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This work studies the classes of matroids that are closed under minors, addition of coloops
and principal extensions. To any matroid M in such a class a matroid M◦ is constructed
such that it contains M as a minor, has all proper minors in the class and violates Zhang-
Yeung inequality. When the class enjoys the inequality the matroid M◦ becomes an ex-
cluded minor. An analogous assertion was known before for the linear matroids over any
infinite field in connection with Ingleton inequality. The result is applied to the classes
of multilinear, algebraic and almost entropic matroids. In particular, the class of almost
entropic matroids has infinitely many excluded minors.

1. Introduction

In matroid representation theory, configurations of vectors in linear spaces
or points in projective geometries have been intensively investigated for
decades. Classes of linear matroids over fields are traditional. Configura-
tions of subspaces of a linear space occasionally give rise to integer multi-
ples of the matroidal rank functions, and thus to multilinear matroids. In
the transcendental field extension theory, the algebraic dependence exhibits
the matroidal structure as well, inducing algebraic matroids.

It is likely less known that a matroid can be represented by a random
vector indexed by the ground set. The collection of Shannon entropies of all
subvectors sometimes provides a multiple of a matroidal rank function. This
forces the distribution of the vector to obey a highly regular form. In an
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equivalent approach, perhaps the most straightforward to start with, config-
urations in the lattices of partitions are examined, see Remark 2. The result-
ing matroids are called here partition representable [27]. The matroidal rank
functions can also become limits of the collections of the Shannon entropies
of random subvectors in which case almost entropic matroids arise [28].

Rigorous definitions of the above notions, known relations between them,
discussion and references are presented in Section 2. Figure 1 may provide
initial insight.

The present work unfolds from [31, Theorem 1.1] asserting that over an
infinite field any linear matroid is a minor of a non-linear matroid whose
proper minors are linear. The latter matroid violates the Ingleton inequal-
ity [31, p. 688], a classical necessary condition for linear representability. As
a corollary there exist infinitely many excluded minors for the class of linear
matroids over any infinite field.

The first result of this work opens a unified viewpoint of the structure
of some classes of matroids and their excluded minors. It features, for the
first time in this context, Zhang-Yeung inequality (6), originally proved for
Shannon entropies in [42, Theorems 3 and 5]. The inequality is weaker than
Ingleton one.

Theorem 1. Let M be a class of matroids that is closed under minors,
addition of coloops and principal extensions. Given any M ∈M, a matroid
M◦ exists such that

(i) M is a proper minor of M◦,
(ii) each proper minor of M◦ belongs to the class M,
(iii) M◦ violates Zhang-Yeung inequality.

The presented proof is based on six lemmas. Section 3 reviews the prin-
cipal extensions, presents three lemmas and recalls Zhang-Yeung inequality.
An encompassing matroid Menc∈M is constructed to contain M as a minor
in Section 4. It serves for the majority of computations and argumentations.
In Section 5, the matroid M◦ is obtained from a restriction of Menc by relax-
ation, and Theorem 1 is proved. The construction mimics that of the Vámos
matroid.

Theorem 1 is applied to above classes of matroids in Section 2 where
several new results are summarized in Theorem 2. The proof is presented in
Section 6 and is preceded by lemmas on principal extensions of representable
matroids.
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2. Excluded minors for classes of matroids

A matroid M =(N,r) consists of a finite ground set N and rank function r
[33].

Over a field F, the matroid M is multilinear of degree δ>1 if there exist
subspaces Ei, i∈N , of a linear space over F such that δ·r(I)=dimEI , I⊆N .
Here, EI denotes the inner sum

⊕
i∈IEi. In the special case δ=1, the linear

matroids over F arise.
The matroid M is algebraic over a field F if there exist not necessarily

different elements ei, i ∈ N , of an extension field of F such that r(I) =
dimtrF(I) for I⊆N . Here, dimtr denotes the transcendence dimension over
F and F(I) the smallest subfield of the extension field that contains F and
{ei : i∈I}.

The matroid M is partition representable of the degree d> 2 if a dr(N)-
element set Ω admits partitions πi, i ∈ N , such that the meet-partition
πI =

∧
i∈I πi has dr(I) blocks of the same size, I⊆N [27].

