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Abstract

The class of totally balanced games is a class of transferable-utility coalitional games
providing important models of cooperative behavior used in mathematical economics.
They coincide with market games of Shapley and Shubik and every totally balanced
game is also representable as the minimum of a finite set of additive games. In this paper
we characterize the polyhedral cone of totally balanced games by describing its facets.
Our main result is that there is a correspondence between facet-defining inequalities for
the cone and the class of special balanced systems of coalitions, the so-called irreducible
min-balanced systems. Our method is based on refining the notion of balancedness
introduced by Shapley. We also formulate a conjecture about what are the facets of the
cone of exact games, which addresses an open problem appearing in the literature.
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1 Introduction

Totally balanced games were introduced by Shapley and Shubik in their study of market

games with transferable utility [17], which arise naturally in the area of mathematical

economics. Loosely speaking, market games are coalitional games derived from a market in

which the production functions are concave and continuous. A transferable-utility coalitional

game is termed totally balanced whenever each of its subgames is balanced. The two families

of coalitional games coincide, that is, a coalitional game is totally balanced if and only if it

is a market game; see [17]. Kalai and Zemel [8] showed that every totally balanced game is

the minimum of a finite set of additive (inessential) coalitional games. This characterization

enabled them to show that the class of totally balanced games is the same as the class of

certain games derived from graphs, the so-called flow games; cf. [8, Theorems 1–2]. Another

characterization was given by Csóka et al. [5]: totally balanced games are precisely risk

allocation games. Despite their relative simplicity, the class of totally balanced games thus

offers a rich source of examples of game-theoretic and economical phenomena, since it also

includes minimum cost spanning tree games [2], assignment games [18], linear production

games [12], and games arising from controlled programming problems [7].

The notion of a balanced collection of coalitions, which was introduced by Shapley

[16], is a key ingredience in dealing with totally balanced games and their subfamilies. In
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the literature there exist several attempts at modifying that concept; these appear to be

important in the study of special classes of games and their properties. Specifically, Csóka et

al. [6] use exact balancedness and overbalancedness to provide new characterizations of the

class of exact games. Lohmann et al. [9] then employed minimal exact balanced collections

and showed that only these collections are needed to guarantee exactness of a game.

In this paper we characterize the set of totally balanced games as a convex polyhedral

cone. This can be done in several ways. Our main result, Theorem 5.1, offers a complete

characterization of facet-defining inequalities of the cone; each of these is associated with a

special min-balanced system. The paper is structured as follows. We introduce our notation

and terminology in Section 2, where we also review basic facts about minimal balanced

systems of coalitions in the style of Shapley [16]. In Section 3 we explain our framework for

analyzing cones of set functions and introduce our machinery for manipulating valid linear

inequalities. This approach makes it possible to show that important cones of set functions

are closed under the operation of reflection (Definition 3.1), which result even cannot be

formulated with the usual definition of a coalitional game as a set function vanishing at

the empty set. Moreover, facet-defining inequalities are often coupled into pairs of certain

conjugate inequalities (Lemma 3.4). For the purposes of this paper it is useful to work

with linear inequalities in a special form, which is derived from min-balanced systems and

normalized in a particular way; this procedure is described in Section 3.3. The crucial notion,

which is necessary for the formulation of our main theorem, is the concept of an irreducible

min-balanced system discussed in Section 4. Every other min-balanced system (= a reducible

one) is redundant for the description of totally balanced cone (Corollary 4.1). Section 5

contains the main result (Theorem 5.1) saying that facets of the totally balanced cone

correspond to irreducible min-balanced set systems, together with a series of lemmas leading

to its proof. Interestingly enough, one of the by-products of our research is a contribution to

the question studied by Lohmann et al. in [9], namely what are the facet-defining inequalities

for the cone of exact games. We formulate a conjecture about the form of those facet-defining

inequalities in Section 6. Appendix contains a list of min-balanced systems of sets associated

with facet-defining inequalities for small cardinalities of the player set.

2 Basic notions and results

Throughout the paper we assume that the reader is familiar with basic concepts and facts

from polyhedral geometry; see [15, 1], for example.

We are going to use standard notions and results from cooperative game theory; see [13].

For simplicity, we assume that a finite player set N contains n ≥ 2 players which are denoted

by the first n letters of English alphabet. Thus, for example, we write N = {a, b, c, d} in

case of 4 players. Subsets of N are called coalitions.

Any n-dimensional real vector [xi]i∈N is called a payoff allocation and by RN we denote
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the collection of all such vectors. Given A ⊆ N , the symbol χA ∈ RN is the incidence vector

of A defined by

(χA)i :=

{
1 for i ∈ A,
0 for i ∈ N \A.

The zero vector in RN will be denoted by 0.

Given a non-empty coalition A ⊆ N , the symbol P(A) will denote the collection of all its

subsets. The symbol RP(A) will be used to denote the collection of real-valued set functions

on subsets of A, that is, mappings m : P(A) → R. Given m ∈ RP(N) and ∅ 6= A ⊆ N ,

the restriction of m to P(A) will be denoted by mA; formally, mA ∈ RP(A) is defined by

mA(S) := m(S) for any S ⊆ A.

The zero vector in RP(N) will be denoted by 0 and the scalar product of two elements θ

and m in the linear space RP(N) by 〈θ,m〉 :=
∑

S⊆N θ(S) ·m(S) . Given A ⊆ N , the symbol

δA will denote its set indicator in RP(N) and υ↑A ∈ RP(N) the indicator of its supersets:

δA(S) :=

{
1 if S = A,
0 for other S ⊆ N, υ↑A(S) :=

{
1 if A ⊆ S,
0 for other S ⊆ N.

The set functions υ↑A for A ⊆ N with |A| ≤ 1 then form a basis of the linear subspace of

modular set functions defined by

L(N) := {m ∈ RP(N) : m(C ∪D) +m(C ∩D) = m(C) +m(D) for any C,D ⊆ N },

which, therefore, has the dimension 1 + |N |.
Given a set S ⊆ RP(N), its dual cone is S∗ := {m ∈ RP(N) : 〈θ,m〉 ≥ 0 for any θ ∈ S }.

A well-known elementary fact is that C ⊆ RP(N) is a non-empty closed convex cone iff C = C∗∗,
which happens iff C = S∗ for some S ⊆ RP(N); see for example [20, Consequence 1]. Thus,

if one shows, for a non-empty polyhedral cone C ⊆ RP(N) and D ⊆ RP(N) that D = C∗ then

this implies that C = D∗ and, moreover, that C and D are mutually dual polyhedral cones.

Another well-known fact in polyhedral geometry is that the face-lattices of dual cones are

anti-isomorphic; see [1, Theorem 7.41]. In particular, if C is a pointed cone, which means

−C ∩ C = {0}, then the facets of D are in bijection with the extreme rays of C.
A (transferable-utility coalitional ) game over (a set of players) N is modeled by a real

function m : P(N)→ R such that m(∅) = 0. We will use G(N) to denote the collection of

all such functions; any m ∈ G(N) will briefly be called a “game”. If ∅ 6= A ⊆ N then the

restriction mA to P(A) is called a subgame of the game m ∈ G(N).

The core C(m) of a game m ∈ G(N) is the set of all Pareto efficient and coalitionally

rational payoff allocations, that is, formally

C(m) := { [xi]i∈N ∈ RN :
∑
i∈N

xi = m(N) &
∑
i∈S

xi ≥ m(S) for all S ⊆ N} .

We say that a game m ∈ G(N) is
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• balanced if C(m) 6= ∅;

• totally balanced if every subgame of m is balanced;

• exact if, for each coalition S ⊆ N , there exists a payoff allocation [xi]i∈N ∈ C(m) in

the core that is tight for S, which means that
∑

i∈S xi = m(S).

We introduce the following notation:

B(S) := {m ∈ G(S) : m is balanced}, for any ∅ 6= S ⊆ N,

T (N) := {m ∈ G(N) : m is totally balanced},

E(N) := {m ∈ G(N) : m is exact}.

Recall from [8, Theorem 1] that m ∈ T (N) iff it has a finite min-representation, which

means there exists a nonempty finite X ⊆ RN such that

m(S) = min
x∈X

∑
i∈S

xi for any S ⊆ N.

It is well-known that m ∈ E(N) iff it has a min-representation ∅ 6= X ⊆ C(m); see [21,

Proposition 1], for example. Hence, we get the inclusions E(N) ⊆ T (N) ⊆ B(N) ⊆ RP(N).

Moreover, all these sets are polyhedral cones in the linear space RP(N). Specifically, the

fact that B(N) is determined by finitely many linear inequalities is a consequence of classic

results by Bondareva [3] and Shapley [16], recalled in later Lemma 3.5. The cone T (N) is

polyhedral since it follows immediately from the definition that

T (N) =
⋂

∅6=S⊆N

{m ∈ G(N) : mS ∈ B(S) }.

Finally, E(N) is a polyhedral cone by the results contained in [6] or [9]. Since all the

discussed cones are polyhedral, each of them is fully determined by finitely many linear

inequalities only. It turns out that the facet-defining inequalities correspond to special set

systems, which we define in the next section.

2.1 Min-balanced systems

Any subset B of P(N) is called a set system. The union of sets in B will be denoted by
⋃
B

and their intersection by
⋂
B. We will call

⋃
B the carrier of B. Minimality of set systems

is always understood in the sense of their inclusion as subsets of P(N).

Definition 2.1 Let B ⊆ P(N) be a non-empty set system with a carrier M ⊆ N . We say

that B is min-balanced if it is a minimal set system in P(N) satisfying the condition:

The vector χM belongs to the conic hull of {χS ∈ RN : S ∈ B}. (†)

If B ⊆ P(N) is a min-balanced system whose carrier is M then we briefly say that B is

min-balanced on M. A min-balanced system B with |B| ≥ 2 will be named non-trivial.

