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Abstract

We analyze a phase-field approximation of a sharp-interface model for two-
phase materials proposed by Šilhavý (in: Hackl (ed) IUTAM symposium on
variational concepts with applications to the mechanics of materials, pp 233–244,
Springer, Dordrecht, 2010; J Elast 105:271–303, 2011). The distinguishing trait of
themodel resides in the fact that the interfacial term is Eulerian in nature, for it is de-
fined on the deformed configuration.We discuss a functional frame allowing for the
existence of phase-field minimizers and�-convergence to the sharp-interface limit.
As a by-product, we provide additional detail on the admissible sharp-interface con-
figurations with respect to the analysis in Šilhavý (2010, 2011).

1. Introduction

This paper addresses the equilibrium of a two-phase elastic medium, whose
stored energy takes the form

F0(y, ζ ) = Fbulk(y, ζ ) + F int
0 (y, ζ )

:=
∫

�

(
(ζ ◦ y) W1(∇ y) + (1 − ζ ◦ y) W0(∇ y)

)
dx + γ Per

({ζ = 1}, y(�)
)
.

(1.1)

Here, y : � → R
3 stands for the deformation of the medium with respect to

its reference configuration � ⊂ R
3 and W0, W1 are the elastic energy densities

of the two pure phases [39]. The Eulerian phase indicator ζ : y(�) → {0, 1} is
definedon thedeformed configuration y(�) instead.Note that solely pure phases are
allowed. The stored energy of the medium includes an elastic bulk partFbulk(y, ζ ),
consistingof an integral on the reference configuration, and an interface contribution
F int
0 (y, ζ ), featuring the perimeter of the phase {ζ = 1} in y(�), where γ > 0
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is a surface-tension coefficient. With respect to classical hyperelastic theory, the
distinguishing feature in (1.1) is that the interface is measured in the deformed
configuration. Variational theories featuring Eulerian interfacial energy terms can
be traced back at least to [21] and have been considered, for instance, in [17,26,28–
30], among others. See also [33] for an atomistic-informed discussion.

The choice of the elastic energy F0 is inspired by the notion of interface poly-
convex energy, introduced by Šilhavý in the series of contributions [40–42]. The
explicit form in (1.1) is in fact just a first example in the wider class considerer
therein, where the general interfacial term reads

∫
∂ E\∂�

�(n,∇S y × n, (cof ∇S y)n) dS. (1.2)

Here, dS is the infinitesimal area element (in the reference configuration), and
� : R15 → R is a positively 1-homogeneous convex function depending on the
normal n to the interface, on the surface gradient ∇S y of the deformation, and on
the cofactor of the surface gradient. More precisely, � = �(n,F × n, cof Fn),
where F ∈ R

3×3 is a placeholder of the surface gradient of the deformation and
F × n : R3 → R

3 is defined for all a ∈ R
3 as (F × n)a := F(n × a). Note that

Fn = 0, becausen inevitably lives in the kernel ofF.A rigorous definitionwould ask
to cope with the possible nonsmoothness of y, the existence of the surface gradient
∇S y, and also whether n does exist at the phase interface, which in turn relates with
the regularity of phase 1 in the reference configuration, for E = y−1({ζ = 1}) in
(1.2). The specific interfacial term in (1.1) corresponds to the choice [42, Ex. 5.7]

�̃(n,F × n, cof Fn) := γ |cof Fn|. (1.3)

Indeed, it is a standard matter to check that (cof ∇S y)n = (cof ∇ y)n. Then, a
formal application of the change-of-variables formula for surface integrals [11]
gives
∫

∂ E\∂�

�̃(n,F × n, cof Fn) dS = γ

∫
∂ E\∂�

|(cof ∇ y)n| dS = γ

∫
∂y(E)\∂y(�)

dSy .

(1.4)

As dSy is the infinitesimal area element in the deformed configuration y(�), we
have checked that, along with choice (1.3), the interfacial energy term measures
indeed the surface of the interface in the deformed configuration. This is consistent
with the definition of F int

0 from (1.1).
Our main results are the existence of minimizers of F0 (Theorem 2.3) and the

viability of a phase-field approach (Theorem 2.4) to such a sharp-interface model
via the diffuse-interface energies for ε > 0

Fε(y, ζ ) = Fbulk(y, ζ ) + F int
ε (y, ζ ) := Fbulk(y, ζ ) +

∫
y(�)

( ε

2
|∇ζ |2 + 1

ε
	(ζ )

)
dξ.

(1.5)

Note that the diffuse-interface term F int
ε (y, ζ ) is still Eulerian, but the phase indi-

cator ζ takes now values in the interval [0, 1]. Here and throughout the paper, ξ
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stands for the variable in the deformed configuration y(�). The function 	 in (1.5)
is a classical double-well potential with minima at 0 and 1, and

∫ 1
0

√
2	(s) ds = γ .

By checking the �-convergence of Fε to F0 we essentially deliver a version of the
Modica–Mortola Theorem [32] in the deformed configuration, see also [31]. In-
strumental to this is the discussion of the interplay of deformations and perimeters
in deformed configurations, which constitutes the main technical contribution of
our paper (Theorem 2.2).

Measuring the interface in the deformed configuration gives rise to a variational
model of mixed Lagrangian–Eulerian type. Variational formulations featuring both
Lagrangian and Eulerian terms are currently attracting increasing attention. A
prominent case is that of magnetoelastic materials [16], where Lagrangian mechan-
ical terms and Eulerian magnetic effects combine [6,7,27,38]. Mixed Lagrangian–
Eulerian formulations arise in the modeling of nematic polymers [5,6], where the
Eulerian variable is the nematic director orientation, and in piezoelectrics [37], in-
volving the Eulerian polarization instead. An interplay of Lagrangian and Eulerian
effects occurs already in case of space dependent forcings, like in the variable-
gravity case [18], as well as in specific finite-plasticity settings [43], where elastic
and plastic deformations are composed. Most notably, such mixed formulations
arise naturally in the study of fluid-structure interaction, where the deformed body
defines the (complement of the) fluid domain [36].

The plan of the paper is as follows; we present in detail our assumptions on the
ingredients of themodels in Section 2; in particular, we specify the class of admissi-
ble deformations and state a characterization of sets of finite perimeter with respect
to deformed configurations (Theorem 2.2). Section2.4 contains the statements of
our main existence and approximation results. These are put in relation with the
former theory by Šilhavý in Section2.5. We check in Section 3 that admissible
deformations are actually homeomorphisms, so that, in particular, the deformed
configuration is well defined. The proof of the Characterization Theorem 2.2 is
presented in Section 4, along with a suite of results on perimeters in deformed con-
figurations. The existence ofminimizers toF0 (Theorem 2.3) is proved in Section 5.
Eventually, Section 6 proves the �-convergence of the phase-field diffuse-interface
energies Fε to the sharp-interface limit F0 (Theorem 2.4).

2. Main Results

Wedevote this section to specifying the functional frame (Sections 2.1–2.3) and
stating our main results (Section2.4). The relation of our results with the former
existence theory by Šilhavý is also discussed (Section2.5).

