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a b s t r a c t

Optimal control problems with oscillations (chattering controls) and concentrations (impulsive controls)
can have integral performance criteria such that concentration of the control signal occurs at a discon-
tinuity of the state signal. Techniques from functional analysis (anisotropic parametrized measures) are
applied to give a precise meaning of the integral cost and to allow for the sound application of numerical
methods. We show how this can be combined with the Lasserre hierarchy of semidefinite programming
relaxations.
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1. Introduction

As a consequence of optimality, various limit behaviors can be
observed in optimal control: minimizing control law sequences
may feature increasingly fast variations, called oscillations (chat-
tering controls Young, 1969), or increasingly large values, called
concentrations (impulsive controls Luenberger, 1969). The simul-
taneous presence of oscillations and concentrations in optimal
control needs careful analysis and specific mathematical tools,
so that the numerical methods behave correctly. Previous work
of two of the authors (Claeys, Henrion, & Kružík, 2017) com-
bined tools from partial differential equation analysis
(DiPerna–Majda measures DiPerna & Majda, 1987) and semidef-
inite programming relaxations (the moment-sums-of-squares or
Lasserre hierarchy Lasserre, Henrion, Prieur, & Trélat, 2008) to de-
scribe a sound numerical approach to optimal control in the simul-
taneous presence of oscillations and concentrations. To overcome
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difficulties in the analysis, a certain number of technical assump-
tionsweremade, see Claeys et al. (2017, Assumption 1, Section 2.2),
so as to avoid the simultaneous presence of concentrations (in the
control signals) and discontinuities (in the system trajectories).

In the present contribution we remove these technical assump-
tions and accommodate the simultaneous presence of concentra-
tions and discontinuities, while allowing oscillations as well. For
this, we exploit a recent extension of the notion of DiPerna–Majda
measures called anisotropic parametrized measures (Kałamajska,
Krömer, & Kružík, 2018), so that it makes sense mathematically
while allowing for an efficient numerical implementation with
semidefinite programming relaxations.

Tomotivate further ourwork, let us use an elementary example
to illustrate the difficulties that may be faced in the presence of
discontinuities and concentrations. Consider the optimal control
problem

inf
u

∫ 1

0
(t + y(t))u(t)dt

s.t. ẏ(t) = u(t), y(0) = 0, y(1) = 1,
1 ≥ y(t) ≥ 0, u(t) ≥ 0, t ∈ [0, 1]

(1)

where the infimum is with respect to measurable controls of time.
The trajectory y should move the state from zero at initial time to
one at final time, yet for the non-negative integrand to be as small
as possible, the control u should be zero all the time, except maybe
at time zero. We can design a sequence of increasingly large con-
trols u that drive y from zero to one increasingly fast. We observe
that this sequence has no limit in the space ofmeasurable functions
but it tends (in a suitable weak sense) to the Dirac measure at
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time zero. We speak of control signal concentration or impulsive
control. The integrand contains the product yu of a function whose
limit becomes discontinuous at a point where the other function
has no limit, hence requiring careful analysis. Here however, this
product can be written yẏ =

d
dt

y2
2 and hence the integral term is

well defined since
∫ 1
0 yẏdt =

y(1)2−y(0)2
2 =

1
2 . Consequently the

cost in (1) is equal to
∫ 1
0 tu(t)dt +

1
2 and independent of the actual

trajectory.
This reasoning is valid because ẏ(t) = u(t) in problem (1),

but this integration trick cannot be carried out for more general
differential equations. For example we cannot solve analytically
the following modified optimal control problem

inf
u

∫ 1

0
(t + y(t))u(t)dt

s.t. ẏ(t) =

√
ε2 + u2(t), y(0) = 0, y(1) = 1,

1 ≥ y(t) ≥ 0, u(t) ≥ 0, t ∈ [0, 1]

(2)

where ε is a given real number. Providing a mathematically sound
framework for the analysis of this kind of phenomenon combining
concentration and discontinuity, and possibly also oscillation (not
illustrated by the simple example above), is precisely the purpose
of our paper.

Contribution

The contribution of our paperwith respect to previouswork can
be summarized as follows:

• we propose a unified approach for handling the simultaneous
presence of oscillations, concentrations and discontinuities,
where previous work considered either oscillations with-
out concentrations (see Fattorini, 1999; Gaitsgory & Quin-
campoix, 2009; Roubíček, 1997; Vinter, 1993 and references
therein), or concentrations without oscillations (see Claeys,
Arzelier, Henrion, & Lasserre, 2014 and references therein),
or oscillations and concentrations without discontinuities
(see Claeys et al., 2017 and references therein);

• we remove the technical assumptions of Claeys et al. (2017)
to allow for the simultaneous presence of concentration (of
the control) and discontinuity (of the trajectory);

• as in Claeys et al. (2017), our approach allows for a construc-
tive solution via the Lasserre hierarchy (Lasserre et al., 2008);
this now provides a unified numerical scheme to deal with
oscillations, concentrations and discontinuities;

• we make a connection between anisotropic measures and
the occupation measures, which are classical objects in dy-
namical systems and Markov decision processes, and which
have been used in linear reformulations of nonlinear optimal
control problems (Gaitsgory & Quincampoix, 2009; Lasserre
et al., 2008; Vinter, 1993); the notion of occupation measure
was extended in Claeys (2013), Claeys et al. (2014) to cope
with concentration (also called impulsive controls); it was
pointed out in Zidani (2013) that this extension allows for
optimization over all possible graph completions, a tool in-
troduced in Bressan and Rampazzo (1988) – see also Bressan
and Piccoli (2007) – to deal with differential equations with
discontinuous solutions. Anisotropic measures allow for a
further generalization of these approaches.