4



Clearly, a permutation of players transforms a non-trivial min-balanced system also

to a non-trivial min-balanced system. A catalogue of permutational types of non-trivial

min-balanced system on N , where 2 ≤ |N | ≤ 4, can be found in Appendix.

Lemma 2.1 A non-empty set system B ⊆ P(N) is min-balanced if and only if the following

two conditions hold:

(i) There exist strictly positive coefficients λS > 0 for S ∈ B such that

χ⋃
B =

∑
S∈B

λS · χS .

(ii) The incidence vectors {χS ∈ RN : S ∈ B} are linearly independent.

Hence, a non-empty B ⊆ P(N) is min-balanced iff it is a minimal set system satisfying (i).

The condition (i) is the balancedness condition from [16]. Therefore, we also say that

B is balanced on M whenever (i) holds with M =
⋃
B. Similar terminology occasionally

occurs in game-theoretical literature: let us mention an equivalent concept of S-balanced

collection from [19, Section 2-3]. The last claim in Lemma 2.1 motivated our terminology,

which follows the usual game-theoretical terminology. The condition (ii) is equivalent to the

minimality and implies the uniqueness of the coefficients λS in (i).

Proof. Let M denote the carrier of B. To show the necessity of (i) write χ⋃
B = χM =∑

S∈B λS ·χS with λS ≥ 0 by (†). If λS vanishes for some S, then take B′ = {T ∈ B : λT > 0}
and get a contradictory conclusion that B′ is a strict subsystem of B satisfying (†). The

necessity of (ii) can then be shown by contradiction: otherwise a non-vanishing system of

real coefficients {γS : S ∈ B} exists such that
∑

S∈B γS · χS = 0 ∈ RN . For any ε ≥ 0

put λεS := λS + ε · γS and observe that χM =
∑

S∈B λ
ε
S · χS . Since all λS ’s are strictly

positive by (i), there exists a maximal ε > 0 such that all λεS are non-negative. Put

B′ = {T ∈ B : λεT > 0} and derive the contradiction analogously.

Conversely, if both (i) and (ii) hold, then χM = χ⋃
B =

∑
S∈B λS · χS with λS > 0.

Assume for a contradiction that C ⊂ B exists such that χM =
∑

S∈C νS · χS with νS ≥ 0,

S ∈ C. Put νS = 0 for S ∈ B \ C and note 0 =
∑

S∈B(λS − νS) · χS , which contradicts (ii).

The last claim in Lemma 2.1 is a direct consequence of the proven equivalence. 2

Note that the balancedness condition (i) in Lemma 2.1 cannot be weakened to (†).
Indeed, (†) with M =

⋃
B and (ii) do not imply (i) as the following example shows. Put

N = {a, b, c} and B = { {a}, {b}, {b, c} }. Then χ⋃
B = 1 · χ{a} + 0 · χ{b} + 1 · χ{b,c}, but (i)

is not true. We now collect basic facts about non-trivial min-balanced systems.

Lemma 2.2 Let B ⊆ P(N) be a non-trivial min-balanced system. Then the following

conditions hold:
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• ∅,
⋃
B 6∈ B and |

⋃
B| ≥ 2,

•
⋂
B = ∅,

• there are at most |
⋃
B| sets in B.

Proof. Since B is non-trivial, it is non-empty, so Lemma 2.1 applies. Then Lemma 2.1(ii)

implies that ∅ /∈ B. As B contains at least two non-empty sets, necessarily |
⋃
B| ≥ 2.

Assume for contradiction that
⋃
B ∈ B. Then the non-triviality assumption |B| ≥ 2 and (i)

imply together that χ⋃
B can be expressed in two different ways as a linear combination of

{χS ∈ RN : S ∈ B}, which contradicts (ii). Hence,
⋃
B 6∈ B.

By non-triviality we have
⋃
B \

⋂
B 6= ∅. Assume for contradiction that

⋂
B 6= ∅.

Consider i ∈
⋂
B, j ∈

⋃
B \

⋂
B and choose T ∈ B with j 6∈ T . Then i ∈ T and one can

write using the formula in Lemma 2.1(i)∑
S∈B

λS =
∑

S∈B:i∈S
λS = (χ⋃

B)i = 1 = (χ⋃
B)j =

∑
S∈B:j∈S

λS ⇒
∑

S∈B:j 6∈S
λS = 0 ,

which gives a contradictory conclusion that simultaneously λT > 0 and λT = 0. Hence,

necessarily
⋂
B = ∅.

Consider k = |
⋃
B|. Since the linear space Rk is k-dimensional, there are at most k

linearly independent vectors in it. Thus, by Lemma 2.1(ii), B can have at most k sets. 2

Every set-theoretic partition of a non-empty subset of N into non-empty blocks is a

min-balanced system. A more general example, which is not a partition, is as follows.

Example 2.1 LetN := {a, b, c, d, e} be a player set. Put B := {{a, b}, {a, c}, {a, d}, {b, c, d}}
and define

λS :=

{
1
3 for S ∈ {{a, b}, {a, c}, {a, d}},
2
3 for S = {b, c, d}.

One can check using Lemma 2.1 that B is min-balanced and its carrier is {a, b, c, d}. 2

3 Our framework for dealing with linear inequalities

The cones of games introduced in Section 2 are not full-dimensional in RP(N). This implies

that their facet-defining inequalities have several equivalent writings in this linear space. We

are going to introduce useful conventions in order to establish a (one-to-one) correspondence

between (facet-defining) inequalities and certain set systems.

3.1 Taking the empty set into consideration

Traditional game-theoretical literature deals with set functions m : P(N) → R satisfying

m(∅) = 0, which typically leads to restricting considerations to the linear space RP(N)\{∅}.
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This restriction, however, causes later formal complications and hides some important

symmetries. To reveal those symmetries we intentionally consider the entire space RP(N)

and extend our cones of games so that the resulting cones contain constant set functions.

Specifically, for every m ∈ RP(N), a shifted set function m̃ ∈ RP(N) defined by

m̃(S) := m(S)−m(∅) for every S ⊆ N (1)

is a game over N and we define:

B(N) := {m ∈ RP(N) : m̃ ∈ B(N) },

T (N) := {m ∈ RP(N) : m̃ ∈ T (N) },

E(N) := {m ∈ RP(N) : m̃ ∈ E(N) }.

All these cones are full-dimensional in RP(N). A few basic observations about these cones

are below. Recall that by a tight valid inequality for a cone is meant such a valid inequality

for its vectors which holds with equality for at least one vector in the cone. Note that all

the considered cones have the dimension at least 1. Therefore, their facets are non-empty,

which implies that every facet-defining inequality for them is a tight valid inequality.

Lemma 3.1 The space L(N) of modular set functions is the (shared) linearity space for

cones B(N), T (N) and E(N). Analogously, the shared linearity space for cones B(N), T (N)

and E(N) is the space of modular games

L(N) := L(N) ∩ G(N).

Tight valid inequalities for each of these six cones have the following form in RP(N):∑
S⊆N

α(S) ·m(S)︸ ︷︷ ︸
=〈α,m〉

≥ 0 required for m ∈ RP(N) , (2)

where the coefficient vector α ∈ RP(N) satisfies
∑

S⊆N : i∈S α(S) = 0 for any i ∈ N . Moreover,

the coefficient vectors of tight valid inequalities for cones B(N), T (N) and E(N) even satisfy∑
S⊆N

α(S) = 〈α, υ↑∅〉 = 0,
∑

S⊆N : i∈S
α(S) = 〈α, υ↑{i}〉 = 0 for any i ∈ N . (3)

Proof. The first observation is that, for every i ∈ N , one has υ↑{i},−υ↑{i} ∈ E(N), with

singleton cores {χ{i}} and {−χ{i}}. Thus, υ↑{i} ∈ −E(N) ∩ E(N) for any i ∈ N , which

implies L(N) ⊆ −E(N) ∩ E(N). Since constant set functions ±υ↑∅ ∈ RP(N) belong to E(N)

one analogously observes L(N) ⊆ −E(N) ∩ E(N).

The second observation is that the only r ∈ −B(N) ∩ B(N) satisfying r(S) = 0 for

S ⊆ N , |S| ≤ 1, is the zero game 0. To this end realize that every balanced game m̃ ∈ B(N)
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satisfies m̃(N) ≥ m̃(T ) +
∑

i∈N\T m̃({i}) for any ∅ 6= T ⊂ N . Indeed, having x = [xi]i∈N in

the core C(m̃), one can write

m̃(N) =
∑
i∈N

xi =
∑
i∈T

xi +
∑
i∈N\T

xi ≥ m̃(T ) +
∑
i∈N\T

xi ≥ m̃(T ) +
∑
i∈N\T

m̃({i}) .

Thus, for any r in −B(N) ∩B(N) with r(S) = 0 for S ⊆ N , |S| ≤ 1, both r and −r can be

taken in place of m̃, which results in r(N) = r(T ) +
∑

i∈N\T r({i}) = r(T ). Taking in place

of T a singleton gives r(N) = 0; then taking general ∅ 6= T ⊂ N gives the rest.

This allows one to show −B(N) ∩ B(N) ⊆ L(N). Indeed, given m ∈ −B(N) ∩ B(N),

put r := m −m(∅) · υ↑∅ +
∑

i∈N [m(∅) −m({i})] · υ↑{i}, realize that r satisfies the above

conditions and derive r = 0 to observe that m ∈ L(N). An analogous consideration with

games leads to −B(N) ∩ B(N) ⊆ L(N).