A polymatroid M =(N,h) has a real-valued rank function h [24,32].
For random variables ξi, i∈N , that take only finitely many values, the

mapping that sends I ⊆N to the Shannon entropy of (ξi : i∈ I) is a poly-
matroidal rank function [9]. The polymatroids constructed in this way are
called entropic. Their rank functions exhaust the entropy region [30].

A polymatroid (N,g) is called almost entropic if there exists a sequence
of entropic polymatroids (N,hn) such that hn→ g, pointwise, thus if g be-
longs to the closure of the entropy region. This defines in particular the
almost entropic matroids, represented by infinite sequences of the distribu-
tions of random vectors. The class of these matroids has an appeal because
it provides a description of the entropy regions [28, Theorem 5].

The classes of matroids defined above are denoted byMmlin
F,δ ,Malg

F ,Mpare

d
and Maent, respectively. Let further

Mlin
F ,Mmlin

F,1 , Mlin ,
⋃

FMlin
F ,

Mmlin
δ ,

⋃
FMmlin

F,δ , Mmlin ,
⋃
δ>1Mmlin

δ ,

Malg ,
⋃

FM
alg

F , Mpare ,
⋃
d>2M

pare

d .

The assertions of Theorem 2 are new up to the classMlin
F over any infinite

field F which is [31, Theorem 1.1], conjectured earlier in [10]. The unions
over F in the definitionsMlin andMmlin

δ can equivalently run over the finite
fields, by [33, Proposition 6.8.2 and 6.8.11].

The following assertions summarize selected applications of Theorem 1.
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Theorem 2. Let M be any of the following classes of matroids: Mmlin
F,δ for

any infinite field F and δ> 1, Mmlin
δ for δ> 1, Mmlin, Malg

F for any F, Malg

andMaent. Every matroid inM is a minor of a matroid that is an excluded
minor for M.

Also the union inMalg does not change when restricted to the fields with
the nonzero characteristic, by [33, Propositions 6.7.11, 6.8.2 and 6.7.10].

Corollary 1. Each of the classes in Theorem 2 has infinitely many excluded
minors. They can have an arbitrarily large rank.

The case Mlin
F over the field of real numbers goes back to [18]. For the

classes Malg

F and Malg the assertions of Corollary 1 appeared in [21]. Oth-
erwise, it is new.

As a consequence of Corollary 1, the classes have infinitely many excluded
minors which has been partially known, even much earlier. A sequence of
matroids Ln that have rank three and the ground set of cardinality 2n+3 was
introduced in [7, p. 108], see also the figures in [12, p. 67] and [33, p. 218].
For n non-prime, Ln is an excluded minor for the linear representability and
algebraic representability over any field by [12, Theorem 2] and [20], respec-
tively. The consequence for the three multilinear classes seems to be new.
The matroid Ln with n non-prime is also an excluded minor for partition
representability of any degree, by [27, Proposition 4.3], that classifies the
partition representations of Ln up to isotopies. The existence of infinitely
many excluded minors for Maent was open.

The classes Mmlin
F,δ with F finite and δ > 1, and Mpare

d , d > 2, do not
feature in Theorem 2 because they are not closed under principal extensions.
Actually, Rota’s conjecture [35] states thatMlin

F has finitely many excluded
minors for F finite; for recent progress see [11].

Conjecture 1. The class Mpare

d , d>2, has finitely many excluded minors.

The cases d = 2,3 reduce to the binary and ternary matroids [4,26],
respectively.

Figure 1 depicts inclusions among the classes Mlin, Mmlin, Malg, Mpare

and Maent. For Mlin
F ⊆M

alg

F see [33, Proposition 6.7.10].

Remark 1. The class of partition representable matroids contains the
multilinear matroids. In fact, let M have a multilinear representation of the
degree δ by subspaces Ei, i∈N , of a space of the dimension δ ·r(N) over a
finite field F. The dual of the space can play the role of Ω . The annihilator of
EI in Ω has the dimension δ[r(N)−r(I)] and Fδ·r(I) cosets, I⊆N . They are
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[5] Rem. 4
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Figure 1. Classes of matroids

the blocks of a meet-partition πI of Ω . Then, M is partition representable
by πi, i∈N , with d= |F|δ. Thus, Mmlin

F,δ ⊆M
pare

d and Mmlin⊆Mpare.