We first introduce some basic notation. We denote by B(a, ε) := {z ∈ R
n | |z −

a| < ε} the open ball of radius ε > 0 centered at a ∈ R
n . If � ⊂ R

n is an open
set, Cm(�;Rk) denotes the space of continuous maps on � with values in Rk that
admit continuous derivatives up to the order m � 0. Cm

c (�;Rk) is the subspace of
compactly supported maps. For p ∈ [1,+∞), W 1,p(�;Rk) denotes the standard
Sobolev space, and W 1,p

loc (�;Rk) denotes its local counterpart. The space of finite
vector Radon measures on � with values in R

k is denoted by M(�,Rk) and it is
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normed by the total variation | · |(�). Mloc(�;Rk) denotes the space of locally
finite vector Radon measures. Furthermore, BV (�;Rk) stands for the space of
maps with bounded variation. See for example [2] for references. With slight abuse
of notation, we occasionally replaceRk in the target space by a set. For ameasurable
set E ⊂ �, we denote the n-dimensional Lebesgue measure by |E | and the m-
dimensional Hausdorff measure by Hm(E). By χE we denote the characteristic
function of E . The perimeter of E in � is classically defined as [2, Def. 3.35]

Per(E,�) := sup

{∫
E
divϕ dx | ϕ ∈ C∞

c (�;Rn), ‖ϕ‖∞ � 1

}
.

Given y : E → R
3, we will use the notation E y := y(E).

2.1. Finite Distorsion and Finite Perimeter

Let us start by defining the function classes that we are going to be dealing with.

Definition 2.1. (Finite distorsion) Let� ⊂ R
n for n � 2 be an open set. A Sobolev

map y ∈ W 1,1
loc (�;Rn) with det∇ y � 0 almost everywhere in � is said to be of

finite distorsion if det∇ y ∈ L1
loc(�) and there is a function K : � → [1,+∞]with

K < +∞ almost everywhere in � such that |∇ y|n � K det∇ y. For a mapping y
of finite distorsion, the (optimal) distorsion function Ky : � → R is defined as

Ky :=
{ |∇ y|n/det∇ y if det∇ y 
= 0
1 if det∇ y = 0.

The relation of our theory to the former one by Šilhavý is encoded in the
following characterization result for sets of finite perimeters in the actual configu-
ration. Although it will be later applied just for n = 3, we state the characterization
here for general dimension, for we believe that it could be of independent interest.

Theorem 2.2. (Characterization of sets of finite perimeter) Let � ⊂ R
n be an open

set, n � 2. Suppose that E ⊂ � is a measurable set and that y ∈ W 1,n
loc (�;Rn) is

a homeomorphism of finite distorsion. Then Per(E y,�y) < ∞ if and only if there
exists a finite Radon measure py,E ∈ M(�;Rn) such that there holds

∫
E
cof (∇ y) : ∇ψ dx =

∫
�

ψ · dpy,E ∀ψ ∈ C∞
c (�;Rn). (2.1)

In this case, Per(E y,�y) = |py,E |(�).

A proof of this characterization is provided in Section 4.
In what follows, we call py,E a interfacial measure if it is a finite Radon

measure and it fulfills (2.1) for some y and E within the assumption frame of
Theorem 2.2. This naming is hinting to the relevance that such measures enjoy
within the theory by Šilhavý [40,41], see Section2.5 below, that is, they measure
the elastic energy of interfaces between phases. Theorem 2.2 proves in particular
that, given an admissible deformation y, interfacial measures correspond one-to-
one to sets of finite perimeter in the deformed configuration �y .
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Notice in particular that, by taking y to be the identity map on �, Theorem 2.2
reduces to the classical characterization of sets E of finite perimeter in � [2, Thm.
3.36], namely those sets such that there exists a finite measure pE with

∫
E
divψ dx =

∫
�

ψ · dpE ∀ψ ∈ C∞
c (�;Rn).

2.2. Admissible States

From now on let the open, bounded, and Lipschitz domain � ⊂ R
3 indicate

the reference configuration. The body undergoes a deformation y : � → R
3,

which is assumed to be a Sobolev mapping of finite distorsion. We will in fact
ask that y is orientation-preserving, that is, det∇ y > 0 almost everywhere in �.
It is well known that positivity of det∇ y ensures only the local injectivity of y
[11]. However, it is shown by Ciarlet and Necas [12] that if y ∈ W 1,p(�;R3)

for some p > 3, det∇ y > 0 almost everywhere, and additionally the so-called
Ciarlet–Nečas condition ∫

�

det∇ y(x) dx � |�y | (2.2)

holds, then almost every point in �y has only one preimage. Under such assump-
tions, as we will thoroughly discuss in Section 3, everywhere injectivity (so that
the deformation is a homeomorphism) can be further enforced by requiring that the
distorsion function Ky is in Lq(�) for some q > 2.

Therefore, we define the set of admissible deformations as

Y :=
{

y ∈ W 1,p(�;R3) | det∇ y > 0 a.e. ,

∫
�

det∇ y(x) dx � |y(�)|, Ky ∈ Lq(�)

}
,

(2.3)

where p > 3 and q > 2 are fixed. We shall check in Section 3 that admissible
deformations are homeomorphisms, see Theorem 3.5. In particular, the deformed
configuration �y is an open set.

We consider a material with two different phases (for example, two martensitic
variants of a shape memory alloy) which we indicate with the subscripts 0 and 1. To
indicate the portion E ⊂ � of the reference configuration where one finds phase 1,
one defines z : � → {0, 1} and ζ : �y → {0, 1} to be the characteristic functions
of E and E y , respectively. In particular, we have that z = ζ ◦ y.

The set of admissible states (y, ζ ) is defined as

Q := {(y, ζ ) | y ∈ Y, ζ ∈ BV (�y; {0, 1})}.
Similarly, we define the set of admissible states for the phase-field approximation
as

Q := {(y, ζ ) | y ∈ Y, ζ ∈ BV (�y; [0, 1])}.
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2.3. Assumptions on the Bulk Energy

We assume that W0 and W1 are polyconvex [3], that is, for F ∈ R
3×3,

Wi (F) :=
{

hi (F, cof F, det F) if det F > 0

∞ otherwise
(2.4)

for some convex functions hi : R19 → R, i = 0, 1. In addition, we assume Wi to
be coercive, frame-indifferent, and unbounded as det F → 0+. More precisely, for
i = 0, 1, we assume that there exist C > 0 such that

Wi (F) � C

(
|F |p + |F |3q

(det F)q
− 1

)
∀F ∈ R

3×3, p > 3, q > 2, (2.5)

Wi (RF) = Wi (F) ∀R ∈ SO(3), F ∈ R
3×3 , (2.6)

Wi (F) → ∞ as det F → 0+ (2.7)

where SO(3) is the special orthogonal group SO(3) = {R ∈ R
3×3 | R RT =

I, det R = 1}. The third term on the right-hand side of (2.5) ensures that defor-
mation gradients F = ∇ y with finite energy will have a q-integrable distorsion
function F �→ |F |3/ det F . Notice that F �→ |F |3/ det F is polyconvex on the set
of matrices with positive determinant.

Eventually, we specify boundary conditions by imposing admissible deforma-
tions to match a given deformation y0 at the boundary ∂�. To this aim, we assume
that

∃(y0, ζ0) ∈ Q with F0(y0, ζ0) < ∞ (2.8)

and define

Qy0 := {(y, ζ ) ∈ Q | y = y0 on ∂�}.
Analogously, we consider

Qy0 := {(y, ζ ) ∈ Q | y = y0 on ∂�}.
Letting �0 ⊂ ∂� be relatively open in ∂� withH2(�0) > 0, we also define

Q(y0,�0) := {(y, ζ ) ∈ Q | y = y0 on �0}.