One has E(N) ⊆ T (N) ⊆ B(N), the same holds for their multiples by (−1), giving

L(N) ⊆ −E(N) ∩ E(N) ⊆ −T (N) ∩ T (N) ⊆ −B(N) ∩ B(N) ⊆ L(N) ;

analogously E(N) ⊆ T (N) ⊆ B(N) shows that L(N) is the shared linear space for the

extended cones E(N), T (N) and B(N).

Let K be any of the above discussed cones in RP(N). Any linear inequality for m ∈ RP(N)

can be re-written in the form 〈α,m〉 ≥ k with α ∈ RP(N) and k ∈ R; otherwise we multiply

the inequality by (−1). Assuming it is a tight valid inequality for K there exists m0 ∈ K
satisfying 〈α,m0〉 = k. Because K is a cone, for every ε > 0, one has ε ·m0 ∈ K and

ε · k = ε · 〈α,m0〉 = 〈α, ε ·m0〉 ≥ k ⇒ (ε− 1) · k ≥ 0 ,

which is possible for any ε > 0 only in case k = 0. Thus, the inequality has the form (2).

Any inequality of the form (2) which is valid for vectors m ∈ K must hold with equality

for vectors in its linearity space. This implies the rest of Lemma 3.1. 2

A coefficient vector α ∈ RP(N) satisfying (3) will be called o-standardized, where o stands

for “orthogonal”. Indeed, (3) means that α is in the orthogonal complement of L(N).

In the next lemma we show that the task to characterize facets of a cone of games is

equivalent to the task of describing facets of the associated extended cone.

Lemma 3.2 The value of the coefficient α(∅) in (2) does not influence the fact whether

(2) is facet-defining for m ∈ T (N) or not. Specifically, if (2) is facet-defining inequality for

m ∈ T (N), then re-defining the value of the coefficient α(∅) by

α(∅) := −
∑
∅6=S⊆N

α(S)

yields a facet-defining inequality for both m ∈ T (N) and m ∈ T (N). Conversely, every

facet-defining inequality for T (N) is facet-defining for T (N). The same relation holds for

the pair of cones B(N) and B(N) and also for the pair of cones E(N) and E(N).
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Proof. First, let us discuss the question of validity of (2) for games. Since every m ∈ T (N)

satisfies m(∅) = 0, we get
∑

S⊆N α(S) ·m(S) =
∑
∅6=S⊆N α(S) ·m(S). Thus, the value α(∅)

is irrelevant for the validity (2) for m ∈ T (N) and, also, it does not influence what is the

face of T (N) specified by (2). Therefore, the fact whether (2) is facet-defining for T (N) is

not influenced by the value of α(∅). Thus, it remains to show, for any α ∈ RP(N) satisfying

α(∅) = −
∑
∅6=S⊆N α(S), that (2) is facet-defining for T (N) iff it is facet-defining for T (N).

To this end we first observe, for any α ∈ RP(N) satisfying α(∅) = −
∑
∅6=S⊆N α(S), that

(2) is valid for T (N) iff is valid for T (N). By Lemma 3.1, its validity either for T (N) or for

T (N) implies that α is o-standardized, that is, satisfies (3). We introduce

T`(N) := {m ∈ T (N) : m({i}) = 0 for any i ∈ N }

= {m ∈ T (N) : m(S) = 0 for S ⊆ N , |S| ≤ 1 }

and realize that both T (N) = L(N)⊕ T`(N) and T (N) = L(N)⊕ T`(N), where the symbol

⊕ denotes the direct sum of cones. The former fact implies, for o-standardized α ∈ RP(N),

that (2) is valid for T (N) iff it is valid for m ∈ T`(N); the latter fact implies the same for

the cone T (N).

To see why the claim extends to facet-defining inequalities realize that the set

AT = {α ∈ RP(N) : α satisfies (3) and 〈α,m〉 ≥ 0 for m ∈ T`(N) }

is a pointed convex cone. To this end realize that, for every A ⊆ N , |A| ≥ 2, one has

υ↑A ∈ E(N), with the core being the convex hull of {χ{i} : i ∈ A}. Thus, by E(N) ⊆ T (N),

one has υ↑A ∈ T (N), which gives υ↑A ∈ T`(N). Hence, any α ∈ AT satisfies 〈α, υ↑A〉 ≥ 0

for all A ⊆ N , |A| ≥ 2. In particular, α ∈ −AT ∩ AT must satisfy those inequalities with

equality, which allows one to deduce α = 0.

Owing to T (N) = L(N)⊕T`(N), the set AT is the dual cone to T (N). This implies that

T (N) and AT are polyhedral cones which are dual each other (see Section 2). Because AT
is pointed, it implies that facets of T (N) correspond to extreme rays of AT .

Analogously, T (N) = L(N)⊕ T`(N) allows one to observe that the dual cone to T (N)

has the form I(N)⊕ AT , where I(N) denotes one-dimensional space of functions ι ∈ RP(N)

such that ι(S) = 0 for ∅ 6= S ⊆ N . This similarly implies that facets of T (N) correspond to

co-atoms of the face-lattice of I(N)⊕ AT , and these have the form I(N)⊕R, where R is

an extreme ray of AT . Thus, in this context, facet-defining inequalities for either T (N) or

T (N) are precisely those which are given by α’s generating extreme rays of AT .

The arguments in the case of balanced cones and in the case of exact cones are analogous,

so, they are left to the reader. 2

3.2 Reflection and conjugate inequalities

Two of the extended cones are closed under a special linear self-transformation of RP(N).
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Definition 3.1 By a reflection of m ∈ RP(N) we mean m∗ ∈ RP(N) given by

m∗(T ) := m(N \ T ) for any T ⊆ N .

Thus, reflection is nothing but inner composition with a “complement” mapping.

Lemma 3.3 The cones B(N) and E(N) are closed under reflection.

Proof. To show m ∈ B(N)⇒ m∗ ∈ B(N) realize that one has −C(m̃) = C(m̃∗), where m̃

is given by (1). To this end express the core C(m̃) in terms of the upper bounds instead of

the lower bounds:

C(m̃) = { [xi]i∈N : m̃(N) =
∑
i∈N

xi & ∀S ⊆ N m̃(S) ≤
∑
i∈S

xi }

= { [xi]i∈N : m̃(N) =
∑
i∈N

xi & ∀T ⊆ N m̃(N)− m̃(N \ T ) ≥
∑
i∈T

xi } .

This allows one to write

−C(m̃) = { [yi]i∈N : −m̃(N) =
∑
i∈N

yi & ∀T ⊆ N m̃(N \ T )− m̃(N) ≤
∑
i∈T

yi }

= { [yi]i∈N : m̃∗(N) =
∑
i∈N

yi & ∀T ⊆ N m̃∗(T ) ≤
∑
i∈T

yi } = C(m̃∗) ,

because of the relation m̃∗(T )
(1)
= m∗(T )−m∗(∅) = m(N \ T )−m(N)

(1)
= m̃(N \ T )− m̃(N)

valid for any T ⊆ N .

In order to show m ∈ E(N)⇒ m∗ ∈ E(N), it is enough to realize additionally that the

inequality for S ⊆ N is tight at [xi]i∈N ∈ C(m̃) if and only if the inequality for T = N \ S
is tight at [yi]i∈N = −[xi]i∈N ∈ −C(m̃) = C(m̃∗). 2

Remark 3.1 There exists a widely used notion of duality in cooperative game theory; see

[13, Definition 6.6.3.]. The dual game of a game m is then the game m? defined by

m?(S) := m(N)−m(N \ S) for all S ⊆ N .

Observe that m? = m(N)−m∗, where m∗ is the reflection of m from Definition 3.1. Similarly,

it is possible to define the notion of an anti-dual game of m by −m?. Using (1) observe that

the anti-dual of m is precisely −m? = m̃∗, which is discussed in the above proof of Lemma 3.3.

Then a natural question arises how main solution concepts (e.g., the core) are related to

duality or anti-duality. In this context Lemma 3.3 says that a game is balanced/exact if and

only if its anti-dual is a balanced/exact game. The interested reader is invited to consult

the paper [11] for a detailed analysis of the relation of (anti-)duality and solution concepts.

However, the cone T (N) is not closed under reflection as the following example shows.
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Example 3.1 Here is an example of m ∈ T (N) such that m∗ 6∈ T (N). Put N = {a, b, c}
and m(N) = 3 while m(S) = 2 for S ⊂ N with |S| = 2 and m(R) = 0 for remaining R ⊂ N .

It is a totally balanced game because it has a min-representation by four vectors (1, 1, 1),

(2, 2, 0), (2, 0, 2), (0, 2, 2). Nevertheless, m̃∗(T ) = −3 for T ⊆ N , |T | ≥ 2, and m̃∗({i}) = −1

for i ∈ N . It is a balanced game because of C(m̃∗) = {(−1,−1,−1)} but it is not totally

balanced because of C(m′) = ∅ for the restriction m′ of m̃∗ to subsets of {a, b}. 2

A concept related to the reflection is the following one.

Definition 3.2 Every inequality (2) is assigned a conjugate inequality of the form∑
T⊆N

α∗(T ) ·m(T )︸ ︷︷ ︸
=〈α∗,m〉

≥ 0 required for m ∈ RP(N) , (4)

where α∗ ∈ RP(N) is the reflection of the coefficient vector α ∈ RP(N) in (2).

Note in this context that α is o-standardized iff α∗ is o-standardized. An important fact

appears to be the formula

〈α∗,m〉 =
∑
T⊆N

α∗(T ) ·m(T )
T :=N\S

=
∑
S⊆N

α(S) ·m∗(S) = 〈α,m∗〉 (5)

valid for any pair α,m ∈ RP(N). It enables us to prove the following statement.