Remark 2. In a partition representation πi, i∈N , of M, if Ω is endowed
with the uniform probability measure and πi are interpreted as factor map-
pings, then they turn into random variables ξi. The variables give rise to
the entropic polymatroid (N,r · lnd). For a converse see [26, Theorem]. The
inclusionMpare⊆Maent follows from the fact that the closure of the entropic
region is a convex cone [41, Theorem 1].

Figure 1 shows also references to examples of matroids that have or do not
have some representations simultaneously, and indicates two open problems.

Remark 3. The non-Pappus matroid is not linear but it is multilinear of
the degree δ=2 over the field F whose cardinality is a power of 3 [37,27]. It
is algebraic over any field [19].

Remark 4. The direct sum of Fano and non-Fano matroids is algebraic,
[14], [33, p. 216]. It is not partition representable by [27, Proposition 4.1]
but it is almost entropic because the entropy region is closed under sums.
The direct sum can be truncated to a connected matroid with the same
properties. In fact, the truncation is expressible as a principal extension
followed by a contraction [30, Lemma 4], so the class Malg

F is closed under
truncations by Lemma 13. The class Maent admits the truncations by [28,
Theorem 2].
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Remark 5. A nontrivial multilinear matroid that is not algebraic was con-
structed recently in [5], answering a question from [27, 5.5]. The direct sum
of Fano matroid, non-Fano matroid and the matroid from [5] is almost en-
tropic but neither partition representable nor algebraic. Truncations apply.

Since the appearance of [37] it has been an open problem, especially in a
cryptographic disguise, whether the inclusion Mmlin⊆Mpare is strict. This
is indicated in Figure 1 by the question mark on the left. The question mark
on the right expresses the following.

Conjecture 2. The algebraic matroids are almost entropic.

Vámos matroid is not linear [14], violating Ingleton inequality. It is not
algebraic [15]. It was proved independently in [36] and [26, Section 7] that
it is not partition representable. The most natural argument that Vámos
matroid belongs to none of the classes considered here is that it violates
even the Zhang-Yeung inequality. In fact, this inequality is valid for the
entropic polymatroids, and therefore in Maent by limiting. It holds in Malg

by Corollary 2.

Finally, a miscellany of the related literature is presented below.
For the linear representability see the chapters in [39,7,33]. Recent de-

velopments extend to the spaces over division or skew partial fields [34,38].
Multilinear matroids feature in network coding [8] and cryptography [25,2,3].

Though the notion of algebraic matroids dates back to the very begin-
nings of the matroid theory it has been less studied for periods. Older reviews
are in [22,23]. Recent activities are related to algebraic geometry [16].

Partition representability can be defined equivalently via generalized
quasigroup equations [27, Proposition 2.4]. The distribution of the random
variables ξi, i ∈N , representing a matroid is uniform on a set that corre-
sponds to the almost affine code and the matroid is then also called almost
affine [37]. Partition representable matroids admit interpretation as the ideal
secret sharing schemes which motivated the cryptographic community to call
them secret-sharing [6]. The strict inclusion in Mmlin⊆Mpare would imply
existence of an ideal secret sharing scheme which is not multilinear. These
equivalent approaches are discussed in [28, Discussion B,D]1.

The rank functions of the entropic polymatroids need not satisfy the
Ingleton inequality [13,14], a well-known necessary condition for the multi-
linear representability, but they enjoy a weaker Zhang-Yeung inequality [42,

1 We decided to coin the term partition representable because of the succinct definition
that seems to be amenable to broadest mathematical audience.
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Theorems 3 and 5], and a profusion of others [30]. The class Maent induces
dense subsets of the entropy regions [28, Theorem 5].

The above notions have turned out to have motivation and relevance in
many problems of the information theory, statistics, network coding, cryp-
tography, game theory, group theory and elsewhere.

3. Preliminaries

This section reviews the principal extensions of polymatroids and Zhang-
Yeung inequality. Three auxilliary lemmas are worked out for later purposes.