2.4. Main Results

We are now in the position of stating the main results of the paper, which
concern existence for the sharp-interface minimization problem and convergence
of the phase-field approximation.

Theorem 2.3. (Existence of minimizers) Under assumptions (2.4)–(2.8) the func-
tional F0 admits a minimizer on Q(y0,�0).
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A proof of this statement is in Section 5.
Our second main result delivers a Modica–Mortola-type approximation via the

functionalsFε from (1.5), corresponding indeed to diffuse-interfacemodels. Under
the additional assumption that the current configuration �y is a Lipschitz domain
(which is not necessarily true for general y ∈ W 1,p(�;R3)) we have the following:

Theorem 2.4. (Phase-field approximation) Under assumptions (2.4)–(2.8), for any
ε > 0 the functional Fε admits a minimizer on Qy0 . If �y0 is a Lipschitz domain

and εk → 0, then, for every sequence (yk, ζk) of minimizers of Fεk on Qy0 , there
exists (y, ζ ) ∈ Qy0 such that, up to not relabeled subsequences,

(i) yk → y weakly in W 1,p(�;R3), and ‖ζk − ζ‖L1(�y) → 0 as k → ∞;
(ii) (y, ζ ) minimizes F0 on Qy0 .

2.5. Relation with Šilhavý’s Theory

Before moving on, let us comment on our results in light of the theory by
Šilhavý [40,42]. To this end, we need to clarify the definition of the general
interfacial-energy term in (1.2), which requires introducing somemeasure theoretic
setting. We recall that the reduced boundary of a finite perimeter set E in � is
defined as the set of points x of � such that x ∈ supp |∇χE | and such that the
limit nE (x) := limε→0

−∇χE (B(x,ε))
|∇χE |(B(x,ε))

exists and satisfies |nE (x)| = 1 (see [2, Def.
3.54]). We say that nE is the outer measure-theoretic unit normal to E . We let

Q := {(y, z) | y ∈ W 1,p(�), det∇ y > 0 a.e. in �, z ∈ BV (�; {0, 1})}.
For any pair (y, z) ∈ Q, let E := {z = 1}, let S denote the reduced boundary of
the finite perimeter set E in �, and let nE denote the corresponding outer measure-
theoretic unit normal. Following [41, Def. 3.1], we denote by Q0 ⊂ Q the set
of all pairs (y, z) ∈ Q for which there exists a finite Radon measure my,E :=
(ay,E , hy,E , py,E ) ∈ M(�;R15) such that ay,E := nEH2|S and such that there
hold (2.1) and∫

E
∇ y (curl ψ) dx =

∫
�

ψ dhy,E ∀ψ ∈ C∞
c (�;R3). (2.9)

Consider a positively 1-homogeneous convex function � : R15 → R such that

�(A) � C |A| for some C > 0 and all A ∈ R
15. (2.10)

If |my,E | denotes the total variation of my,E , the interfacial energy is then defined
as

F int
Šilhavý

(y, z) :=
⎧⎨
⎩

∫
�

�

(
dmy,E

d|my,E |
)

d|my,E | for (y, z) ∈ Q0,

+∞ otherwise.
(2.11)

On the other hand, the bulk energy in the reference configuration is defined as

F̃bulk(y, z) :=
∫

�

(
z W1(∇ y) + (1 − z) W0(∇ y)

)
dx,
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whereWi are assumed to satisfy (2.4), (2.6)–(2.7), andWi (F) � C |F |p for i = 0, 2
and some p > 3. Under such assumptions on Wi and (2.10), Šilhavý proves that
F̃bulk(y, z) + F int

Šilhavỳ
(y, z) admits a minimizer on {(y, z) ∈ Q0 | y = y0 on ∂�},

see [41, Thm. 3.3] and [42, Thm. 1.2]. Our Characterization Theorem 2.2 shows
in particular that, under the further assumption of y being a homeomorphism, the
perimeter of the image set E y = {z = 1}y is finite in �y . More specifically, Theo-
rem 2.2 provides a characterization of those deformations that admit an interfacial
measure py,E ∈ M(�;R3).

The existence result of Theorem 2.3 refers to the specific case (1.3) within the
larger class (1.2). As such, the global coercivity assumption (2.10) is not required.

3. Admissible Deformations are Homeomorphisms

The aim of this section is to check that the continuous representative of the class
of the admissible deformations y ∈ Y (2.3) is injective, hence a homeomorphism
between � and �y , see Theorem 3.5 below. We have p > 3 and q > 2 in the defi-
nition (2.3) of Y. Through this section only, we allow for the case p = 3 (recalling
that a W 1,3(�;R3) mapping of finite distorsion has a continuous representative
[23, Thm. 2.3]). We break down the argument into Lemmas, which we believe to
be of an independent interest. Let us start with a definition.

Definition 3.1. (Almost-everywhere injectivity) We say that y : � → R
3 is almost-

everywhere injective if there exists ω ⊂ � such that |ω| = 0 and y(x1) 
= y(x2)
for every x1, x2 ∈ �\ω satisfying x1 
= x2.

Given y : � → R
3, ξ ∈ R

3, and a subset ω ⊂ �, we define the Banach
indicatrix N (ξ, y, ω) by

N (ξ, y, ω) := #{x ∈ ω | y(x) = ξ} , (3.1)

where the right-hand-side denotes the cardinality (that is, the number of elements)
of the set. The map y : � → R

3 is said to satisfy Lusin’s condition N if it maps
negligible sets to negligible sets, namely |ωy | = 0 for all ω ⊂ � such that |ω| = 0.
Moreover, it satisfies Lusin’s condition N−1 if the preimage of any negligible set
is negligible, namely |y−1(ω)| = 0 for all ω ⊂ �y such that |ω| = 0.

Any continuousmap y ∈ W 1,p(�;R3), p > 3, satisfies theLusin’s condition N
[23, Thm. 4.2], and the same holds for p = 3 if y is a mapping of finite distorsion
[23, Thm. 4.5]. This implies the validity of the area formula with equality [23,
Thm. A.35]. Moreover, p > 3 (or p = 3 and finite distorsion) implies that y is
differentiable almost everywhere [23, Cor. 2.25]. If, in addition, det∇ y > 0 almost
everywhere in �, then y satisfies Lusin’s condition N−1 as well [8, Thm. 8.3,
Lem. 8.3–8.4]. This, in particular, implies that the continuous representative of
y ∈ Y fulfils both Lusin’s N and N−1 condition (even in case p = 3).

Let us present a first result on almost-everywhere injectivity, see [20, Prop. 3.2]
for a similar argument.
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Lemma 3.2. (Ciarlet–Nečas implies almost-everywhere injectivity) Let y ∈ W 1,p

(�;R3) be continuous, p � 3, and det∇ y > 0 almost everywhere in �. If the
Ciarlet–Nečas condition (2.2) holds, then y is almost-everywhere injective in the
sense of Definition 3.1.