Some of the results reported in our paper were communicated
orally at the 11th International Conference on Parametric Opti-
mization and Related Topics (ParaOptXI), Prague, Czechia, Sept.
19–22, 2017 and at the 23rd International Symposium on Math-
ematical Theory of Networks and Systems, Hong Kong, China, July
16–20, 2018. A full version of this paperwithmore detailed numer-
ical examples is available as a LAAS-CNRS Technical Report under
number 18218, on the HAL depository under number 01802883,
and on the arXiv depository under number 1807.04199.

Outline

The outline of the paper is as follows. In Section 2 we describe
the limit phenomena typical of optimal control, namely oscilla-
tions, concentrations and discontinuities, as well as the linear for-
mulation of optimal control problems using measures. In Section 3
we introduce the anisotropic parametrized measures, illustrating
their use with elementary examples. We show how these mea-
sures can cope with concentrations and discontinuities, giving a
meaning to otherwise ill-defined integrals. In Section 4 we apply
the anisotropic parametrized measures to optimal control, and in
Section 5we describe their relationshipwith occupationmeasures,
a classical tool in dynamical systems and Markov decision pro-
cesses. In Section 6 we describe how the Lasserre hierarchy can
be applied to our problem, and in Section 7 we provide a simple
illustrative example that can be solved numerically, and then ana-
lytically. Finally, concluding remarks are gathered in Section 8.

2. Relaxing optimal control

Let L : [0, 1]×Rn
×Rm

→ R and F : [0, 1]×Rn
×Rm

→ Rn be
continuous functions. For initial y0 and final conditions y1 inRn and
some integer 1 ≤ p ≤ ∞, the formulation of the classical optimal
control problem is

v∗
:= inf

u

∫ 1

0
L(t, y(t), u(t))dt

s.t. ẏ(t) = F (t, y(t), u(t)), y(0) = y0, y(1) = y1,

y ∈ W 1,1([0, 1];Rn), u ∈ L p([0, 1];Rm)

(3)

where W 1,p([0, 1]; X) is the space of functions from [0, 1] to X
whose weak derivative belongs to L p([0, 1]; X), the space of func-
tions from [0, 1] to X whose pth power is Lebesgue integrable.

A pair (u, y) with a control u ∈ L p([0, 1];Rm) and the corre-
sponding trajectory y ∈ W 1,1([0, 1];Rn) satisfying the differential
equation of problem (3) is called admissible. Given a minimizing
admissible sequence (uk, yk)k∈N, the infimum in (3) might not be
attained because (uk)k∈N might not converge in L p and (yk)k∈N
might not converge in W 1,1 as L 1 is not reflexive. To overcome
this issue, it has been proposed to relax the regularity assumptions
on u and y. We discuss some of the approaches now in detail.

2.1. Oscillations

The limit of a minimizing sequence for (3) might fall out of the
feasible space because of oscillation effects of (uk)k∈N. Consider for
example the optimal control problem

inf
u

∫ 1

0
(u(t)2 − 1)2 + y(t)2dt

s.t. ẏ(t) = u(t), y(0) = 0, y(1) = 0,

y ∈ W 1,4([0, 1]), u ∈ L 4([0, 1]).

(4)

As the integrand in the cost is a sum of squares, the value
is at least zero. To see that actually it is equal to zero, consider
the sequence of controls (uk)k∈N ⊆ L 4([0, 1]) equal to 1 if t ∈[
2l+1
2k

, l+1
2k−1

]
for 0 ≤ l ≤ k − 1 and equal to −1 otherwise, with

u1 := 0. For the corresponding sequence of trajectories (yk)k∈N
defined by yk(t) :=

∫ t
0 uk(s)ds it holds that yk ∈ W 1,4([0, 1]) and

yk(1) = 0 as desired. Hence, (uk)k∈N is a sequence of feasible
controls. A short calculation shows that using this sequence the
cost in (4) converges to zero. The sequence (yk)k∈N converges to
y∞ := 0 in W 1,4, but the sequence (uk)k∈N does not converge to
u∞ := 0 in L 4.

In contrast to that, the sequence ofmeasures definedbydνk(t, u)
:= δu(t)(du|t)dt converges weakly to dν(t, u) :=

1
2 (δ−1 + δ1)(du)dt
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in the sense that for all f ∈ C ([0, 1]) and g ∈ Cp(R), it holds
limk→∞

∫ 1
0

∫
R f (t)g(u)dνk(t, u) =

∫ 1
0

∫
R f (t)g(u)dν(t, u) where

Cp(R) := {g ∈ C (R) : g(u) = o(|u|p) for |u| → ∞} is the set
of continuous functions of less than pth growth. Integration then
yields y∞(1) =

∫ 1
0

∫
R udν(t, u) =

∫ 1
0

∫
R u 1

2 (δ−1 + δ1)(du)dt = 0. A
similar reasoning shows that the cost with respect to ν is zero.