The principal extension [24, p. 245] of a polymatroid (N,f) by a single
element 0 6∈N is constructed by a convolution and parallel extension. The
convolution f ∗g of f with a polymatroidal rank function g is defined by

f ∗ g (I) = min
J⊆I

[
f(J) + g(I \ J)

]
, I ⊆ N.

For L⊆N the polymatroid (N ∪0,h) given by

h(J) = f(J) and h(J ∪ 0) = f(J ∪ L), J ⊆ N,

is called the extension of (N,f) by 0 parallel to L.
For a matroid M = (N,r), the principal extension (N ∪ 0, r̄) of M by 0

at L is obtained by convolving the extension of M by 0 parallel to L and the
free matroid (N∪0, |·|). Thus, the rank function r̄ is given by r̄(I)=r(I) and

r̄(I∪0) = min
J⊆I

min
{
r(J∪L)+ |(I∪0)\(J∪0)|, r(J)+ |I∪0\J |

}
, I ⊆ N.

This extension is a matroid [24, Theorem 2.5]. By submodularity, the mini-
mum over J is attained at J=I whence

(1) r̄(I ∪ 0) = min
{
r(I ∪ L), r(I) + 1

}
, I ⊆ N.

When L is a singleton the principal extension coincides with the parallel
one. The rank r̄(I∪0) depends on I only through the closure of L in M and
equals r(I∪L) if and only if L is contained in the closure of I in M. Thus,
the principal extension at L coincides with that at the closure of L. If L is
a flat of M the element 0 is interpreted as being freely added to L, see [33,
p. 270]. Principal extensions for polymatroids can be introduced analogously.
Convolving with modular polymatroids, even an individual value at 0 can
be adjusted but that generality does not occur here.



942 FRANTIŠEK MATÚŠ

Extending a matroid principally two or more times is commutative [24,
Proposition 2.8]. In the sequel, an explicit formula for the rank functions of
multiple extensions is needed.

Let M = (N,r) be a matroid to be extended by elements of a finite set
M that is disjoint with N . For m ∈ M let Lm ⊆ N be a set specifying
parallelism. The principal extension of M adding each m∈M at Lm is the
matroid (N ∪M,r̄) whose rank function is given by

(2) r̄(I ∪K) = min
D⊆K

[
r
(
I ∪

⋃
d∈DLd

)
+ |K \D|

]
, I ⊆ N,K ⊆M.

The formula is obtained by convolving the extension of M by each m∈M
in parallel at Lm and (N ∪M, | · |). If all Lm equal a single set L⊆N , then
(2) reduces to

(3) r̄(I ∪K) = min
{
r
(
I ∪ L), r(I) + |K|

}
, I ⊆ N,K ⊆M.

Given a set N and disjoint copy N ′, let i′ be the copy of i ∈ N and
J ′={j′ : j∈J}, J⊆N . A second copy N ′′ is disjoint with N ∪N ′, copying i
to i′′ and J to J ′′.

Any matroid M =(N,r) can be extended to N∪N ′ so that the elements of
N ′ become coloops of the extension. This is referred to as addition of coloops.

This extension is further principally extended to
∼

M = (N ∪N ′ ∪N ′′, r̃) by
adding i′′ at i∪ i′ for every i∈N .

Lemma 6. The mappings i 7→ i′′ and i 7→ i′ are isomorphisms of the matroid

M onto the minors
∼

M \N/N ′ and
∼

M \N/N ′′, respectively.

Proof. The assertions are consequences of

(4) r̃(I ∪ J ′ ∪K ′′) = r(I ∪ (J ∩K)) + |J ∪K|, I, J,K ⊆ N.

In fact, r̃(N ′∪K ′′)=r(K)+ |N |, K⊆N , and r̃(J ′∪N ′′)=r(J)+ |N |, J⊆N .
Eqs. (4) follow from (2) with M=N ′′

r̃(I ∪ J ′ ∪K ′′) = min
D⊆K

[
r(I ∪D) + |J ′ ∪D′|+ |K ′′ \D′′|

]
,

where the two cardinalities sum to |(J ∩K)\D|+ |J ∪K|. Then

r̃(I ∪ J ′ ∪K ′′) = min
D⊆J∩K

[
r(I ∪D) + |(J ∩K) \D|

]
+ |J ∪K|.