Proof. Since y has finite distorsion, by the above discussion y satisfies Lusin’s con-
dition N . Hence, the area formula holds with equality. The Ciarlet–Nečas condition
(2.2) implies that

|�y | �
∫

y(�)

N (ξ, y,�) dξ =
∫

�

det∇ y dx � |�y |,

which entails N (ξ, y,�) = 1 for almost every ξ ∈ �y . The set ω := {ξ ∈
y(�) | N (ξ, y,�) > 1} is hence negligible. Since by [8, Thm. 8.3, Lem. 8.3–8.4]
y satisfies Lusin’s condition N−1, we get that |{x ∈ � | y(x) ∈ ω}| = 0 as well,
which corresponds to the statement. ��

Maps that are almost-everywhere injective still include rather nonphysical sit-
uations, for a dense, countable set of points could be mapped to a single point.
We refer to [25] for an example of a map which is continuous, injective almost
everywhere but not everywhere. We shall hence present a result in the direction of
everywhere injectivity.

Lemma 3.3. (a.e. injectivity and openness imply injectivity) Let y : � → R
3 be

continuous, almost-everywhere injective, open (maps open sets to open sets), and
fulfill Lusin’s condition N. Then, y is everywhere injective in �.

Proof. Assume by contradiction that y is not everywhere injective, that is that there
exist x1, x2 ∈ � with x1 
= x2 such that y(x1) = y(x2) =: a. The openness of
y implies that �y is open. We can hence find ε > 0 such that B(a, ε) ⊂ �y .
Continuity implies that y−1(B(a, ε)) ⊂ � is open. As x1, x2 ∈ y−1(B(a, ε)) one
can find two open disjoint neighborhoods U, V such that x1 ∈ U , x2 ∈ V and
U y ∩ V y � a. As U y and V y are both open their intersection is also open and
therefore |U y ∩ V y | > 0, that is N (ξ, y,�) > 1 for every ξ ∈ U y ∩ V y . On the
other hand, the pre-image of U y ∩ V y must have a positive measure because y
satisfies Lusin’s condition N . This contradicts almost-everywhere injectivity and
concludes the proof. ��

Let us now recall a sufficient condition for the openness of a map.

Lemma 3.4. ([23, Thm. 3.4]) Let y ∈ W 1,p(�;R3) be continuous, p � 3. Assume
that Ky ∈ Lq(�) for some q > 2. Then y is either constant or open.

We are finally in the position of stating the main result of this section (in the
next result, p = 3 in the definition (2.3) of Y is allowed).

Theorem 3.5. (Admissible deformations are homeomorphisms) The continuous
representative of y ∈ Y is everywhere injective on �.
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Proof. Let y ∈ Y be the continuous representative of the equivalence class.
Lemma 3.4 implies that y is either constant or open. However, it cannot be constant
because it is almost everywhere injective by Lemma 3.2. Hence, it is open. By
Lemma 3.3, y is everywhere injective on�. By the Invariance of Domain Theorem
y is a homeomorphism between � and �y . ��

4. Šilhavý Measure and Perimeter: Proof of Theorem 2.2

Within this section,� is assumed to be anopen subset ofRn ,n � 2. In particular,
we are not restricting here to n = 3. We are interested in properties of Sobolev
homeomorphisms y in relation to sets of finite perimeter. In case y is bi-Lipschitz,
sets of finite perimeter are mapped onto sets of finite perimeter, see [2, Theorem
3.16] whereas the same property does not hold for y in W 1,p with p < ∞. The aim
of this section is that of proving Theorem 2.2, which characterizes pairs (y, E) (y
is a Sobolev map and E ⊂ � is a measurable set) such that E y is of finite perimeter
in �y . We start by preparing some preliminary result.

Proposition 4.1. (Perimeter= total variation of the interfacial measure) Assume
that E ⊂ � is measurable, y ∈ W 1,n

loc (�;Rn) is a homeomorphism, and there
exists a vector Radon measure py,E ∈ Mloc(�;Rn) such that (2.1) holds. Then,
Per(E y,�y) = |py,E |(�). In particular, if we assume that py,E is finite, we get
that the perimeter of E y in �y is finite as well.

Proof. A homeomorphism in W 1,n
loc (�;Rn) satisfies the Lusin’s condition N [35,

Thm. 3] and is almost-everywhere differentiable [23, Cor. 2.2.5]. Thanks to the
Lusin’s condition N , the area formula holds with equality and gives

Per(E y, �y) = sup

{∫
E y

divϕ(ξ) dξ | ϕ ∈ C∞
c (�y;Rn), ‖ϕ‖∞ � 1

}

= sup

{∫
E
divϕ(y(x)) det∇y(x) dx | ϕ ∈ C∞

c (�y;Rn), ‖ϕ‖∞ � 1

}
.

Note that the identity

(divϕ) ◦ y det∇ y = cof ∇ y : ∇(ϕ ◦ y) (4.1)

holds almost everywhere in �. Here “:” denotes the dot product in R
3×3. Indeed,

we may write divϕ = ∇ϕ : I (where I is the identity matrix), and relation (4.1)
follows from the chain-rule formula∇(ϕ ◦ y) = (∇ϕ ◦ y)∇ y, which is valid almost
everywhere in �, and from the matrix identity (cof A)AT = I det A. Therefore,
we get

Per(E y,�y)=sup

{∫
E
cof (∇ y) : ∇(ϕ ◦ y) dx | ϕ ∈ C∞

c (�y;R3), ‖ϕ‖∞ � 1

}
.

(4.2)

As y ∈ W 1,n
loc (�;Rn), we have cof ∇ y ∈ Lr

loc(�) with r = n/(n − 1). Formula
(2.1) can be extended by continuity to all test functions in the class W 1,n(�;Rn)∩
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C0
c (�;Rn) since py,E is a measure and the conjugated exponent of r is n. Fix

now ϕ ∈ C∞
c (�y;R3) and notice that there holds ϕ ◦ y ∈ C0

c (�;Rn), as y is
a homeomorphism and hence y−1(supp(ϕ)) is compact in �. Moreover, since
y ∈ W 1,n

loc (�;Rn), we have that ϕ ◦ y ∈ W 1,n(�;Rn). Therefore, ϕ ◦ y is an
admissible test function for equality (2.1).

From (4.2) and the extension of (2.1) to W 1,n(�;Rn) ∩ C0
c (�;Rn) we obtain

Per(E y,�y) = sup

{∫
�

(ϕ ◦ y) · dpy,E | ϕ ∈ C∞
c (�y;Rn), ‖ϕ‖∞ � 1

}
.

(4.3)

On the other hand, the total variation of py,E is, by definition,

|py,E |(�) = sup

{∫
�

f · dpy,E (x) | f ∈ C0
c (�;Rn), ‖ f ‖∞ � 1

}
. (4.4)

From (4.3) and (4.4) it immediately follows that

Per(E y,�y) � |py,E |(�). (4.5)

In order to establish the reverse inequality, one has to prove that any f ∈
C∞
c (�;Rn) can be uniformly approximated by functions of the formϕ◦y, withϕ ∈

C∞
c (�y;Rn). Fix f ∈ C0

c (�;Rn) and K := supp( f ). Then K y is compact in �y .
On K y , define the function g := f ◦y−1,which can be extended to g ∈ C0

c (�
y;Rn)

by setting g = 0 outside K y . For all ε > 0 choose now ϕε ∈ C∞
c (�y;Rn) with

sup�y |g − ϕε| < ε. Then, one has that sup� | f − ϕε ◦ y| < ε, which provides the
desired approximation. ��

The proof of Theorem 2.4 follows from checking the converse statement of
Proposition 4.1. In order to achieve this, a crucial role is played by the following
result on Sobolev homeomorphisms of finite distorsion due to Csörnyei et al.
[13] (see also [22,24]):

Proposition 4.2. ([13, Theorem 1.2]) Let y ∈ W 1,n−1
loc (�;Rn) be a homeomor-

phism of finite distorsion. Then y−1 ∈ W 1,1
loc (�y;Rn) and is of finite distorsion.