More generally, this observation motivates to relax the reg-
ularity assumptions on the control u in (3) and also allow for
limits dν(t, u) = dω(u|t)dt of control sequences (uk)k∈N ⊆

L p([0, 1];Rm). In general the measure ω depends on time, i.e., we
have a family of probability measures ω(.|t)t∈[0,1] ⊂ P(Rm),
where P(X) denotes the set of probability measures on X , i.e. non-
negative Borel regularmeasureswithunitmass. Suchparametrized
measures obtained as limits of a sequence of functions (uk)k∈N ⊆

L p([0, 1];Rm) have been called Lp-Youngmeasures. For an explicit
characterization of these measures see e.g. Kružík and Roubíček
(1999). For a comprehensive reference on Young measures and
their use in the control of ordinary and partial differential equa-
tions, see Fattorini (1999, Part III).

The relaxed version of (3) that now takes into account oscillat-
ing control sequences can be written as

inf
ω

∫ 1

0

∫
Rm

L(t, y(t), u)ω(du|t)dt

s.t.
∫ 1

0

∫
Rm

F (t, y(t), u)ω(du|t)dt = y1 − y0

y ∈ W 1,1([0, 1];Rn), ω(.|t) ∈ P(Rm)

(5)

where the constraint is a reformulation of the differential equation
ẏ(t) =

∫
Rm F (t, y(t), u)ω(du|t), t ∈ [0, 1] with the boundary

conditions y(0) = y0 and y(1) = y1.

2.2. Concentrations

Oscillation of the control sequence due to nonconvexity of the
functional is not the only reason that prevents the infimum in
(3) of being attained. As a second example consider the following
problem of optimal control:

inf
u

∫ 1

0
(t −

1
2 )

2u(t)dt

s.t. ẏ(t) = u(t) ≥ 0, y(0) = 0, y(1) = 1,

y ∈ W 1,1([0, 1]), u ∈ L 1([0, 1]).

(6)

Note that the control enters into the problem linearly. The value
is zero as the integrand is positive and using the sequence of
controls uk equal to k if t ∈

[ k−1
2k , k+1

2k

]
and to 0 otherwise, the cost

converges to zero. Neither (uk)k∈N nor any subsequence converges
in L 1 as this space is not reflexive. In contrast to the previous
example this time (yk)k∈N does not converge in W 1,1([0, 1]) nei-
ther because W 1,1 is not reflexive. We hence use the extension
BV ([0, 1]), the space of functions with bounded variation, as a re-
laxed space for the trajectory. Following the same approach as be-
fore we consider the control as a measure dνk(t, u) := δuk(t)(du)dt .
As u appears linearly in (6) we can directly integrate with respect
to u and define a sequence of probability measures (τk)k∈N ⊆

P([0, 1]) by τk(dt) :=
∫
R udνk(t, u). A short calculation shows that

this sequence has the weak limit τ := δ 1
2
, i.e. for all f ∈ C ([0, 1])

it holds limk→∞

∫ 1
0 f (t)τk(dt) =

∫ 1
0 f (t)τ (dt). Note that by inte-

grating before passing to the limit we transfer the unboundedness
of the control into the measurement of time and only keep the
direction (i.e. +1 in this example) of the control. Whereas we
observed a superposition of two different controls in the previous

example, here we see a concentration of the control in time. For
optimal control problems with linear growth in the control:

inf
u

∫ 1

0
L(t, y(t))u(t)dt

s.t. ẏ(t) = F (t, y(t))u(t), y(0) = y0, y(1) = y1,

y ∈ W 1,1([0, 1];Rn), u ∈ L 1([0, 1];Rm)

we can therefore build the following relaxation that can take into
account concentration effects of the control:

inf
τ

∫ 1

0
L(t, y(t))τ (dt)

s.t.
∫ 1

0
F (t, y(t))τ (dt) = y1 − y0,

y ∈ BV ([0, 1];Rn), τ ∈ P([0, 1]).

(7)

See Claeys et al. (2014) for an application of the Lasserre hierarchy
for solving numerically non-linear control problems in the pres-
ence of concentration.

2.3. Oscillation and concentration

The relaxations proposed so far allow to consider controls that
are either oscillating in value or concentrating in time. However it
is possible that both effects appear in the same problem. Consider
for example

inf
u

∫ 1

0

u(t)2

1 + u(t)4
+ (y(t) − t)2 dt

s.t. ẏ(t) = u(t) ≥ 0, y(0) = 0, y(1) = 1,

y ∈ W 1,1([0, 1]), u ∈ L 1([0, 1]).