The minimization can be further restricted to the sets D containing I∩J∩K.
By submodularity, the minimum is then attained atD=J∩K whence eqs. (4)
hold.
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Having a base B of M let B′⊆N ′ and B′′⊆N ′′ be the copies of B, and
D′ and D′′ be another disjoint copies not intersecting N ′∪N ′′. The matroid

obtained from
∼

M\N by extending each element of B′∪B′′ by a parallel one

in D′∪D′′ is denoted by
≈

M.

Lemma 7. The matroid
≈

M has a minor isomorphic to M and the ground
set partitioned into the bases N ′∪D′′ and N ′′∪D′.

Proof. The first assertion follows from Lemma 6. By (4), r̃(N ′∪B′′) and
r̃(B′∪N ′′) equal r(B)+ |N |. It suffices to replace here B′ by D′ and B′′ by

D′′, and recall that r(N)+ |N | is the rank of
≈

M.

By [31, Lemma 2.2], a matroid that is linear over an infinite field is a
minor of a linear matroid whose ground set partitions into two bases. This
follows from Lemma 7 and the observation that the constructions used to
arrive at

≈
M preserve linearity.

Lemma 8. The direct sum of a matroid with a uniform one can be con-
structed by adding coloops and by principal extensions.

Proof. Let a uniform matroid sit on L∪M where L is a base and M the
complement of L. A given matroid with a disjoint ground set J is extended
to (J ∪L,r) such that L becomes a set of its coloops. Then, the principal
extensions adding each m∈M at L are performed. By (3) with N =J ∪L,
the resulting matroid (J ∪L∪M,r̄) has

r̄(I∪K) = min
{
r(I∩J)+ |L|, r(I∩J)+ |I∩L|+ |K|

}
, I ⊆ J ∪L,K ⊆M.

It follows that its restriction to L∪M is the uniform matroid, its restriction
to J is the given matroid and r̄(J ∪L∪M) = r(J) + |L|, giving the direct
sum.

The Zhang-Yeung inequality [42, Theorem 3][
I (ξ3 ; ξ4 |ξ1 ) + I (ξ3 ; ξ4 |ξ2 ) + I (ξ1 ; ξ2 )− I (ξ3 ; ξ4 )

]
+I (ξ1 ; ξ3 |ξ4 ) + I (ξ1 ; ξ4 |ξ3 ) + I (ξ3 ; ξ4 |ξ1 ) > 0

(5)

holds for four random variables ξ1 , ξ2 , ξ3 , ξ4 taking finite number of val-
ues. Every term of (5) is a conditional mutual information [40]. For ex-
ample, I (ξ3 ;ξ4 |ξ1 ) rewrites via Shannon entropies to H(ξ1 , ξ3 )+H(ξ1 , ξ4 )−
H(ξ1 , ξ3 , ξ4 )−H(ξ1 ).
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Having a polymatroid (N,h) and I,J,K,L⊆N , the mutual information
I (ξ3 ;ξ4 |ξ1 ) corresponds to h(I∪K)+h(I∪L)−h(I∪K∪L)−h(I) and the
bracket in (5) to

[h(I ∪K) + h(I ∪ L) + h(J ∪K) + h(J ∪ L) + h(K ∪ L)
]

−
[
h(I ∪ J) + h(K) + h(L) + h(I ∪K ∪ L) + h(J ∪K ∪ L)

]
.

Ingleton inequality [13,14] claims nonnegativity of the above difference for
the linear (poly)matroids. The Zhang-Yeung inequality is used later in the
form

3
[
h(I ∪K) + h(I ∪ L) + h(K ∪ L)

]
+ h(J ∪K) + h(J ∪ L)

> h(I)+2
[
h(K) + h(L)

]
+h(I ∪ J)+4h(I ∪K ∪ L)+h(J ∪K ∪ L).

(6)

This is valid for the almost entropic polymatroids by limiting, but fails for
Vámos matroid. The Zhang-Yeung inequality is weaker than Ingleton one,
by submodularity.