Taking advantage of the latter result, we can now proceed to the proof of Theo-
rem 2.2.

Proof of Theorem 2.2. Given Proposition 4.1, we are left with the converse state-
ment. Namely, for all E ⊂ � measurable and all y ∈ W 1,n

loc (�;Rn) homeomor-
phism of finite distorsion with Per(E y,�y) < ∞ we should find a finite Radon
measure (the interfacial measure) such that relation (2.1) holds.

Let ψ ∈ C∞
c (�;Rn) with ‖ψ‖∞ � 1 be given. Since y is a homeomorphism,

we have that ψ ◦ y−1 ∈ C0
c (�

y;Rn). By Proposition 4.2, we also get ψ ◦ y−1 ∈
W 1,1(�y;Rn). Let ε > 0 andϕε ∈ C∞

c (�y;Rn) be defined byϕε := (ψ◦y−1)∗ρε,
where ρε(x) = ε−dρ(x/ε) and ρ is the standard unit symmetric mollifier in R

n .
Notice that, by choosing ε0 small enough one has that the support of ϕε is compact
in �y for any 0 < ε < ε0. Moreover, ‖ϕε‖∞ � 1 and ϕε converge strongly to
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ψ ◦ y−1 in W 1,1(�y;Rn) as ε → 0. As y satisfies the Lusin’s condition N the area
formula holds with equality, hence

∫
E y

div(ψ ◦ y−1) dξ =
∫

E y
I : (∇ψ) ◦ y−1 ∇ y−1 dξ

=
∫

E
(det∇ y) I : ∇ψ (∇ y−1 ◦ y) dx . (4.6)

Since ∇ y−1(y(x)) = (∇ y(x))−1 holds at any differentiability point x of y such
that det∇ y(x) > 0, hence almost everywhere in the set {det∇ y > 0}, from (4.6)
we deduce∫

E y
div(ψ ◦ y−1) dξ =

∫
{det∇ y>0}

(det∇ y) I : ∇ψ (∇ y)−1 dx

=
∫

{det∇ y>0}
det∇ y (∇ y)−T : ∇ψ dx =

∫
E
cof ∇ y : ∇ψ dx .

(4.7)

Notice that the last equality in (4.7) follows from the fact that y is of finite distorsion,
which implies cof ∇ y = 0 almost everywhere on {det∇ y = 0}. Similarly, by the
area formula and by (4.1) we obtain

∫
E
cof ∇ y : ∇(ϕε ◦ y) dx =

∫
E
det∇ y I : (∇ϕε) ◦ y dx =

∫
E y

divϕε dξ. (4.8)

Since divϕε converges to div(ψ ◦ y−1) in L1(�y) as ε → 0, from (4.8) we get

lim
ε→0

∫
E
cof ∇ y : ∇(ϕε ◦ y) dx =

∫
E y

div(ψ ◦ y−1) dξ.

By combining the latter with (4.2) and (4.7), with we deduce
∫

E
cof ∇ y : ∇ψ dx = lim

ε→0

∫
E
cof ∇ y : ∇(ϕε ◦ y) dx

� sup

{∫
E
cof ∇ y : ∇(ϕ ◦ y) dx | ϕ ∈ C∞

c (�y;Rn), ‖ϕ‖∞ � 1

}

= Per(E y,�y).

We have hence checked that

sup

{∫
E
cof ∇ y : ∇ψ dx | ψ ∈ C∞

c (�;Rn), ‖ψ‖∞ � 1

}
� Per(E y,�y) < ∞.

This implies that the distributional divergence of χEcof ∇ y is a finite measure on
�. ��

The interfacial measure pE,y given by Theorem 2.2 is the distributional diver-
gence of−χEcof ∇ y. Therefore, in order to have that Per(E y,�y) < ∞, Theorem
2.2 requires χEcof ∇ y to be a divergence measure field. By strengthening the as-
sumptions one may obtain improved characterizations of the divergence of such
fields; see for instance [1,10,40]. In particular, we can prove the following:
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Proposition 4.3. (Support of the interfacial measure) Under the assumptions of
Proposition 4.1 let Per(E,�) < ∞. Then, pE,y is concentrated on the closure of
the reduced boundary of E in �.

Proof. Let yε := y ∗ ρε, with ρε(x) = ε−dρ(x/ε) and ρ be the standard mollifier.
Since yε is smooth, χE is a function of bounded variation, and the cofactor is
divergence-free, we readily have that div(χEcof ∇ yε) = cof ∇ yε∇χE is a measure
concentrated on the reduced boundary of E in �. Notice that {cof ∇ yε} converges
weakly to cof ∇ y in Ln/(n−1)

loc (�;Rn×n) (see for example [11]) , so that integration
by parts entails

−
∫

�

ψ · d(div(χEcof ∇ yε)) =
∫

�

χEcof ∇ yε : ∇ψ dx

→
∫

E
cof ∇ y : ∇ψ dx =

∫
�

ψ · dpE,y

as ε → 0, for every ψ ∈ C∞
c (�;Rn). For all ε > 0, the measure div(χEcof ∇ yε)

is concentrated on the reduced boundary of E in �. We hence conclude that pE,y

is concentrated on the closure of the reduced boundary. ��
In case y−1 ∈ W 1,n

loc (�y;Rn) the characterization ofTheorem2.4 can be applied
to the inverse deformation y−1. Note that such regularity of the inverse follows
for instance for mappings with Ln−1 distorsion, see [24]. Therefore, we have the
following:

Corollary 4.4. (Characterization for the inverse deformation) Suppose that E ⊂ �

is a measurable set and that y ∈ W 1,n
loc (�;Rn) is a homeomorphism of finite

distorsion with Ky ∈ Ln−1(�). Then, Per(E,�) < ∞ if and only if the distribution
pE y ,y−1 := −div(χE ycof ∇ y−1) is a finite Radon measure on �y .

5. Existence of Minimizers: Proof of Theorem 2.3

The aim of this section is to discuss the existence of minimizers of both F0
and Fε on the respective sets of admissible deformations. This in particular proves
Theorem 2.3 as well as the existence statement in Theorem 2.4.

We start by establishing some preliminary result on the convergence of the de-
formed domains and phase configurations associated to a Y-converging sequence
of deformations. A crucial tool in this direction is the semicontinuity of the perime-
ter in the deformed configuration, when both the ambient sets �yk and the finite
perimeter sets Fk ⊂ �yk vary along a sequence, see Proposition 5.4. This will prove
to be essential for the �-limit result stated in Section 6.