(8)

The infimum value zero of (8) can be approached arbitrarily close
by a sequence of controls (uk)k∈N equal to k if t ∈

[
l
k −

1
2k2

, l
k +

1
2k2

]
for 1 ≤ l < k, and equal to 0 otherwise, with u1 := 1. The idea to
capture the limit behavior of this sequence is to combine a Young
measure on the control and replacing the uniformmeasure on time
by a more general measure on time. Note that due to linearity it
was possible in Section 2.2 to transfer the limit behavior of the
control into the measurement of time. In the present example
the control enters non-linearly in the cost, which is why we will
need to allow the control to take values at infinity. We consider a
metrizable compactification βUR of the control space correspond-
ing to the ring U of complete and separable continuous functions
(see Section 3.1 for more details). Then the sequence of measures
dνk(t, u) := δuk(t)(du|t)dt converges to dν(t, u) := ω(du)τ (dt) with
ω(du) :=

1
2 (δ0 + δ∞)(du) and τ (dt) := 2dt understood in the

following weak sense for all f ∈ C ([0, 1]) and g0 ∈ U:

lim
k→∞

∫ 1

0

∫
R
f (t)g0(u)(1 + |u|p)dνk(t, u) =∫ 1

0

∫
βUR

f (t)g0(u)dν(t, u) =

∫
f g0 ν.

(9)

In the remainder of the paper, we will sometimes use the above
right hand side compact notation whenever the variables and
domains of integration are clear from the context.

Measures ν ∈ P([0, 1]×βURm) obtained as limits of sequences
(uk)k∈N ⊆ L p([0, 1];Rm) in the sense of (9) have been called
DiPerna–Majda measures. They will be discussed in more detail in
Section 3.1. It turns out that every DiPerna–Majda measure ν ∈

P([0, 1] × βURm) can be disintegrated into a measure τ on time
and an Lp-Youngmeasureω on βURm, i.e. dν(t, u) = dω(du|t)dτ (t)
for some τ ∈ P([0, 1]) and ω(.|t) ∈ P(βURm).
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A relaxed version of (3) taking into account both oscillation and
concentration effects can hence be stated as

inf
ν

∫
L0(t, y(t), u) dν(t, u)

s.t.
∫

F0(t, y(t), u)dν(t, u) = y1 − y0,

ν ∈ P([0, 1] × βURm)

(10)

where

L0(t, y, u) :=
L(t, y, u)
1 + |u|p

, F0(t, y, u) :=
F (t, y, u)
1 + |u|p

. (11)

In Claeys et al. (2017), the Lasserre hierarchy is adapted to compute
numerically DiPerna–Majda measures and solve optimal control
problem featuring oscillations and concentrations. However, the
approach is valid under a certain number of technical assumptions
on the data L and F , see Claeys et al. (2017, Assumption 1, Section
2.2). These assumptions are enforced to prevent the simultaneous
presence of concentration and discontinuity.

2.4. Oscillations, concentrations and discontinuities

As mentioned in the introduction, the integrals in (3) might not
be well defined, as concentration effects of the control are likely to
cause discontinuities in the trajectory occurring at the same time.
In view of the previous examples we propose to generalize the
DiPerna–Majda measures, which themselves are a generalization
of Young measures, even further and now also relax the trajectory
to ameasure valued function depending on time and control. In the
sequel we describe accordingly the set of anisotropic parametrized
measures. Then we provide a linear formulation of optimal control
problem (3) that can cope with oscillations, concentrations and
discontinuities in a unified fashion.

3. Anisotropic parametrized measures

In the following we describe the generalized DiPerna–Majda
measures. For this it will be instructive to review first the classical
DiPerna–Majda measures.

3.1. DiPerna-Majda measures

Let U be a complete1 and separable subring of continuous
bounded functions from Rm to R. It is known (Engelking, 1989,
Sect. 3.12.22) that there is a one-to-one correspondence between
such rings and metrizable compactifications of Rm. By a compacti-
fication we mean a compact set, denoted by βURm, into which Rm

is embedded homeomorphically and densely. For simplicity, we
will not distinguish between Rm and its image in βURm. Similarly,
we will not distinguish between elements of U and their unique
continuous extensions defined on βURm.

DiPerna and Majda (1987), see also Roubíček (1997), have
shown that every bounded sequence (uk)k∈N inL p([0, 1];Rm) with
1 ≤ p < ∞ has a subsequence (denoted by the same indices) such
that there exists a probability measure τ ∈ P([0, 1]) and an Lp-
Young measure ω(.|t) ∈ P(βURm) satisfying for all f ∈ C ([0, 1])
and g0 ∈ U:

lim
k→∞

∫ 1

0
f (t)g0(uk(t))(1 + |uk(t)|p)dt

=

∫ 1

0

∫
βURm

f (t)g0(u)ω(du|t)τ (dt)

=

∫ 1

0

∫
βURm

f (t)g0(u)dν(t, u) =

∫
f g0 ν,

(12)

1 A ring of functions is complete if it contains all constant functions, it separates
points from closed subsets and it is closed with respect to the supremum norm.

compare with (9). The limit measure dν(t, u) := ω(du|t)τ (dt) of
such a sequence, or sometimes the pair (τ , ω), is called a DiPerna–
Majda measure.