4. Encompassing matroid

Let M = (N,r) be a matroid of the rank r(N) = s> 1. In this section it is
assumed that N is a disjoint union of two bases A and B. Let {1 ,2 ,3 ,4}
support the uniform matroid U3,4, N

′=A′∪B′ be a copy of N , I be a set
with s+1 elements and J with two elements. All the sets in the union

Nenc = A ∪B ∪ {1 , 2 , 3 , 4} ∪A′ ∪B′ ∪ I ∪ J

are assumed to be pairwise disjoint. Let K=3 ∪A′ and L=4 ∪B′.

r r3 4��
��

��
��

��
��
��
��

A B
N

A′ B′

��
��

��
��

r r
I J

1 2

�
�

�
�

�
�

�
�

�
�

�
�K L

Figure 2. The encompassing matroid Menc =(Nenc,ρ)
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The encompassing matroid Menc is constructed on the ground set Nenc

from the direct sum M⊕U3,4 by principal extensions in the following four
steps:

1. if a∈A, then a′∈A′ is added by the extension at 3 ∪a,
2. if b∈B, then b′∈B′ is added by the extension at 4 ∪b,
3. each element of I is added by extending at 1 ∪N ,
4. each element of J is added by extending at 2 ∪N .

The rank function of Menc is denoted by ρ. The rank is s+3.
The following three lemmas rely on eqs. (2) and their variants.

Lemma 9. The matroid M is isomorphic to Menc\(N∪{1 ,2}∪I∪J)/{3,4}.

Proof. The minor sits on N ′ and the isomorphism is i 7→ i′. The latter is a
consequence of

(7) ρ(C ′∪{3 , 4})=ρ(C ∪C ′∪{3 , 4})=ρ(C ∪{3 , 4})=r(C)+2, C ⊆ N,

using that the restrictions of Menc to 3∪a∪a′, a∈A, and to 4∪b∪b′, b∈B,
are isomorphic to U2,3, see Steps 1, 2 and (1).

Eqs. (2) for the matroid Menc\(I∪J) extended to Menc in Steps 3 and 4
imply

ρ(M1 ∪M2) = min
{
ρ(M1 ∪N ∪ {1 , 2}), ρ(M1 ∪N) + 1 + |M2 ∩ I|,
ρ(M1 ∪N) + 1 + |M2 ∩ J |, ρ(M1) + |M2|

}
,

M1 ⊆ K ∪ L ∪N and M2 ⊆ I ∪ J .

(8)

In fact, the sets I and K in (2) correspond to M1 and M2 in (8), respectively.
The minimization over D in (2) reduces in (8) to the cases M2, M2∩J , M2∩I
and ∅, providing the four terms in the minimum.

Lemma 10. In Menc, I∪J is a circuit of rank s+2 and N ∪{1 ,2}∪I∪J a
hyperplane.

Proof. The first part follows from (8) with M1=∅, giving

(9) ρ(M2) = min
{
s+2, s+1+|M2∩I|, s+1+|M2∩J |, |M2|

}
, M2 ⊆ I∪J.

Thus, ρ(M2)=min{s+2, |M2|} using the assumption s>1.
By Steps 3 and 4, ρ(N∪{1 ,2}∪I∪J)=s+2. Further, ρ(N∪{1 ,2 ,3}) and

ρ(N ∪{1 ,2 ,4}) equal s+3. By Steps 1 or 2, ρ(N ∪{1 ,2 , i′})=s+3, i∈N .

Lemma 11. In Menc, the instance of Zhang-Yeung inequality with I, J , K
and L is tight.
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Proof. The tightness in (6) is summarized, correspondingly to the involved
ranks, as

11(s+ 2) = (s+ 1) + 2[(s+ 1) + (s+ 1)] + (s+ 2) + 4(s+ 3) + (s+ 3).

In fact, ρ(K∪L)=s+2 by (7) and the remaining terms on the left-hand side
of (6) equal s+2 by (8). On the right-hand side of (6), ρ(I)=s+1 by (3),
ρ(K)=ρ(L)=s+1 since 3∪a∪a′, a∈A, and 4∪b∪b′, b∈B, are isomorphic
to U2,3, ρ(I∪J)=s+2 by Lemma 10, and ρ(I∪K∪L)=ρ(J∪K∪L)=s+3
by (8).