Lemma 3.4 An inequality (2) is facet-defining for E(N) iff its conjugate inequality (4) is

facet-defining for E(N). The same relation holds for the cone B(N).

Proof. We first show that (2) is valid for E(N) iff (4) is valid for E(N). Because of α∗∗ = α

it is enough to verify that the validity of (2) implies the validity of (4). Given m ∈ E(N),

one has m∗ ∈ E(N) by Lemma 3.3 and 〈α∗,m〉 (5)= 〈α,m∗〉
(2)

≥ 0.

One can perform an analogous consideration as in the proof of Lemma 3.2, that is, to

introduce E`(N) := {m ∈ E(N) : m(S) = 0 for S ⊆ N , |S| ≤ 1 } and put

AE := {α ∈ RP(N) : α satisfied (3) and 〈α,m〉 ≥ 0 for m ∈ E`(N) } .

The fact E(N) = L(N)⊕ E`(N) then implies that AE is the dual cone to E(N); it means

that α ∈ AE iff (2) holds for any m ∈ E(N). This implies the validity of (4) for any

m ∈ E(N), which means that AE is closed under reflection. In particular, the reflection is a

one-to-one linear mapping from RP(N) to RP(N) which transforms AE onto itself. Such a

linear mapping transforms faces of AE to faces of AE of the same dimension.

One can show that AE is a pointed cone by the same arguments as in the proof of

Lemma 3.2. As the cones E(N) and AE are dual each other the facets of E(N) correspond

11



to the extreme rays of AE . Since the coefficients of facet-defining inequalities for E(N) are

just those which generate extreme rays of AE and these are mapped by the reflection to

(other) extreme rays of AE , the conjugate inequalities to them must also be facet-defining.

The arguments for the balanced cone B(N) are analogous and are left to the reader. 2

In fact, the statement from Lemma 3.4 holds true for any full-dimensional cone in RP(N)

that is closed under reflection.

3.3 How to assign an inequality to a min-balanced system

Facet-defining inequalities (2) for cones B(N) and T (N) appear to be determined uniquely

(up to a positive multiple) by the induced set systems

Bα := {S ⊆ N : α(S) < 0 } where α ∈ RP(N) is the respective coefficient vector.

A converse relation is established in this section. More specifically, given a non-trivial

min-balanced system B, by Lemma 2.1, there are unique coefficients λS , S ∈ B, with

χM =
∑
S∈B

λS · χS where M =
⋃
B and λS > 0 for S ∈ B.

In fact, one can even show that λS ∈ Q. Indeed, χM =
∑

S∈B λS · χS means that the

coefficient vector λ ∈ RB is a solution of a matrix equality λ · C = χM with a zero-one

matrix C ∈ RB×N . Since unique solution exists, a regular column B × T -submatrix of C,

where T ⊆ N , |T | = |B|, exists such that λ · CB×T = χM∩T . Since C has zero columns for

i ∈ N \M one has T ⊆M . Nevertheless, the inverse of this regular zero-one submatrix is a

rational matrix, which implies that the components of λ are in Q.

Thus, a unique integer k ≥ 1 exists such that all k · λS ∈ Z with S ∈ B are relatively

prime. For any S ⊆ N , define

αB(S) :=


k in case S = M =

⋃
B,

−k · λS for S ∈ B,
−k + k

∑
S∈B

λS = −αB(M)−
∑
S∈B

αB(S) in case S = ∅,

0 otherwise.

(6)

This ensures the following equality:∑
S⊆N

αB(S) · χS = αB(M) · χM +
∑
S∈B

αB(S) · χS + αB(∅) · χ∅︸︷︷︸
=0

= 0 ∈ RN . (7)

For any i ∈M one has∑
S⊆N : i∈S

αB(S) =
∑

S∈{M}∪B: i∈S

αB(S) = k − k ·
∑

S∈B: i∈S
λS = k · (1−

∑
S∈B: i∈S

λS) = k · 0 = 0 .
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Analogously, by the definition of M , for any i ∈ N \M one has
∑

S⊆N : i∈S αB(S) = 0; thus,

the vector αB ∈ ZP(N) is o-standardized. Choose i ∈M and consider T ∈ B such that i 6∈ T
(note that B is non-trivial), which allows one to write

αB(∅) = −αB(M)−
∑
S∈B

αB(S) = −k + k ·
∑
S∈B

λS = k · (
∑
S∈B

λS − 1)

= k · (
∑

S∈B: i∈S
λS − 1)︸ ︷︷ ︸

=0

+ k · (
∑

S∈B: i 6∈S
λS)

︸ ︷︷ ︸
≥λT

> 0,

which implies αB(∅) ≥ 1. Thus, the corresponding inequality

〈αB,m〉 = αB(M) ·m(M) +
∑
S∈B

αB(S) ·m(S) + αB(∅) ·m(∅) ≥ 0 for m ∈ RP(N) (8)

of the form (2) is assigned the set system B = Bα with α = αB. This yields mutually inverse

transformation B ↔ αB = α between non-trivial min-balanced systems and the coefficient

vectors in the corresponding inequalities.

Definition 3.3 Given a non-trivial min-balanced system B ⊆ P(N), the above coefficient

vector in ZP(N) defined in (6) will be denoted by αB.

Example 3.2 Consider the min-balanced system B from Example 2.1 with the player

set N = {a, b, c, d, e}, that is, B = {{a, b}, {a, c}, {a, d}, {b, c, d}}. The carrier of B is

M = {a, b, c, d} and the coefficient vector is

αB(S) :=



3 for S = M,

−1 for S ∈ {{a, b}, {a, c}, {a, d}},
−2 for S = {b, c, d},
2 for S = ∅,
0 otherwise.

Then the inequality (8) takes the form

3 ·m({a, b, c, d})−m({a, b})−m({a, c})−m({a, d})− 2 ·m({b, c, d}) + 2 ·m(∅) ≥ 0 .

2

The next lemma follows from the results in [16, Theorem 2]; one just applies what is said

in Section 3.1 about the correspondence between cones B(N) and B(N).

Lemma 3.5 Assuming |N | ≥ 2 the facet-defining inequalities for B(N) are just those which

correspond to non-trivial min-balanced systems B on N . In particular, given m ∈ RP(N),

m ∈ B(N) ⇔ 〈αB,m〉 ≥ 0 for any non-trivial min-balanced system B on N.
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The following concept relates the above observation to concepts from Section 3.2.

Definition 3.4 Every min-balanced system B ⊆ P(N) is assigned its complementary system

B∗ := {N \ S : S ∈ B} .

The fact that B(N) is closed under reflection then basically implies the following.

Corollary 3.1 If B is a non-trivial min-balanced set system on N , then its complementary

system B∗ is also a non-trivial min-balanced system on N inducing the conjugate inequality

to the inequality (8) with M = N .

Proof. If B is a min-balanced set system on N , then write using (7) and (6):

0 = k · χN −
∑
S∈B

k · λS · χS + (−k +
∑
S∈B

k · λS) · χ∅︸︷︷︸
=0

,

where the coefficients λS and the constant k are introduced in the beginning of Section 3.3.

We omit the zero term containing χ∅, multiply the equality by (−1) and extend the right-hand

side of it by ±k ·
∑

S∈B λS · χN to get

0 = (−k + k ·
∑
S∈B

λS) · χN −
∑
S∈B

k · λS · χN\S

= (−k +
∑
T∈B∗

k · λN\T ) · χN −
∑
T∈B∗

k · λN\T · χT + k · χ∅︸︷︷︸
=0

,

because the coefficient with χ∅ = 0 is immaterial. Thus, the coefficient vectors assigned to

B and B∗ by (6) are related by α∗B = αB∗ .

By Lemma 3.5, 〈αB,m〉 ≥ 0 is facet-defining inequality for m ∈ B(N). By (the second

claim of) Lemma 3.4 〈αB∗ ,m〉 = 〈α∗B,m〉 ≥ 0 is also facet-defining inequality for m ∈ B(N).

In particular, by Lemma 3.5, αB∗ must be a positive multiple of αC for a non-trivial min-

balanced system C on N . By (6), this gives B∗ = C and B∗ is min-balanced. The fact that

k · λS , S ∈ B, are relatively prime integers then implies αB∗ = αC. Thus, 〈αC ,m〉 ≥ 0 is a

conjugate inequality to (8) (with M = N). 2

Note that the above observation was already mentioned by Shapley [16] as an empirical

fact observed in case |N | ≤ 5.

4 Irreducible systems

We are in position to introduce the following concept, which is crucial for our main result.

Definition 4.1 We say that a min-balanced system B ⊆ P(N) is reducible if there exists

A ⊂
⋃
B and B ∈ BA := {S ∈ B : S ⊂ A} such that
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• χA is in the conic hull of {χS : S ∈ BA} and

• χ⋃
B is in the conic hull of {χT : T ∈ {A} ∪ (B \ {B})}.

A min-balanced system B ⊆ P(N) that is not reducible is called irreducible.

A reducible min-balanced system is necessarily non-trivial. Note that, without loss of

generality, one can require A =
⋃
BA 6∈ B in the definition of reducibility, as proved below in

Lemma 4.1. The meaning of the reducibility condition is that the inequality corresponding

to B is derivable from the inequalities which correspond to other min-balanced systems B′

satisfying
⋃
B′ ⊆

⋃
B.

Clearly, the concept of irreducibility is invariant with respect to a permutation of players.

Types of non-trivial irreducible min-balanced system on N for 2 ≤ |N | ≤ 4 can be found in

the Appendix.