3.2. Generalization

The drawback of DiPerna–Majdameasures is that g in (12)must
be a continuous function. This does not fit to our aim to study
interactions of discontinuities and concentrations. To go further
the simplistic illustration of the introduction, let us consider the
following example.

Example 1. Consider a sequence (yk)k∈N ⊂ W 1,1([0, 1]) such
that limk→∞ yk = y in L q([0, 1]) for every 1 ≤ q < +∞.
We are interested in the integral limk→∞

∫ 1
0 g(uk(t))h(yk(t))dt for

continuous functions g and h such that |g(u)| ≤ C(1 + |u|) with
some constant C > 0, and where uk := ẏk ∈ L 1([0, 1]) is the
weak derivative of yk. If g is the identity then the calculation is easy,
namely the limit equals lim infk→∞ H(yk(1)) − H(yk(0)) where H
is the primitive of h. In the case of a more general function g , the
situation is more involved. For example for k ≥ 2 let uk(t) be equal
to 0 if 0 ≤ t ≤

1
2 , to k if 1

2 ≤ t ≤
1
2 +

1
k and to 0 if 1

2 +
1
k ≤ t ≤ 1.

Its primitive yk(t) is equal to 0 if 0 ≤ t ≤
1
2 , to k(t −

1
2 ) if

1
2 ≤ t ≤

1
2 +

1
k and to 1 if 1

2 +
1
k ≤ t ≤ 1. A short calculation shows

that limk→∞

∫ 1
0 g(uk(t))h(yk(t))dt =

1
2g0(0)(h(0)+ h(1))+ (H(1)−

H(0)) limk→∞
g(k)
k . The sequence (uk)k∈N concentrates at 1

2 which is
exactly the point of discontinuity of the pointwise limit of (yk)k∈N.
Also notice that uk converges weakly to δ 1

2
in P([0, 1]) when k →

∞. The factorH(1)−H(0) in the previous equation suggests thatwe
should refine the definition of the pointwise limit of (yk)k∈N at 1

2 by
enforcing that it is the Lebesguemeasure supported on the interval
of the jump.Wewill make this rigorous in the following. The other
term in the factor also shows that the limit of g(k)/k should exist
when k tends to infinity.

To copewith the simultaneous presence of oscillations, concen-
trations and discontinuities, a new tool was recently introduced
in Kałamajska et al. (2018), namely anisotropic parametrizedmea-
sures generated by pairs (yk, uk)k∈N where uk is the control and yk
the corresponding state trajectory. Let us describe now what we
need in our optimal control context. First, since the function t ↦→

y(t) is the integral of a Lebesgue integrable function on a bounded
time interval, it is bounded. Hence any admissible trajectory of
optimal control problem (3) is such that y ∈ L ∞([0, 1]; Y ) for
some compact set Y ⊂ Rn, e.g. a ball of sufficiently large radius..
Then, the following result is a special case of Kałamajska et al.
(2018, Theorem 2):

Theorem 2. Let 1 ≤ p < +∞. Let (uk)k∈N be a bounded sequence in
L p([0, 1];Rm) and (yk)k∈N a bounded sequence in W 1,1([0, 1];Rn).
Then there is a (non-relabeled) subsequence (uk, yk)k∈N, a measure
τ ∈ P([0, 1]), a measure ω(.|t) ∈ P(βURm) parametrized in
t ∈ [0, 1] and a measure υ(.|t, u) ∈ P(Y ) parametrized in t ∈ [0, 1]
and u ∈ βURm such that for every f ∈ C ([0, 1]), g0 ∈ U , h0 ∈ C (Y ),
it holds

lim
k→∞

∫ 1

0
f (t)g0(uk(t))(1 + |uk(t)|p)h0(yk(t))dt

=

∫ 1

0

∫
βURm

∫
Y
f (t)g0(u)h0(y)υ(dy|t, u)ω(du|t)τ (dt)

=

∫ 1

0

∫
βURm

∫
Y
f (t)g0(u)h0(y)dµ(t, y, u) =

∫
f g0 h0 µ.

(13)

The measure dµ(t, u, y) := υ(dy|t, u)ω(du|t)τ (dt), or sometimes
the triplet (τ , ω, υ), is called an anisotropic parametrized measure.
Moreover, the DiPerna–Majdameasure (τ , ω) is generated by (uk)k∈N.
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Example 3. Let us revisit Example 1 and the calculations of the
integrals there. Let f ∈ C ([0, 1]), let h ∈ C (R) be bounded
with primitive denoted by H , and let g := (1 + |.|)g0 where
g0 ∈ U corresponding to the two-point (or sphere) compacti-
fication βURm

= R ∪ {±∞}, i.e. such that limu→±∞ g0(u) =:

g0(±∞) ∈ R. Then after some calculations it can be checked that
limk→∞

∫ 1
0 f (t)g(uk(t))h(yk(t))dt =

∫ 1
0

∫
βURm

∫
Y f (t)g0(u)h(y)υ

(dy|t, u)ω(du|t)τ (dt) where τ (dt) = λ[0,1] + 2δ 1
2
, ω(du|t) is equal

to δ+∞ if t =
1
2 , and to δ0 otherwise, and υ(dy|t, u) is equal to δ0 if

t ∈ [0, 1
2 ), to λ[0,1] if t =

1
2 and to δ1 if t ∈ ( 12 , 1], where λX denotes

the Lebesgue measure on X , and Y = [0, 1].