We shallmake use of the following equi integrability result for inverse Jacobians
of mappings of integrable distorsion, which is inspired by the work of Onninen and
Tengvall [34]:

Lemma 5.1. (Equi integrability of det∇ y−1
k )Let yk ∈ W 1,1

loc (�;R3) be homeomor-
phisms with uniformly Lq-integrable distorsion for q > 2 (namely, ‖Kyk ‖Lq (�) is
bounded independently of k). Then, det∇ y−1

k are equiintegrable on �yk .
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Proof. From [34, Theorem 1.4] we have that
∫

�yk
|∇ y−1

k |3 logs(e + |∇ y−1
k |) dξ � C

∫
�

K q
yk dξ,

where s = 2(q − 2) and C is a constant depending only on q. Notice that by the
elementary inequality | det F | � 6|F |3, we have

|∇ y−1
k |3 logs(e + |∇ y−1

k |) � 1

6
3−s det∇ y−1

k logs
(
e3 + 1

6
det∇ y−1

k

)
.

We conclude that
∫

�yk
det∇ y−1

k logs
(
e3 + 1

6
det∇ y−1

k

)
dξ � C ′

∫
�

K q
yk dξ,

where C ′ depends only on q. The latter right-hand side is uniformly bounded.
This entails that the superlinear function of the determinant on the left-hand side is
uniformly bounded as well. This implies the equi integrability of the sequence of
the determinants of the inverses. ��
Lemma 5.2. (Convergence of deformed configurations) Let y, yk ∈ Y such that
yk → y weakly in W 1,p, p > 3 (hence uniformly). Then:

(i) For any open sets A, O such that A ⊂⊂ �y ⊂⊂ O, one has A ⊂ �yk ⊂ O
for k large enough. In particular, |�y��yk | → 0;

(ii) If ‖Kyk ‖Lq (�) � c uniformly, by letting Ok := �y ∩ �yk , there holds

|�\(y−1(Ok) ∩ y−1
k (Ok))| → 0.

Proof. Ad (i): Let V be open and such that A ⊂⊂ V ⊂⊂ �y . Since A and ∂V are
disjoint compact sets, we have that d(A, ∂V ) =: 2δ > 0. Let U = y−1(V ) ⊂⊂ �

and Vk = yk(U ). Since y, yk ∈ Y are homeomorphisms on U , we have ∂V =
y(∂U ) and ∂Vk = yk(∂U ). As p > 3, we have that yk → y in C(�;R3), thus
‖y − yk‖∞ < δ for k large enough. Hence, for any boundary point ξ ∈ ∂Vk ,
we have that d(ξ, ∂V ) < δ for k large, which yields A ⊂ Vk ⊂ �yk owing to
d(A, ∂V ) = 2δ.

As O ⊃⊃ �y we deduce as above that d(∂O,�y) =: 2δ for some δ > 0, which
immediately yields the inclusion �y + B(0, δ) ⊂ O . Then, since ‖y − yk‖∞ < δ

we have that

�yk ⊂ �y + B(0, δ) ⊂ �y + B(0, δ) ⊂ O.

In order to check that |�y��yk | → 0, observe that �y can be approximated
in measure by open sets A� ⊂⊂ �y (�y can be approximated by internal compact
sets). Moreover, �y can be approximated in measure by external open sets O� ⊃
�y . Since � is a bounded Lipschitz domain, by Lusin’s N property for (a W 1,p

extension of) y and the fact y(∂�) ⊃ ∂(�y), it follows that |∂(�y)| = 0, that is
|�y | = |�y |.
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Ad (ii): Since y−1(Ok) ⊂ � and y−1
k (Ok) ⊂ �, it is sufficient to prove

|y−1(Ok)| → |�|, |y−1
k (Ok)| → |�|.

Firstly, |�y\Ok | → 0 by (i). Hence, since det∇ y−1 ∈ L1(�y),

|y−1(Ok)| =
∫

Ok
det∇ y−1 dξ →

∫
�y

det∇ y−1 dξ = |�|.

Secondly,

|y−1
k (Ok)| =

∫
Ok

det∇ y−1
k dξ =

∫
�yk

det∇ y−1
k dξ −

∫
�yk \Ok

det∇ y−1
k dξ

= |�| −
∫

�yk \�y
det∇ y−1

k dξ.

By Lemma 5.1, the determinants ∇ y−1
k are equiintegrable. Since |�yk \�y | → 0,

the statement follows. ��
Lemma 5.3. (Convergence of the phases) Let y, yk ∈ Y such that yk → y weakly
in W 1,p, for p > 3, and have uniformly Lq-bounded distorsion, for q > 2. Let
ζ ∈ L∞(�y, [0, 1]) and ζk ∈ L∞(�yk , [0, 1]). Finally, let z = ζ ◦y, zk = ζk ◦yk ∈
L∞(�; [0, 1]) and Ok := �y ∩ �yk . Then,

‖ζ − ζk‖L1(Ok )
→ 0 ⇒ ‖z − zk‖L1(�) → 0.

Proof. By introducing the shorthand Ek := y−1(Ok) ∩ y−1
k (Ok) ⊂ �, we start

by observing that

‖zk − z‖L1(�) � |�\Ek | + ‖zk − z‖L1(Ek )
.

As |�\Ek | → 0 by Lemma 5.2, we are left to prove that +‖zk − z‖L1(Ek )
→ 0.

One uses the triangle inequality to write

‖zk − z‖L1(Ek)
� I (1)

k + I (2)
k ,

with

I (1)
k := ‖ζk ◦ yk − ζ ◦ yk‖L1(Ek)

, I (2)
k := ‖ζ ◦ yk − ζ ◦ y‖L1(Ek )

.

The Lq -bound on the distortion and Lemma 5.1 entail that the sequence det∇ y−1
k

is equiintegrable. Let ρ : [0,+∞) → [0,+∞) (monotonically increasing) be a
modulus of equiintegrability for the sets {det∇ y−1

k }k�1 ∪ {det∇ y−1}, that is, for
any measurable set A ⊂ R

3 we ask for limt→0+ ρ(t) = 0 and
∫

�y∩A
det∇ y−1 dξ ∨ sup

k

∫
�yk ∩A

det∇ y−1
k dξ � ρ(|A|).
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Now, fix δ > 0 and change variable x �→ ξ in the integral in I (1)
k getting

I (1)
k =

∫
yk (Ek )

det∇ y−1
k |ζk − ζ | dξ � ρ(|Ak(δ)|) + δ|�|, (5.1)

where Ak(δ) := {ξ ∈ Ok | |ζk(ξ) − ζ(ξ)| > δ}. Since ‖ζ − ζk‖L1(Ok )
→ 0 one

has that |Ak(δ)| < δ for k large enough.
In order to control I (2)

k , let ζ δ ∈ C0(�y,R) be a (uniformly) continuous L1

approximation of ζ such that ‖ζ δ − ζ‖L1(�y) is so small that

|A(δ)| < δ for A(δ) := {ξ ∈ �y | |ζ δ(ξ) − ζ(ξ)| > δ}.
We write I (2)

k � J (1)
k + J (2)

k + J (3)
k , with

J (1)
k = ‖ζ ◦ yk − ζ δ ◦ yk‖L1(Ek )

, J (2)
k = ‖ζ δ ◦ yk − ζ δ ◦ y‖L1(Ek )

, J (3)
k

= ‖ζ δ ◦ y − ζ ◦ y‖L1(Ek )
.

Now, similarly to (5.1), we can write

J (1)
k + J (3)

k � 2ρ(|A(δ)|) + 2δ|�| � 2
(
ρ(δ) + δ|�|). (5.2)

Finally, since ζ δ is uniformly continuous and |�| < +∞, if ωδ is the modulus of
uniform continuity of ζ δ , we get

J (2)
k � ωδ(‖y − yk‖∞)|�|. (5.3)

By combining (5.1) and (5.3) and using the fact that δ is arbitrary, we obtain the
statement. ��
The next result concerns the semicontinuity of the perimeter of sets in the deformed
configuration along sequences of suitably converging sets and deformations. This
is based on the characterization result from Theorem 2.2.