Lemma 4.1 Let B be a min-balanced system. If A ⊂
⋃
B and B ∈ BA exist such that both

BA and {A} ∪ (B \ {B}) satisfy the conditions from Definition 4.1, then |A| ≥ 2 and one has

both
⋃
BA = A and A 6∈ B.

Moreover, there exist a min-balanced system C ⊆ BA on A with B ∈ C and a min-balanced

system D ⊆ {A} ∪ (B \ {B}) on
⋃
B with A ∈ D such that the inequality (8) corresponding

to B is a conic combination of inequalities corresponding to C and D.

Proof. Throughout the proof we will use M to denote the carrier of B, that is, M :=
⋃
B.

As B is non-trivial, one can apply Lemma 2.2. Hence, B ∈ B implies B 6= ∅ and B ⊂ A

gives |A| ≥ 2. The assumption that χA is in the conic hull of {χS : S ∈ BA} means that

there exist µS ≥ 0, S ∈ BA, with χA =
∑

S∈BA µS · χS , which implies A =
⋃
BA.

Analogously, the other assumption says that there exist βT ≥ 0, T ∈ {A} ∪ (B \ {B}),
with χM =

∑
T∈{A}∪(B\{B}) βT · χT . Thus,

χM = βA · χA +
∑

T∈B\{A,B}

βT · χT = βA ·
∑
S∈BA

µS · χS +
∑

T∈B\{A,B}

βT · χT

=
∑
S∈BA

βA · µS · χS +
∑

T∈B\{A,B}

βT · χT

= βA · µB · χB +
∑

S∈BA\{B}

(βA · µS + βS) · χS +
∑

T∈B\({A}∪BA)

βT · χT .

On the other hand, since B is min-balanced, the uniquely determined coefficients λS , S ∈ B,

in the decomposition

χM =
∑
S∈B

λS · χS (9)
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must be all strictly positive by Lemma 2.1. The uniqueness of the coefficients implies

λB = βA · µB (10)

λS = βA · µS + βS for S ∈ BA \ {B},

λT = βT for T ∈ B \ ({A} ∪ BA), and

λR = 0 for other R ⊆ N .

This implies A 6∈ B as otherwise a contradictory conclusion λA > 0 and λA = 0 is derived

from (9) and (10).

As λS > 0 for S ∈ B, the condition (10) gives λB > 0 ⇒ βA > 0 and µB > 0. We put

C := {S ∈ BA : µS > 0} and D := {T ∈ {A} ∪ (B \ {B}) : βT > 0}

and obtain B ∈ C and A ∈ D. Since C ⊆ BA ⊆ B the linear independence condition (ii) from

Lemma 2.1 for C is evident and, therefore, again by Lemma 2.1, C is min-balanced on A. To

verify the linear independence condition (ii) for {A} ∪ (B \ {B}) it is enough to show that

χA is not in the linear hull of {χS : S ∈ B \ {B} }. Thus, assume for contradiction that

χA =
∑

S∈B\{B} γS · χS with real γS , S ∈ B \ {B}, which yields

χM = βA · χA +
∑

T∈B\{B}

βT · χT = βA · (
∑

S∈B\{B}

γS · χS) +
∑

T∈B\{B}

βT · χT

=
∑

T∈B\{B}

(βA · γT + βT ) · χT .

As B is min-balanced on M , the uniqueness of the coefficients in (9) implies a contradictory

conclusion that simultaneously λB > 0 by (9) and λB = 0. Thus, D ⊆ {A} ∪ (B \ {B})
satisfies both (i) and (ii), so, it is min-balanced on M by Lemma 2.1.

To prove the last claim, apply (10) to express the inequality

m(M)−
∑
S∈B

λS ·m(S) ≥ 0 for m ∈ RP(N)\{∅} (for non-empty components only!)

as the sum of inequalities

βA ·m(A)−
∑
S∈BA

βA · µS ·m(S) = βA · [m(A)−
∑
S∈C

µS ·m(S)] ≥ 0,

m(M)− βA ·m(A)−
∑

S∈B\{B}

βS ·m(S) = m(M)−
∑
T∈D

βT ·m(T ) ≥ 0.

As explained in Section 3.3, the standard inequalities for the min-balanced systems are

positive multiples of these, which implies the result in RP(N)\{∅}. The coefficients with the

empty set are immaterial since they are determined by the o-standardization condition. 2

Let us give a simple example of a reducible system, which illustrates Lemma 4.1.
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Example 4.1 Put N = {a, b, c, d} and consider a set system B = { {a}, {b}, {c} } on a strict

subset M = {a, b, c} of N . The corresponding inequality (8) is

m({a, b, c})−m({a})−m({b})−m({c}) + 2 ·m(∅) ≥ 0 .

Take A = {a, b} and observe that χ{a,b} = χ{a}+χ{b}, which gives χA ∈ cone {χS : S ∈ BA}
with BA = { {a}, {b} }. We also have χ{a,b,c} = χ{a,b} + χ{c} which implies that

χM ∈ cone {χT : T ∈ {A} ∪ (B \ BA)} ⊆ cone {χT : T ∈ {A} ∪ (B \ {B})}

for both B ∈ BA = { {a}, {b} }. One has C = BA and, for both B = {a} and B = {b}, the

respective D is {A} ∪ (B \ BA) = { {a, b}, {c} }. The inequalities (8) for C and D are

m({a, b})−m({a})−m({b}) +m(∅) ≥ 0 ,

m({a, b, c})−m({a, b})−m({c}) +m(∅) ≥ 0 .

Their sum is the above inequality (8) corresponding to B. 2

A more complicated example of a reducible min-balanced system is as follows.

Example 4.2 Put N = {a, b, c, d, e} and consider a set system

B = { {a, b}, {c, e}, {d, e}, {a, c, d}, {b, c, d} }.

It is easy to show that B is min-balanced on N using Lemma 2.1. To show that B is reducible

according to Definition 4.1 we take A := {a, b, c, d} and observe that

BA = { {a, b}, {a, c, d}, {b, c, d} }.

It follows that χA is in the conic hull of {χS : S ∈ BA} because of

χA =
1

2
· (χ{a,b} + χ{a,c,d} + χ{b,c,d}).

Consider, for example, B := {a, c, d} ∈ BA. Also χ⋃
B = χN is in the conic hull of

{χT : T ∈ {A} ∪ (B \ {B})} since

χN =
1

2
· (χ{a,b,c,d} + χ{a,b} + χ{c,e} + χ{d,e}).

Hence, B is reducible. 2

The next example shows that some sets in an irreducible system can be inclusion

comparable.

17



Example 4.3 Put N = {a, b, c, d, e} and consider a set system

B = { {a, b}, {a, c, d}, {a, c, e}, {a, b, d, e}, {b, c, d, e} } .

Then one has

χN =
1

4
· (χ{a,b} + χ{a,c,d} + χ{a,c,e} + χ{a,b,d,e}) +

1

2
· χ{b,c,d,e} ,

which allows one to show, using Lemma 2.1, that B is min-balanced on N .

Owing to (the first claim in) Lemma 4.1 it is enough to test sets A ⊂
⋃
B = N with

|A| ≥ 2 and A 6∈ B whether A =
⋃
BA with BA = {S ∈ B : B ⊂ A} and the conditions from

Definition 4.1 hold. First observe that there is no set A ⊂ N with 2 ≤ |A| ≤ 3 satisfying

A =
⋃
BA. Second, consider A ⊂ N with |A| = 4 and A 6∈ B and distinguish three cases:

1. If A = {a, b, c, d} then BA = { {a, b}, {a, c, d} } and one has A =
⋃
BA; however, the

vector χA is not in the conic hull of {χS : S ∈ BA}.

2. If A = {a, b, c, e} then BA = { {a, b}, {a, c, e} } and the arguments are same as in the

previous case.

3. If A = {a, c, d, e} then BA = { {a, c, d}, {a, c, e} } and, again, χA is not in the conic

hull of {χS : S ∈ BA}.

In any case, the first condition in Definition 4.1 not valid for any such set A, which implies

that the min-balanced system B is irreducible. 2

The following result is a direct consequence of Lemma 4.1.

Corollary 4.1 Given a reducible min-balanced system B, the corresponding inequality is a

conic combination of inequalities which correspond to other min-balanced systems B′ with⋃
B′ ⊆

⋃
B. In particular, it is a combination of inequalities which correspond to irreducible

min-balanced systems on subsets of
⋃
B.

5 Main result

The main result of this paper, proved in Section 5.4, is as follows.

Theorem 5.1 Let |N | ≥ 2. The facet-defining inequalities for T (N) are exactly those which

correspond to non-trivial irreducible min-balanced systems B with
⋃
B ⊆ N .

Note that T (N) is not closed under reflection (Example 3.1); thus, one cannot expect

that the conjugate inequality to a facet-defining inequality for T (N) is also facet-defining.
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5.1 Characterization of the balanced and exact cones

We are going to show that the sets B(N) and E(N) are rational polyhedral cones, by

simplifying the arguments from [6, Section 3]. The following notation will be instrumental.

Definition 5.1 Assume |N | ≥ 2. For any non-empty set D ⊆ N , we put

ΘN
D := { θ ∈ RP(N) : θ(S) ≤ 0 for any S ⊆ N , S 6∈ {∅, D,N},∑

T⊆N
θ(T ) = 0 and

∑
T⊆N : i∈T

θ(T ) = 0 for any i ∈ N }.

In words, ΘN
D is the set of o-standardized vectors which are non-positive outside {∅, D,N}.

Lemma 5.1 If |N | ≥ 2 and ∅ 6= D ⊆ N , then ΘN
N ⊆ ΘN

D and θ(N), θ(∅) ≥ 0, for any

θ ∈ ΘN
D . The only θ ∈ ΘN

D satisfying θ(N) + θ(∅) ≥ 0 with equality is the zero game θ = 0.