4. Relaxed optimal control with oscillations, concentrations
and discontinuities

To the classical optimal control problem (3) we associate the
relaxed optimal control problem

v∗

R := inf
µ

∫
L0 µ

s.t.
∫

F0 µ = yT − y0,

µ ∈ P([0, 1] × βURm
× Y )

(14)

which is linear in the unknown measure µ. In contrast, classical
problem (3) is non-linear in the unknown trajectory y and control
u.

Since optimal control problem (14) is a relaxation of the optimal
control problem (3), it may happen that the infimum in (14) is
strictly less than the infimum in (3), i.e. v∗

R < v∗. Formulating
necessary and sufficient conditions on the problem data F and L
such that v∗

R = v∗, i.e. there is no relaxation gap is an openproblem.
However, if we know that the probability measure in problem (14)
is generated by limits of functions, then there is no relaxation gap.
Let us explain this now.

Assumption 4 (Regularity of the Data). Let L and F be such that in
(11) it holds L0 ∈ C ([0, 1] × βURm

× Y ) and F0 ∈ C ([0, 1] ×

βURm
× Y ;Rn). Moreover, there is a constant cL > 0 such that

L(t, u, y) ≥ cL|u|p for all t , u, y and there is a constant cF > 0 such
that |F (t, u, y1) − F (t, u, y2)| ≤ cF (|u|p + 1)|y1 − y2| for all t , u, y1,
y2.

The following result follows from classical existence and
uniqueness results for differential equations, see e.g. Bressan and
Piccoli (2007, Theorem 3.1):

Lemma 5. Assume that p ≥ 1, u ∈ L p([0, 1];Rm) and y0 ∈ Rn are
given. Let further F : [0, 1] × Rm

× Rn
→ Rn satisfy Assumption 4.

Then

dy(t) = F (t, u(t), y(t))dt, y(0) = y0 (15)

has a unique solution y ∈ L ∞([0, 1]; Y ) with values in a compact
subset Y of Rn.

Assume that there is a bounded sequence (uk)k∈N ⊂ L p and
that {yk}k∈N ⊂ W 1,1 is a sequence of corresponding solutions
obtained in Lemma 5. Then {yk} is uniformly bounded in W 1,1.
Indeed, due to the regularity assumption on F we see that d|yk(t)|

dt ≤⏐⏐⏐ dyk(t)dt

⏐⏐⏐ = |F (t, uk(t), yk(t))| ≤ cF (1 + |uk(t)|p + |yk(t)|). Then
the Gronwall inequality (Evans, 1998, Appendix B.2.j) implies that
supk∈N ∥yk∥W1,1 < ∞ and since yk is the integral of an inte-
grable function on a bounded time interval, it holds that yk ∈

L ∞([0, 1]; Y ) for Y ⊂ Rn a ball of radius supk∈N ∥yk∥L∞ < ∞. The

limit of the right-hand side of (15) can then be expressed in terms
of an anisotropic parametrized measure µ:

lim
k→∞

F (t, uk(t), yk(t))dt =

∫
βURm

∫
Y
F0(t, u, y)dµ(t, u, y). (16)

As explained in Kałamajska et al. (2018, Theorem7), the integral
(13) in the definition of the anisotropic parametrized measure can
be decomposed as follows∫ 1

0

∫
βURm

∫
Y
f (t)g0(u)h0(y)dµ(t, y, u) =∫ 1

0

∫
Rm

f (t)g0(u)(1 + |u|p)h0(y(t))ω̃(du|t)dt+∫ 1

0

∫
βURm\Rm

∫
Y
f (t)g0(u)h0(y)υ(dy|t, u)ω(du|t)τ (dt)

(17)

where ω̃ is a classical Young measure on Rm. Using the decompo-
sition (17), we get the following differential equation

dy(t) = F (t, u, y(t))ω̃(du|t)dt+∫
βURm\Rm

∫
Y
F0(t, u, y)υ(dy|t, u)ω(du|t)τ (dt). (18)

Lemma 6. Given an anisotropic parametrized measure µ and an
initial condition y0, the solution y to (18) is unique.

Proof. Assume that it is not the case, i.e., that there are two
solutions y1, y2 ∈ L ∞([0, 1]; Y ). Disintegrating dµ(t, y, u) =

υ(dy|t, u)ω(du|t)τ (dt), we get the following relationship for the
difference yd := y1 − y2 because of the regularity Assump-
tion 4, it holds |ẏd| ≤

∫
Rm |F (t, u, y1(t)) − F (t, u, y2(t))|ωt (du) ≤∫

Rm cF (|u|p + 1)ωt (du)|yd(t)|. The right hand side belongs to L 1

([0, 1]), therefore themeasure dyd(t) is absolutely continuouswith
respect to the uniformmeasure dt . As yd(0) = 0 we have yd(t) = 0
for all t ∈ [0, 1], by theGronwall inequality (Evans, 1998, Appendix
B.2.j). □

In relaxed optimal control problem (14) we use an integral
formulation of (18) incorporating the initial and terminal condi-
tions:

∫ 1
0

∫
βURm

∫
Y F0(t, u, y)dµ(t, u, y) =

∫
F0 µ = y1 − y0.