Proposition 5.4. (Lower semicontinuity of the perimeter) Let (yk, ζk) ∈ Q, y ∈
Y, ζ ∈ L∞(�y, {0; 1}) with y, yk satisfying the assumptions of Lemma 5.3. Let
F = {ξ ∈ �y | ζ(ξ) = 1}, Fk = {ξ ∈ �yk | ζk(ξ) = 1} and assume |Fk�F | → 0.
If I := lim infk→+∞ Per(Fk,�

yk ) < ∞, then

Per(F,�y) � I and (y, ζ ) ∈ Q.

Proof. Letting E = y−1(F), and Ek = y−1
k (Fk), we have by Theorem 2.2 that

Per(Fk,�
yk ) = |pyk ,Ek |.

By applying Lemma 5.3 to ζ = χF , ζk = χFk we deduce that χEk → χE in L1(�).
Moreover, since∇ yk → ∇ y weakly in L p(�), the convergence cof ∇ yk → cof ∇ y
holds weakly in L p/2(�). Therefore, for any test function ψ ∈ C∞

c (�;R3), as
k → ∞ we have∫

�

ψ · dpyk ,Ek =
∫

�

χEk cof ∇ yk : ∇ψ dx →
∫

�

χEcof ∇ y : ∇ψ dx =: py,E (ψ),

where the last equality is a definition of the distribution on the right side. By the
lower semicontinuity of the total variation, we have that |py,E | � I . We conclude
by Theorem 2.2 as Per(F,�y) = |py,E |. ��
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After this preparatory discussion, we eventually move to the existence proof
for minimizers. First we show that the diffuse-interface functional Fε admits a
minimizer for every ε > 0. Such existence result is part of the statement of The-
orem 2.4. Indeed, we restate it here in a slightly more general form, in which the
Dirichlet boundary condition is imposed only on a subset of the boundary of positive
H2-measure, as it is customary in elasticity theory.

Proposition 5.5. (Existence for the diffuse-interface model) Under assumptions
(2.4)–(2.7), let �0 ⊂ ∂� be relatively open in ∂� with H2(�0) > 0. Moreover,
let ε > 0, y0 ∈ Y and ζ0 ∈ W 1,2(�y0; [0, 1]) be such that the set Q̃(y0,�0) :=
{(y, ζ ) | y ∈ Y, ζ ∈ W 1,2(�y; [0, 1]), y = y0 on �0} is nonempty andFε(y0, ζ0) <

∞. Then, there is a minimizer of Fε on Q̃(y0,�0).

Proof. Let (yk, ζk) ∈ Q̃(y0,�0) be a minimizing sequence for Fε.
The coercivity (2.5) and the generalized Friedrichs inequality imply that one

can extract a not relabeled subsequence such that yk → y weakly in W 1,p(�;R3).
The boundary condition and the Ciarlet–Nečas condition (2.2) are readily preserved
in the limit.Moreover, one has that the distorsion Ky ∈ Lq(�) as the function F →
|F |3/ det F is polyconvex and Fk = ∇ yk are weakly converging. We conclude that
y ∈ Y and y = y0 on �0.

For every δ > 0, let Oδ := {ξ ∈ �y | dist(ξ, ∂�y) > δ} ⊂⊂ �y . By Lemma 5.2
we have that �y = ∪δ Oδ and Oδ ⊂ �yk for k large. Denote by ηk and Hk the zero
extensions on R

3 of ζk and ∇ζk , respectively. The coercivity of F int
ε implies that

one can extract not relabeled subsequences such that ηk → η weakly* in L∞(R3)

and Hk → H weakly in L2(R3). Now set ζ := η|�y . For every ξ0 ∈ Oδ and
B(ξ0, r) ⊂ Oδ we have that ηk → η weakly in W 1,2(B(ξ0, r)). This implies that
H = ∇η = ∇ζ almost everywhere in B(ξ0, r). Moreover, by possibly extracting
again one has that ηk → η strongly in L2(B(ξ0, r)). As every ξ ∈ �y belongs to
some Oδ for δ small enough, we get that H = ∇ζ almost everywhere in �y . It
is also easy to see that η = 0, H = 0 almost everywhere on the complement of
�y due to the uniform convergence of yk . Indeed, if ξ0 
∈ �y then there are two
open disjoint neighborhoods of ξ0 and �y . Let O ⊃ �y be the open neighborhood
of �y . Then for k large enough �yk ⊂ O (Lemma 5.2), that is ηk = 0, Hk = 0
in a neighborhood of ξ0. Consequently, η(ξ0) = 0, H(ξ0) = 0 at least if ξ0 is a
Lebesgue point of η and H .

The latter argument shows that ηk → η pointwise almost everywhere in the
complement of �y . Up to possibly extracting again, we hence have that ηk → η

pointwise almost everywhere in R
3 as well. In fact, the pointwise convergence in

�y follows since ηk → η strongly in L2(B(ξ0, r)) for any B(ξ0, r) ⊂⊂ �y and
|η − ηk | � 1 almost everywhere.

Using the Fatou Lemma, we find

lim inf
k→∞ F int

ε (yk, ζk) = lim inf
k→∞

∫
R3

(ε

2
|Hk |2 + 1

ε
	(ηk)

)
dξ

�
∫
R3

(ε

2
|H |2 + 1

ε
	(η)

)
dξ

=
∫

�y

(ε

2
|∇ζ |2 + 1

ε
	(ζ )

)
dξ = F int

ε (y, ζ ), (5.4)
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which shows the weak lower semicontinuity of the interfacial energy.
To show the weak lower semicontinuity of the bulk contribution, we write it as

F̃ bulk(y, z) =
∫

�

(
z(x)W1(∇ y(x)) + (1 − z(x))W0(∇ y(x))

)
dx .

Notice that the integrand is continuous in z and convex in ∇ y and in its minors. Let
now zk := ζk ◦ yk and recall from Lemma 5.3 entails that zk → z = ζ ◦ y in L1(�).
By applying [19, Cor. 7.9] we get that lim infk→∞ F̃ bulk(yk, zk) � F̃ bulk(y, z).
Consequently,

lim inf
k→∞ F bulk(yk, ζk) = lim inf

k→∞ F̃ el(yk, zk) � F̃ bulk(y, z) = F bulk(y, ζ ).(5.5)

Together with (5.4), the latter proves that (y, ζ ) is a minimizer of Fε on Q̃(y0,�0)

by means of the direct method [14]. ��

We conclude this section by providing a proof of Theorem 2.3.

Proof of Theorem 2.3. Let (yk, ζk) ∈ Q(y0,�0) be a minimizing sequence for F0.
As in the proof of Proposition 5.5, we can assume, up to extraction of a not relabeled
subsequence, that yk → y weakly in W 1,p for some y ∈ Y.