In particular, ΘN
D is a pointed polyhedral cone containing ΘN

N and every non-zero θ ∈ ΘN
N

satisfies both θ(N) > 0 and θ(∅) > 0.

Proof. The inclusion ΘN
N ⊆ ΘN

D is evident. Thus, assume without loss of generality that

D ⊂ N . Then θ(N) ≥ 0 is a valid inequality for θ ∈ ΘN
D . Indeed, take i ∈ N \D and realize

that θ(N) = −
∑

T⊂N : i∈T θ(T ) ≥ 0. Analogously, for any j ∈ N ,∑
S⊆N\{j}

θ(S) =
∑
S⊆N

θ(S)−
∑

T⊆N : j∈T
θ(T ) = 0− 0 = 0 ,

which implies that θ(∅) ≥ 0 is a valid inequality for θ ∈ ΘN
D ; it suffices to take j ∈ D

and write θ(∅) = −
∑
∅6=S⊆N\{j} θ(S) ≥ 0. Thus, θ(N) + θ(∅) ≥ 0 is a valid inequality for

θ ∈ ΘN
D .

To show that the only θ ∈ ΘN
D satisfying θ(N) + θ(∅) = 0 is θ = 0, realize that both

θ(N) = 0 and θ(∅) = 0. The identity θ(N) = 0 implies by 0 = θ(N) = −
∑

T⊂N : i∈T θ(T ) ≥ 0,

for i ∈ N \D, that θ(T ) vanishes for any T ⊆ N intersecting N \D. Analogously, the identity

θ(∅) = 0 implies by 0 = θ(∅) = −
∑
∅6=S⊆N\{j} θ(S) ≥ 0, for j ∈ D, that θ(S) vanishes for

any S ⊂ D. Hence, 0 =
∑

T⊆N θ(T ) = θ(D) and θ = 0.

The proof of the fact that the only θ ∈ ΘN
N satisfying θ(N) ≥ 0 with equality is θ = 0

is analogous: for any i ∈ N we get 0 = θ(N) = −
∑

T⊂N : i∈T θ(T ) ≥ 0. Hence, θ(T ) = 0

for any ∅ 6= T ⊆ N and θ(∅) = −
∑
∅6=T⊆N θ(T ) = 0. The same with θ ∈ ΘN

N satisfying

θ(∅) = 0: take j ∈ N and get 0 = θ(∅) = −
∑
∅6=S⊆N\{j} θ(S) ≥ 0, which implies that θ(S)

vanishes for S ⊂ N and, consequently, θ(N) = −
∑

S⊂N θ(S) = 0. Thus, every non-zero

θ ∈ ΘN
N satisfies both θ(N) > 0 and θ(∅) > 0. 2

To characterize the sets B(N) and E(N), we are going to use the following criterion for

feasibility of a system of linear constraints involving both inequalities and equalities. In the

statement, CI denotes the submatrix of a matrix C specified by a set of rows I, bI is the
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subvector of a vector b determined by its components in I, 0I is the zero vector in RI , and

C>/b> denotes the transpose of a matrix C/vector b. Inequalities and equalities for vectors

are understood coordinatewise.

Lemma 5.2 Let C ∈ RL×N be a real matrix and b ∈ RL a real column vector, where

L = I ∪ E with disjoint sets I and E. Then the condition

∃x ∈ RN such that both CIx ≤ bI and CEx = bE

is equivalent to the condition

∀λ ∈ RL [λI ≥ 0I and C>λ = 0N ] implies b>λ ≥ 0 .

The reader can find this feasibility criterion in [4, Theorem 9.2] in slightly modified formula-

tion, namely as the equivalence of negations of the conditions from Lemma 5.2.

Lemma 5.3 Assume |N | ≥ 2. For any set function m ∈ RP(N), we have

• m ∈ B(N) iff ∀ θ ∈ ΘN
N 〈θ,m〉 ≥ 0 ,

• m ∈ E(N) iff ∀ ∅ 6= D ⊆ N ∀ θ ∈ ΘN
D 〈θ,m〉 ≥ 0 .

Because each of the cones ΘN
D is a rational polyhedral cone by definition, the cones ΘN

N

and cone (
⋃
∅6=D⊆N ΘN

D) are generated by finitely many rational vectors. This, together with

Lemma 5.3, implies that both B(N) and E(N) are rational polyhedral cones.

Proof. One can assume without loss of generality that m ∈ G(N). Indeed, otherwise m can

be replaced by its shifted version m̃ ∈ G(N) given by (1). Since m = m̃ + m(∅) · υ↑∅ and

any θ ∈ ΘN
D , where ∅ 6= D ⊆ N , satisfies

∑
T⊆N θ(T ) = 0, it follows that

〈θ,m〉 = 〈θ, m̃〉+m(∅) · 〈θ, υ↑∅〉︸ ︷︷ ︸
=0

= 〈θ, m̃〉 =
∑
∅6=S⊆N

θ(S) · m̃(S).

Realize that both equivalences m ∈ B(N)⇔ m̃ ∈ B(N) and m ∈ E(N)⇔ m̃ ∈ E(N) hold.

Given a non-empty D ⊆ N and a game m ∈ G(N), the existence of an element of the

core C(m) achieving the bound for D can be characterized in terms of ΘN
D :

[∃x ∈ C(m)
∑
i∈D

xi = m(D) ] ⇔ [ ∀ θ ∈ ΘN
D

∑
∅6=S⊆N

θ(S) ·m(S)

︸ ︷︷ ︸
〈θ,m〉

≥ 0 ] . (11)

The choice D = N in (11) proves the first equivalence in Lemma 5.3; the second one follows

analogously by applying (11) with all ∅ 6= D ⊆ N .

To verify (11) we formulate the condition on its left-hand side of (11) as the feasibility

condition for a system of linear constrains from Lemma 5.2. Let L be P(N) \ {∅}, with E
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consisting of D and N , and I being the rest of P(N) \ {∅}; that is, |E| = 2 if D 6= N and

|E| = 1 if D = N . The matrix C will have the entries −χS(i) for S ∈ P(N) \ {∅} and i ∈ N ;

the component of the vector b for S ∈ P(N) \ {∅} will be −m(S). Thus, by Lemma 5.2, the

condition is equivalent to the requirement that, for each λ ∈ RP(N)\{∅} such that

• λ(S) ≥ 0 for each S ⊆ N which the exception of sets ∅, D,N , [⇔ λI ≥ 0I ]

• −
∑

T⊆N : i∈T λ(T ) =
∑
∅6=T⊆N −χT (i) · λ(T ) = 0 for any i ∈ N , [⇔ C>λ = 0N ]

we get
∑
∅6=T⊆N −m(T ) · λ(T ) ≥ 0 [⇔ b>λ ≥ 0].

We put θ(S) = −λ(S) for ∅ 6= S ⊆ N and θ(∅) =
∑
∅6=T⊆N λ(T ) and observe that the

itemized conditions in terms of θ mean that θ ∈ ΘN
D and the conclusion that 〈θ,m〉 ≥ 0.

Thus, the requirement is nothing but the condition on the right-hand side of (11). 2

5.2 Extreme rays of the dual cone to the balanced cone

The following observation will be used later as an auxiliary fact.

Lemma 5.4 If |N | ≥ 2 then θ ∈ RP(N) generates an extreme ray of ΘN
N iff it is a positive

multiple of the coefficient vector αB for a non-trivial min-balanced system B on N .

We would be able to give a direct proof of Lemma 5.4, analogous to our later proof of

Lemma 5.6. Nonetheless, we guess that the reader will prefer a shorter indirect proof based

on a well-known classic result reported earlier in Lemma 3.5.

Proof. The first claim in Lemma 5.3 says that B(N) is the dual cone to ΘN
N . Since ΘN

N is a

polyhedral cone, this implies that B(N) and ΘN
N are (polyhedral) cones which are dual each

other (see Section 2). Therefore, the extreme rays of the pointed cone ΘN
N (see Lemma 5.1)

correspond to facets of B(N). These are described by non-trivial min-balanced systems on

N in Lemma 3.5. In particular, θ is an extreme ray of ΘN
N iff it has the form θ = k · αB for

some k > 0 and a non-trivial min-balanced system B on N . 2

Of course, the observation from the above proof that the cones ΘN
N and B(N) are dual

each other allows one to derive Lemma 3.5 as a consequence of the statement in Lemma 5.4.

Note that, in the original proof of Lemma 3.5 from [16], the dual cone to B(N) has been

described in more complicated way, as the conic hull of an infinite set of coefficient vectors

for balancing set systems. Our simplification allows one to observe the following.

Corollary 5.1 If |N | ≥ 2 then the cone B(N) is the conic hull of its linearity space L(N)

of modular set functions and the functions −δS for ∅ 6= S ⊂ N .

Note that L(N) is spanned by the functions ±υ↑∅ and ±υ↑{i} for i ∈ N . In particular,

the extreme rays of the pointed cone B`(N) := {m ∈ B(N) : m({i}) = 0 for i ∈ N} are

those generated by functions −δS for S ⊆ N , |S| ≥ 2.
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Proof. Definition 5.1 allows one to observe that the linear hull of ΘN
N is the set of

o-standardized functions and that (all) facets of ΘN
N are defined by inequalities 〈θ,−δS〉 ≥ 0

for ∅ 6= S ⊂ N . Thus, the dual cone B(N) has the orthogonal complement of the linear hull

of ΘN
N as its linearity space and the atomic faces of B(N) correspond to facets of ΘN

N . These

atomic faces correspond to the extreme rays of any pointed version of B(N). 2

5.3 Characterization of the totally balanced cone

First we introduce a polytope generating the dual cone to T (N).