For each anisotropic parametrized measure µ, we can therefore
associate a sequence of trajectories {yk} ⊂ W 1,1 and controls
(uk) ⊂ L p satisfying (15) and such that (16) holds. Conversely,
the limit of each such sequence of trajectories and controls can be
modeled by an anisotropic parametrized measure. The following
result of absence of relaxation gap then follows immediately from
the construction of problem (14).

Proposition 7 (No Relaxation Gap). Let Assumption 4 hold and let µ

solve problem (14). If there is an admissible sequence (uk, yk)k∈N such
that (13) holds then v∗

R = v∗.

5. Relaxed optimal control with occupation measures

In the previous section, we proposed a linear reformulation of
non-linear optimal control, thanks to the introduction of
anisotropic parametrized measures. In the current section, we
describe another linear reformulation proposed in Lasserre et al.
(2008) and relying on the notion of occupation measure. The
relation between this linear reformulation and the classicalMajda–
DiPerna measures was investigated in Claeys et al. (2017), with
the help of a graph completion argument. In the sequel we show
that the generalizedMajda–DiPernameasures also fit naturally this
framework.

Let v ∈ C 1([0, 1] × Y ). For any admissible trajectory y and con-
trol u solving (15), it holds

∫ 1
0 dv(t, y(t)) = v(1, y(1))−v(0, y(0)) =
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0

(
∂v
∂t (t, y(t)) +

∂v
∂y (t, y(t)) · ẏ(t)

)
dt . Optimal control problem (3)

can then be rewritten as

v∗
= inf

u

∫ 1

0
L(t, u(t), y(t))dt

s.t.
∫ 1

0

(
∂v

∂t
+

∂v

∂y
· F
)
(t, u(t), y(t))dt

= v(1, y1) − v(0, y0), ∀v ∈ C 1([0, 1] × Rn)

y ∈ W 1,1([0, 1];Rn), u ∈ L p([0, 1];Rm).

(19)

Definition 8 (Occupation Measure). Given a control u and a trajec-
tory y solving (15), we define the occupation measure µu,y ∈ y ∈

P([0, 1] × Rn
× Rm) by dµu,y(t, u, y) := δy(t)(dy)δu(t)(du)dt .

Geometrically µu,y(A × B × C) is the time spent by the tra-
jectory (t, u(t), y(t)) in any Borel subset A × B × C of [0, 1] ×

Rm
× Y . Analytically, integration with respect to µu,y is the same

as integration along (u(t), y(t)) with respect to time. In partic-
ular

∫ 1
0 L(t, u(t), y(t))dt =

∫ 1
0

∫
Rm

∫
Rn L(t, u, y)dµu,y(t, u, y) =∫

L µu,y and for all test functions v ∈ C 1([0, 1] × Y ), it holds
that

∫ 1
0

(
∂v
∂t +

∂v
∂y · F

)
(t, u(t), y(t))dt =

∫ 1
0

∫
Rm

∫
Y

(
∂v
∂t +

∂v
∂y · F

)
(t, u, y)dµu,y(t, u, y) =

∫ (
∂v
∂t +

∂v
∂y · F

)
µu,y. Using the same argu-

ments as in Claeys et al. (2017, Proposition 4), we can reformulate
optimal control problem (19) as a linear problem on measures,
leading to the following relaxed formulation:

v∗

M := inf
µ

∫
L0 µ

s.t.
∫ (

∂v

∂t
(1 + |u|p)−1

+
∂v

∂y
· F0

)
µ

= v(1, y1) − v(0, y0) ∀v ∈ C 1([0, 1] × Y ),
µ ∈ P([0, 1] × βURm

× Y ).

(20)

Note that µ in the above problem is not necessarily an occupation
measure in the sense of Definition 8, but a general probability
measure in P([0, 1] × βURm

× Y ). For this reason, the infimum
in relaxed problem (20) can be strictly less than the infimum in
classical problem (3), i.e. v∗

M < v∗.

Proposition 9 (No Relaxation Gap). It holds v∗

R ≤ v∗

M ≤ v∗ and hence
if there is no relaxation gap in relaxed problem (14) then there is no
relaxation gap in relaxed problem (20).

Proof. Just observe that problem (14) corresponds to the particular
choice of test functions v(t, y) := yk, k = 1, . . . , n in problem
(20). Hence the infimum in (14) is smaller than the infimum in (20),
which is in turn smaller than the infimum in (3), i.e. v∗

R ≤ v∗

M . Now
if v∗

R = v∗ then obviously v∗

M = v∗. □

6. The Lasserre hierarchy

Once we get to the measure linear problem (20), we follow the
same strategy as in Claeys et al. (2017, Section 4):

(1) compactify the control space by using a change of variables
and homogenization;

(2) since all the data are polynomial, construct an equivalent
moment linear problem where the unknown are moments
of the occupation measure supported on a compact semial-
gebraic set;

(3) use the moment-sums-of-squares hierarchy as in Lasserre
et al. (2008) to obtain a sequence of approximate moments
at the price of solving numerically semidefinite program-
ming problems;

(4) from the approximate moments, construct an approximate
solution to the optimal control problem.

