≥ h, but
not that much bigger), a subsequent search for contributing neighbor
elements does not increase that significantly, either.
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