Definition 5.2 For any set M ⊆ N , |M | ≥ 2, we denote

∆M := { θ ∈ RP(N) : θ(S) ≤ 0 for ∅ 6= S ⊂M, θ(R) = 0 for R ⊆ N , R \M 6= ∅,

θ(∅) = 1,
∑
S⊆N

θ(S) = 0, and
∑

T⊆N : i∈T
θ(T ) = 0 for any i ∈ N }

and introduce the polytope

∆ := conv

 ⋃
M⊆N,|M |≥2

∆M

 .

Note that every ∆M is a bounded polyhedron as 1 = θ(∅) =
∑
∅6=T⊆M\{i}−θ(T ) ≥ 0 for

any i ∈M and θ(M) =
∑

S⊂M −θ(S). This makes the definition correct.

Lemma 5.5 If |N | ≥ 2 and m ∈ RP(N) then

m ∈ T (N) ⇔ 〈θ,m〉 ≥ 0 for any θ ∈ ∆.

Proof. If m ∈ T (N) and θ ∈ ∆M for some M ⊆ N , |M | ≥ 2, then the restriction of

m to P(M) belongs to B(M), the restriction of θ to P(M) belongs to ΘM
M and 〈θ,m〉 =∑

S⊆M θ(S) ·m(S) ≥ 0 by Lemma 5.3 applied to N = M . A convex combination of valid

inequalities for T (N) is a valid inequality for T (N) which gives 〈θ,m〉 ≥ 0 for θ ∈ ∆.

Conversely, if all the inequalities hold for m ∈ RP(N) then, for any fixed M ⊆ N , |M | ≥ 2,

the restriction of m to P(M) satisfies
∑

S⊆M θ′(S) ·m(S) ≥ 0 for any θ′ ∈ ΘM
M with θ′(∅) = 1.

By Lemma 5.1, any non-zero θ ∈ ΘM
M satisfies θ(∅) > 0 and is a positive multiple of such

θ′. This implies the same inequalities for any θ ∈ ΘM
M . Hence, by Lemma 5.3 applied to

N = M , the restriction of m to P(M) belongs to B(M). The same is the case with M ⊆ N ,

|M | = 1, which gives m ∈ T (N). 2

5.4 Proof of Theorem 5.1

Lemma 5.6 A vector θ ∈ RP(N) is an extreme point of ∆ iff it is αB(∅)−1-multiple of αB

for a non-trivial irreducible min-balanced system B on some M ⊆ N , |M | ≥ 2.
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Proof. Let α̃B denote the αB(∅)−1-multiple of αB for any such system B. Every such vector

α̃B for a min-balanced system B on M ⊆ N , |M | ≥ 2, belongs to ∆M (see the formula (6)

in Section 3.3) and, therefore, it belongs to ∆.

We first show that any extreme point θ of ∆ has the form α̃B for an irreducible min-

balanced system B on some M ⊆ N , |M | ≥ 2. Because of the definition of ∆ there exists

such M that θ is an extreme point of ∆M . In particular, the restriction of θ to P(M)

generates an extreme ray of ΘM
M . By Lemma 5.4 applied to N = M we derive that θ = α̃B

for some non-trivial min-balanced system on M . Corollary 4.1 then implies that B must be

irreducible as otherwise θ is a convex combination of α̃C ∈ ∆ for irreducible min-balanced

systems C ⊆ P(M).

The second step is to show that every α̃B for a non-trivial irreducible min-balanced

system B on some M ⊆ N , |M | ≥ 2, is an extreme point of ∆. As α̃B ∈ ∆, by the former

step, one can write

α̃B =
t∑
i=1

γi · θi where t ≥ 1, γi > 0 for i = 1, . . . , t,
∑t

i=1 γi = 1, and

∀ i = 1, . . . , t θi = α̃Bi for non-trivial min-balanced Bi on Mi ⊆ N , |Mi| ≥ 2.

We are going to show that θi = α̃B for all i = 1, . . . , t, which gives the extremity of α̃B.

Realize that, for every R ⊆ N , one has υ↑R ∈ T (N): if ∅ 6= R ⊆ S for some ∅ 6= S ⊆ N ,

then the restriction of υ↑R to P(S) is in B(S) ⊆ B(S) because 1
|R| · χR ∈ RS is in its core.

Therefore, by Lemma 5.5, 〈θi, υ↑R〉 ≥ 0 for any i and R. For any R ⊆ N with R \M 6= ∅,

0 =
∑

S⊆N :R⊆S
α̃B(S) = 〈α̃B, υ↑R〉 =

t∑
i=1

γi · 〈θi, υ↑R〉︸ ︷︷ ︸
≥0

⇒ ∀ i 〈θi, υ↑R〉 = 0 .

Hence, we observe by decreasing induction governed by cardinality of R that, for any R ⊆ N
with R \M 6= ∅ and i = 1, . . . , t, one has θi(R) = 0. Thus, for every i one has Bi ⊆ P(M).

A crucial observation is that, in fact, Bi ⊆ B for any i = 1, . . . , t. To verify that assume

for contradiction that there exists j such that Bj \ B 6= ∅. Consider inclusion minimal

set A ⊆ N such that [ ∃ j ∈ {1, . . . , t} A ∈ Bj \ B ]. By Bi ⊆ P(M) for all i one has

A ⊆ M . The fact A ∈ Bj implies, by Lemma 2.2, that ∅ 6= A ⊂
⋃
Bj = Mj ⊆ M , which

gives A ⊂ M . Because ∅ 6= A 6∈ B one has 0
(6)
= α̃B(A) =

∑t
i=1 γi · θi(A) (see Section

3.3) and, since j exists with A ∈ Bj one has θj(A) = α̃Bj (A) < 0 ⇒ γj · θj(A) < 0

implying the existence of k ∈ {1, . . . , t} such that α̃Bk(A) = θk(A) > 0, which means

A = Mk =
⋃
Bk (see Section 3.3). The inclusion minimality of A means, for any Z ⊂ A

and i, that Z ∈ Bi ⇒ Z ∈ B. In particular, any Z ∈ Bk satisfies both Z ⊂ A and Z ∈ B
and we have shown Bk ⊆ BA = {S ∈ B : S ⊂ A}. Since Bk is min-balanced on Mk = A it

implies that χA is in the conic hull of {χS : S ∈ BA}.
Now, for every ε ≥ 0 we put

θε := α̃B + ε · (α̃B − θk)
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and observe that, for sufficiently small ε > 0, one has θε ∈ ∆M (use Definition 5.2 and

realize that B is on M and Bk ⊆ BA ⊆ B). On the other hand, θε 6∈ ∆M for sufficiently large

ε > 0 (because ∆M is bounded). Take maximal ε > 0 such that θε ∈ ∆M , which means

that there exists B ⊂ A such that θε(B) = 0 (such B necessarily belongs to Bk ⊆ B). The

definition of ∆M allows one to observe that C := {S ⊆M : θε(S) < 0} is such that χM is in

the conic hull of {χT : T ∈ C }. Indeed, realize that θε(M) > 0 (because of
⋃
Bk = A ⊂M)

and that θε vanishes outside P(M) (because θε ∈ ∆M ). The o-standardization condition

from Definition 5.2 implies, for every i ∈M ,

θε(M) = −
∑

T⊆M : i∈T
θε(T ) = −

∑
T⊆M

θε(T ) · χT (i) ⇒ χM (i) = 1 =
∑
T⊆M

−θε(T )

θε(M)︸ ︷︷ ︸
≥0

·χT (i) ,

which implies the claim about C. Since C ⊆ {A} ∪ (B \ {B}) one has χM is in the conic

hull of {χT : T ∈ {A} ∪ (B \ {B}) }. This altogether means, by Definition 4.1, that B is

reducible, which contradicts the assumption about B.

Thus, we are sure that Bi ⊆ B for all i = 1, . . . , t. If Bi is such that Mi =
⋃
Bi = M

then the assumption that B is min-balanced on M implies Bi = B and αBi = αB. Hence,

θi = α̃Bi = α̃B whenever Mi = M . It remains to show that there is no j ∈ {1, . . . , t} such

that Mj :=
⋃
Bj ⊂M . Assume for contradiction that such j exists and write

α̃B =

t∑
i=1

γi · θi =
∑

i:Mi=M

γi · θi +
∑

j:Mj⊂M
γj · θj =

∑
i:Mi=M

γi · α̃B +
∑

j:Mj⊂M
γj · θj

=⇒ (1−
∑

i:Mi=M

γi) · α̃B(M) =
∑

j:Mj⊂M
γj · θj(M) =

∑
j:Mj⊂M

γj · α̃Bj (M) = 0 ,

which gives a contradiction because both 1−
∑

i:Mi=M
γi > 0 and α̃B(M) > 0. Thus, one

necessarily has θi = α̃B for all i ∈ {1, . . . , t} and the extremity of α̃B is confirmed. 2

The following is a consequence of earlier Lemma 5.5.

Corollary 5.2 If |N | ≥ 2 and m ∈ RP(N) then m ∈ T (N) iff

• 〈αB,m〉 ≥ 0 for non-trivial irreducible min-balanced systems B on M ⊆ N , |M | ≥ 2,

which is equivalent to a formally stronger condition

• 〈αB,m〉 ≥ 0 for any non-trivial min-balanced system B on M ⊆ N , |M | ≥ 2.