Letting Fk = {ζk = 1}, we can identify the sequence of states with (yk, Fk).
Since the interface energy is bounded along the sequence (yk, Fk), the sets Fk

have uniformly bounded perimeters, namely, Per(Fk,�
yk ) � c. For � ∈ N, let

O� := {x ∈ �y | dist(x, ∂�y) > 2−�} ⊂⊂ �y . As O� ⊂ �yk for k large enough
due to Lemma 5.2, for any given � ∈ N we have that lim supk Per(Fk, O�) � c.
We can hence find a measurable set G� ⊂ O� and a not relabeled subsequence Fh

such that

|(Fh�G�) ∩ O�| → 0 for h → ∞.

For all �′ > � we can further extract a subsequence Fh′ from Fh above in such a
way that |(Fh′�G�′

) ∩ O�′ | → 0 and G�′ ∩ O� = G�. From the nested family of
subsequences corresponding to � = 1, 2, . . . we extract by a diagonal argument a
further subsequence Fk′ . By setting F := ∪�G� and, owing to O� ↗ �y , we get
that

|(Fk′�F) ∩ �y | → 0.

Now, the set F has finite perimeter in �y as a consequence of Proposition 5.4. By
letting ζ = χF |�y we then have that (y, ζ ) ∈ Qy0 .

One is left to check that F0(y, ζ ) � lim inf F0(yk, ζk), which follows from the
lower semicontinuity of F0. Indeed, the lower semicontinuity of bulk part of F0
follows by the argument of Proposition 5.5. As concerns the interface term, one
just needs to recall Proposition 5.4. ��
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6. Convergence of Phase-Field Approximations: Proof of Theorem 2.4

This section is devoted to the proof of the convergence Theorem 2.4. The argu-
ment relies on �-convergence [9,15]. In particular, we prove a �-lim inf inequality
for the interfacial part in Proposition 6.1 and construct a recovery sequence in
Proposition 6.2. Let us start with the former.

Proposition 6.1. (�-lim inf inequality) Let (yk, ζk), (y, ζ ) ∈ Q be such that

(i) lim infk→+∞ F int
εk

(yk, ζk) < ∞ for some sequence εk → 0,
(ii) yk → y weakly in W 1,p(�;R3), p > 3,
(iii) limk→+∞ ‖ζk − ζ‖L1(Ok ) = 0, with Ok := �yk ∩ �y .

Then, there exists E y ⊂ �y measurable such that

ζ = χE y and γPer(E y,�y) � lim inf
k→+∞ F int

εk
(yk, ζk).

In particular, one has that (y, ζ ) ∈ Q.

Proof. Moving from Proposition 5.4, the proof proceeds along the lines of the clas-
sical Modica–Mortola �-convergence result [32]. As lim infk→+∞ F int

εk
(y, ζ ) <

∞ and 	(s) = 0 only for s = 0, 1, we have that ζ = χF , for some measurable set
F ⊂ �y .

By using the coarea formula we deduce that

F int
εk

(yk, ζk) =
∫

�yk

(εk

2
|∇ζk |2 + 1

εk
	(ζk)

)
dξ

�
∫

�yk

√
2	(ζk) |∇ζk | dξ =

∫ 1

0

√
2	(s)Per({ζk > s},�yk ) ds.

Given any δ ∈ (0, 1) and s ∈ [δ, 1 − δ] one has that
|{ξ ∈ �yk | ζk > s}�F | � 1

δ
‖ζk − ζ‖L1(Ok ) + |�yk ��y |.

Therefore, by applying Lemma 5.2 we get

|{ξ ∈ �yk | ζk > s}�F | → 0 ∀s ∈ [δ, 1 − δ].
Owing to Proposition 5.4, we obtain

Per(F,�y) � lim inf
k→+∞ Per({ζk > s},�yk ) ∀s ∈ [δ, 1 − δ].

Hence, as δ ∈ (0, 1), by applying the Fatou Lemma one gets

lim inf
k→+∞ F int

εk
(yk, ζk) �

∫ 1

0

√
2	(s) lim inf

k→+∞ Per({ζk > s},�yk ) ds

�
∫ 1−δ

δ

√
2	(s) lim inf

k→+∞ Per({ζk > s},�yk ) ds

�
∫ 1−δ

δ

√
2	(s) · Per(F,�y) ds,

and the assertion follows as
∫ 1−δ

δ

√
2	(s) ds → γ for δ → 0. ��
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The existence of a recovery sequence is a direct consequence of the classical
Modica–Mortola theorem [32] as soon as we assume that �y is a Lipschitz do-
main. Although this Lipschitz continuity could fail to hold for general deforma-
tions, we can enforce it by asking y0(�) to be a Lipschitz domain where y0 is the
imposed boundary deformation, see, for example, [4] for a similar argument. Note
that the Lipschitz assumption on �y was not needed for the �-lim inf inequality of
Proposition 6.1.

Proposition 6.2. (Recovery sequence) If (y, ζ ) ∈ Qy0 , y0(�) ⊂ R
3 being a Lip-

schitz domain, and F = {ζ = 1}, there exists a sequence ζk ⊂ W 1,2(�y; [0, 1])
such that

lim
k→∞ ‖ζk − ζ‖L1(�y) = 0 and γPer(F,�y) + F bulk(y, ζ ) = lim

k→∞Fεk (y, ζk).

Proof. The sequence ζk is delivered by the classical Modica–Mortola construction
[32] applied to the functionalF int

ε (y, ζ )with y fixed. In fact, once the interface part
convergence, the bulk part also follows because Fbulk(y, ζ ) is strongly continuous
in ζ . ��

We eventually combine the �-lim inf inequality of Proposition 6.1 and the
recovery-sequence construction of Proposition 6.2 in order to prove Theorem 2.4.

Proof of Theorem 2.4. Existence of minimizers (yk, ζk) for Fεk has already been
checked in Proposition 5.5.

Let (y0, ζ0k) be the recovery sequence for (y0, ζ0) whose existence is proved
in Proposition 6.2. By comparing with (y0, ζ0k) one gets that

Fel(yk, ζk) + F int
εk

(yk, ζk) = Fεk (yk, ζk) � Fεk (y0, ζ0k) < C < ∞,

wherewe have used the fact thatF int
εk

(y0, ζ0k) → F int
0 (y0, ζ0). The latter bound and

the coercivity (2.5) ensures that yk → y weakly in W 1,p(�;R3) and |�y��yk | →
0 by Lemma 5.2, for some not relabeled subsequence. On the other hand, since�yk

contains any open set A ⊂⊂ �y for large k, the latter bound on F int
εk

(yk, ζk)

yields strong L1(A) compactness for the sequence ζk . This implies the existence
of ζ ∈ L∞(�y; [0, 1]) such that ‖ζk − ζ‖L1(Ok ) → 0 for some not relabeled
subsequence, as in the proof of Theorem 2.3. Proposition 6.1 ensures that ζ is a
characteristic function and

F int
0 (y, ζ ) � lim inf

k→∞ F int
εk

(yk, ζk).

Moreover, for all (ỹ, ζ̃ ) ∈ Qy0 , Proposition 6.2 ensures that there exists a recovery
sequence ζ̃k such that Fεk (ỹ, ζ̃k) → F0(ỹ, ζ̃ ). As the bulk term Fbulk is lower
semicontinuous, we conclude that

F0(y, ζ ) � lim inf
k→∞ Fεk (yk, ζk) � lim inf

k→∞ Fεk (ỹ, ζ̃k) = F0(ỹ, ζ̃ ).

Hence, (y, ζ ) minimizes F0 on Qy0 . ��
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