7. Illustrative example

Let us illustrate this strategy on our introductory example (2).
The trajectory y should move the state from zero at initial time to
one at final time, yet for the non-negative integrand to be as small
as possible, the control u should be zero all the time, except maybe
at time zero. If ε = 1 this problem has a trivial optimal solution
u(t) = 0. For ε = 0 as explained already we can solve the problem
by integration by parts because ẏ(t) = u(t). The integration trick
cannot be carried out in the case of ε ∈ (0, 1).

We use the relaxation proposed in Section 5 to formulate prob-
lem (2) as a measure LP:

inf
µ

∫
(t + y)u
1 + u

µ

s.t.
∫ (

∂v

∂t
1

1 + u
+

∂v

∂y

√
ε2 + u2

1 + u

)
µ

= v(1, 1) − v(0, 0), for all v ∈ C 1([0, 1]2)
µ ∈ P([0, 1] × βR+ × [0, 1]).

(21)

Note that we can omit the absolute value in the denominator, as u
is constrained to be non-negative. Since in problem (2) the growth
of the Lagrangian and the dynamics is at most linear, we expect
the control to concentrate. Therefore let u(t) :=

r(t)
1−r(t) with r(t) ∈

[0, 1]. Then the dynamic of y reads ẏ(t) =

√(
r(t)

1−r(t)

)2
+ ε2 =

√
r(t)2+ε2(1−r(t))2

1−r(t) . Introduce the auxiliary variable w(t) such that
w(t)2 = r(t)2 + ε2(1 − r(t))2. By knowledge of bounds for ε and
r(t) we can conclude that 0 ≤ w(t) ≤ 1. The linear problem on
moments then reads

inf
γ

∫
(t + y) r γ

s.t.
∫ (

∂v

∂t
(1 − r) +

∂v

∂y
w

)
γ

= v(1, 1) − v(0, 0), for all v ∈ R[t, y],

γ ∈ P([0, 1]3).

(22)

We could solve the problem numerically for different values of the
parameter ε. From these numerical solutions we could guess the
analytic optimal solution. The measure dµ(t, y, u) = τ (dt)ω(du|t)
υ(dy|t, u) with τ (dt) = λ[0,1] + (1 − ε)δ0, ω(du|t) equal to δ∞

for t = 0, and equal to δ0 for t > 0, and υ(dy|t, u) equal to
1

1−ε
λ[0,1−ε] for t = 0 and equal to δ1−ε+εt for t > 0 solves

the relaxation (14) and hence yields a lower bound (1−ε)2
2 on the

optimum. Moreover, this optimum is attained by the sequences
uk(t) equal to

√
(k(1 − ε) + ε)2 − ε2 for t ∈ [0, 1

k ] and equal to
0 for t > 1

k , and yk(t) equal to (k(1 − ε) + ε)t for t ∈ [0, 1
k ] and

equal to εt +1−ε for t > 1
k , which proves that we got the optimal

solution according to Proposition 7.
The numerical results obtained with the GloptiPoly interface

and the SeDuMi semidefinite solver for the 6th relaxation (i.e. mo-
ments of degree up to 12) are matching to 4 significant digits with
the analytic moments.

8. Conclusion

In this paper we have described a unified methodology to cope
with limit phenomena typical of optimal control, namely oscilla-
tions, concentrations and discontinuities. Our approach relies nu-
merically on the Lasserre hierarchy of semidefinite programming
relaxations, which allows for the application of off-the-shelf com-
puter software and hence opens the possibility for engineering ap-
plications. The keymathematical tool are anisotropic parametrized
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measures, an extension of DiPerna–Majda measures, themselves
an extension of Young measures, objects familiar to PDE analysts.

From the numerical solution and the nature of the measure
computed, we can deduce whether an integrable optimal control
function exists or not:

• if the control measure is concentrated on the graph of a
function, then there exists an integrable optimal control law,
and hence there is no oscillation of the control;

• if the time measure is absolutely continuous w.r.t. the
Lebesgue measure, then there is no concentration of the
control, and hence no discontinuity of the trajectory.

Our approach is global, and hence closer in spirit to the
Hamilton–Jacobi–Bellman approach rather than the Pontryagin
Maximum Principle. We are not aware of first-order optimality
conditions for optimal control problems at the level of generality
considered in our paper.

Beyond providing a numerical solution to optimal control prob-
lems that are potentially troublesome for alternative numerical
methods, we believe that our work can pave the way for the
application of the Lasserre hierarchy to other problems of calcu-
lus of variations and optimal control, especially subject to PDE
constraints. Indeed, we would like to emphasize that the theory
of anisotropic parametrized measures can also deal with vector-
valued multi-dimensional problems.
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