Proof. The first statement follows directly from Lemma 5.5 and Lemma 5.6. The second

condition is equivalent to the first one by Corollary 4.1. 2

Theorem 5.1 is now easy to prove.
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Proof. By Lemma 5.5, the cone T (N) is dual to the cone ∆̃ spanned by ∆. The fact that

∆̃ is a closed convex cone then implies that ∆̃ and T (N) are each others dual cones (see

Section 2). Hence, the extreme points of ∆, characterized in Lemma 5.6, correspond to facets

of T (N). The coefficient vectors for inequalities are just the extreme points of ∆, which are

positive multiples of αB for non-trivial irreducible min-balanced systems B ⊆ P(N). 2

6 Conjecture concerning the exact cone

One of our research goals was to characterize facet-defining inequalities for the cone E(N).

Despite we have not succeeded to get an ultimate answer to that question we came to

a sensible conjecture about what are these inequalities. Because a crucial notion in our

conjecture is the concept of an irreducible min-balanced system introduced in Section 4, we

will formulate the conjecture in this paper.

Number of players n = 2 n = 3 n = 4 n = 5

Number of facets 1 6 44 280
Number of its permutational types 1 2 6 16

Table 1: Numbers of facets of E(N) and of its types for n = |N | ≤ 5.

The first step towards the conjecture was computing all the facet-defining inequalities

for E(N) in case |N | ≤ 5; their numbers are shown in Table 1. If |N | = 2, we have

E(N) = B(N). If |N | = 3, then E(N) coincides with the cone of supermodular functions.

The results in case that |N | = 4 are given in Example 6.1 below.

Example 6.1 We list all six permutational types of 44 facet-defining inequalities for E(N)

in case |N | = 4. We present a type representative, a number of inequalities of this type,

the induced set system (see Section 3.3), and indicate what is the conjugate inequality (see

Definition 3.2).

1. m(ab)−m(a)−m(b) +m(∅) ≥ 0 6×
Bα = {a, b} conjugate type 4.

2. m(abc)−m(a)−m(bc) +m(∅) ≥ 0 12×
Bα = {a, bc} conjugate type 5.

3. 2 ·m(abc)−m(ab)−m(ac)−m(bc) +m(∅) ≥ 0 4×
Bα = {ab, ac, bc} conjugate type 6.

4. m(abcd)−m(acd)−m(bcd) +m(cd) ≥ 0 6×
Bα = {acd, bcd} conjugate type 1.

5. m(abcd)−m(ad)−m(bcd) +m(d) ≥ 0 12×
Bα = {ad, bcd} conjugate type 2.
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6. m(abcd)−m(ad)−m(bd)−m(cd) + 2 ·m(d) ≥ 0 4×
Bα = {ad, bd, cd} conjugate type 3.

2

In case |N | = 5 we have processed the results of computation performed by Quaeghebeur

[14] in context of imprecise probabilities. The point is that the concept of a coherent lower

probability, used in that context, corresponds to the notion of a normalized exact game.

The reader is referred to [10] for more details about the correspondence between some

game-theoretical concepts and those appearing in the context of imprecise probabilities.

The next step was to classify the inequalities into their permutational types. Finally,

we have analyzed the results from a theoretical point of view and formulated the following

conjecture, which is known to be true in case |N | ≤ 5.

Conjecture 1 If |N | ≥ 3 then the facet-defining inequalities for the cone E(N) are just the

inequalities which correspond to non-trivial irreducible min-balanced systems B with
⋃
B ⊂ N

and their conjugate inequalities (see Sections 3.2–3.3).

The conjecture agrees with the fact that E(N) is closed under reflection (see Lemma 3.4).

As a consequence of our main result we obtain the following simpler version of the conjecture,

which is formally weaker.

Corollary 6.1 The validity of Conjecture 1 implies

E(N) = T (N) ∩ T ∗(N) where T ∗(N) := {m ∈ RP(N) : m∗ ∈ T (N) }.

Thus, in words, the weaker version of the conjecture is as follows (see Remark 3.1):

a game m ∈ G(N) is exact iff both m and its anti-dual −m? are totally balanced.

Proof. The inclusion E(N) ⊆ T (N) and the fact that E(N) is closed under reflection (see

Lemma 3.3) imply E(N) ⊆ T ∗(N). Hence, the inclusion E(N) ⊆ T (N) ∩ T ∗(N) surely

holds. To show the converse inclusion consider m ∈ T (N) ∩ T ∗(N) and, by Theorem 5.1

and the formula (5), observe that inequalities 〈αB,m〉 ≥ 0 and 〈α∗B,m〉
(5)
= 〈αB,m∗〉 ≥ 0 are

valid for every non-trivial irreducible min-balanced system B with
⋃
B ⊂ N . This implies,

by validity of Conjecture 1, that m ∈ E(N). Thus, T (N) ∩ T ∗(N) ⊆ E(N). 2

In fact, we are able to prove the converse of the statement from Corollary 6.1, namely

that E(N) = T (N) ∩ T ∗(N) implies the validity of the conjecture. Nonetheless, because a

detailed proof of that statement would require 10 additional pages of technicalities while

such a result is only marginally relevant to the main topic of this paper, we decided to omit

that proof herein.
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7 Conclusions

The prime focus of this paper is on the polyhedral cone of totally balanced games. We have

introduced a highly relevant concept of an irreducible min-balanced set system (Definition 4.1).

Our main result, Theorem 5.1, says that there is a one-to-one correspondence between facet-

defining inequalities for the cone of totally balanced games and non-trivial irreducible

min-balanced systems on subsets of the player set. We have only paid attention to the

outer (= facial) description of the cone, whereas the problem of its inner description (=

characterizing it as the conic hull of finitely many vectors) seems to be relevant as well; this

remains to be an open task.

Some of our minor results concern the cone of balanced games. The extended version of

this cone is closed under reflection transformation, which implies that every facet-defining

inequality for it is accompanied with a conjugate facet-defining inequality (Lemma 3.4). We

have re-visited a procedure that associates a facet-defining inequality with a min-balanced set

system and extended a well-known classic result by Shapley [16] saying that the facet-defining

inequalities for the cone of balanced games correspond to non-trivial min-balanced systems

on the whole player set N ; see Section 3.3. What we have shown is that a complementary

set system to a min-balanced set system on N is also a min-balanced system on N and gives

a conjugate inequality (Corollary 3.1). Further side-result is the inner description of the

cone of balanced games (Corollary 5.1).

Our tools made it also possible to contribute to the study of the cone of exact games.

The extended version of this cone is also closed under reflection transformation, which

implies that facet-defining inequalities for it come in pairs of mutually conjugate inequalities

(Lemma 3.4). In this paper we have formulated a conjecture about what are facet-defining

inequalities for this cone, which complies with the above observation (see Conjecture 1).

Our hypothesis is supported by computations for a small number of players; thus, we will

concentrate on proving/disproving this conjecture in our future research. Note in this context

that the extremity of an exact game can be recognized by a relatively simple linear-algebraic

test; see [21, Proposition 4] for the details.
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A Min-balanced systems for a small number of players

Here we give a list of all permutational types of non-trivial min-balanced systems for at

most four players. We present a type representative, indicate what is the type of the

complementary system (Definition 3.4) and whether the type is irreducible, give the standard
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inequality ascribed to the system (see Section 3.3) and say what is the number of systems of

this type. In order to shorten the notation we write abc instead of {a, b, c}.

A.1 Two players

The only non-trivial min-balanced system on N = {a, b} is as follows.

1. B = {a, b} self-complementary, irreducible

m(ab)−m(a)−m(b) +m(∅) ≥ 0 1×

A.2 Three players

The following are all three types of 5 non-trivial min-balanced systems on N = {a, b, c}.

1. B = {a, b, c} complementary type 3.

m(abc)−m(a)−m(b)−m(c) + 2 ·m(∅) ≥ 0 1×

2. B = {a, bc} self-complementary, irreducible

m(abc)−m(a)−m(bc) +m(∅) ≥ 0 3×

3. B = {ab, ac, bc} complementary type 1., irreducible

2 ·m(abc)−m(ab)−m(ac)−m(bc) +m(∅) ≥ 0 1×

Thus, one has two types of 4 irreducible min-balanced systems on N = {a, b, c}.

A.3 Four players

The following are all nine types of 41 non-trivial min-balanced system on N = {a, b, c, d}.

1. B = {a, b, c, d} complementary type 9.

m(abcd)−m(a)−m(b)−m(c)−m(d) + 3 ·m(∅) ≥ 0 1×

2. B = {a, b, cd} complementary type 6.

m(abcd)−m(a)−m(b)−m(cd) + 2 ·m(∅) ≥ 0 6×

3. B = {ab, cd} self-complementary, irreducible

m(abcd)−m(ab)−m(cd) +m(∅) ≥ 0 3×

4. B = {a, bcd} self-complementary, irreducible

m(abcd)−m(a)−m(bcd) +m(∅) ≥ 0 4×

5. B = {a, bc, bd, cd} complementary type 8.

2 ·m(abcd)− 2 ·m(a)−m(bc)−m(bd)−m(cd) + 3 ·m(∅) ≥ 0 4×

6. B = {ab, acd, bcd} complementary type 2., irreducible

2 ·m(abcd)−m(ab)−m(acd)−m(bcd) +m(∅) ≥ 0 6×
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7. B = {a, bd, cd, abc} this type is self-complementary

2 ·m(abcd)−m(a)−m(bd)−m(cd)−m(abc) + 2 ·m(∅) ≥ 0 12×

8. B = {ab, ac, ad, bcd} complementary type 5., irreducible

3 ·m(abcd)−m(ab)−m(ac)−m(ad)− 2 ·m(bcd) + 2 ·m(∅) ≥ 0 4×

9. B = {abc, abd, acd, bcd} complementary type 1., irreducible

3 ·m(abcd)−m(abc)−m(abd)−m(acd)−m(bcd) +m(∅) ≥ 0 1×

Thus, one has five types of 18 irreducible min-balances systems on N = {a, b, c, d}.
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