The above argumentation implies also that the corresponding instance
of Ingleton inequality is tight as well.
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Figure 3. The encompassing matroid for M=U1,2

Example 1. Let M = U1,2 have the ground set partitioned into singletons
a and b. Then Menc has twelve points in Nenc and the rank four. It is linear.
A geometric representation is depicted in Figure 3 where the four segments
meet in one point.

5. The construction of M◦ and proof of Theorem 1

In the previous section, the encompassing matroid Menc = (Nenc,ρ) is con-
structed from any matroid M of the rank s>1 whose ground set is a disjoint
union of two bases. Let Mres denote the restriction of Menc to I∪J∪K∪L. By
Lemma 10, I∪J is a circuit-hyperplane of Mres. Let M◦=(I∪J∪K∪L,ρ◦)
be the matroid obtained from Mres by the relaxation at I ∪ J [33, p. 39].
The only difference between the two matroids is that ρ◦(I∪J)=s+3 while
ρ(I∪J)=s+2. If the construction starts with M =U1,2, then M◦ is Vámos
matroid, see Example 1 and Figure 3.
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Proof of Theorem 1. Let M =(N,r) be a matroid inM of the rank s>0.

By Lemma 7, M is a minor of
≈

M whose ground set is partitioned into two
bases. The latter matroid is constructed from the former by adding coloops,

principal extensions, deletion and parallel extensions. Hence,
≈

M∈M. It can

happen that the rank of
≈

M is zero but only if N = ∅. In this case, M is a
minor of U1,2 which belongs toM by Lemma 8. If the assertion of Theorem 1

holds for
≈

M, or for U1,2 in the special case, then it does for M.
It follows that there is no loss of generality in assuming that M itself has

the ground set N partitioned into two bases A and B and s>1. By Lemma 8,
M⊕U3,4∈M. The encompassing matroid Menc is constructed from M and
its two distinguished bases by principal extensions. Therefore, Menc and the
restriction Mres belong to the class M.

It remains to verify (i), (ii) and (iii) for the relaxation M◦ constructed
above.

(i) By Lemma 9, the minor Mres\(I∪J)/{3,4} is isomorphic to M. The
deletions of I ∪J from M◦ and Mres coincide. Hence, M is isomorphic to a
proper minor of M◦.

(ii) The goal here is to prove that the contraction by and deletion of any
element from M◦ belong to the class M. Four cases are distinguished.

Case 1. “If i∈I∪J , then M◦\i∈M.” This follows from M◦\i=Mres\i∈M.

Case 2. “If i∈ I ∪J , then M◦/i∈M.” For a demonstration, only i∈ I is
considered since otherwise symmetry applies. On Nenc\i a modified encom-

passing matroid M̂enc is constructed from M⊕U3,4 by the same extensions
as in Steps 1 and 2, and

3̂. each element of I \ i is added by extending at N ,
4̂. each element of J is added by extending at N ∪{3 ,4}.

Let ρ̂ denote the rank function of M̂enc and M̂res its restriction to (I\i)∪
J ∪K ∪L. It suffices to prove that M◦/i coincides with M̂res, belonging to
the class M by construction. This is equivalent to

(10) ρ◦(M1∪M2∪ i)−ρ◦(i)= ρ̂(M1∪M2), M1⊆K∪L and M2⊆(I \ i)∪J.

Eqs. (2) for M̂enc \(K∪L∪N) extended to M̂enc in Steps 3̂ and 4̂ imply

ρ̂(M1∪M2) = min
{
ρ(M1∪N∪{3 , 4}), ρ(M1∪N)+ |M2∩J |, ρ(M1)+ |M2|

}
.

In minimization, only M2, M2∩I and ∅ were relevant, giving the three terms
on the right, respectively. In particular,

ρ̂(M2) = min
{
s+ 2, s+ |M2 ∩ J |, |M2|

}
= |M2|, M2 ⊆ (I \ i) ∪ J.
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By the relaxation, I∪J is a base of M◦. It follows that (10) holds if M1=∅.
If M1 6=∅, the left-hand side of (10) is ρ(M1∪M2∪ i)−1 where

ρ(M1 ∪M2 ∪ i) = min
{
ρ(M1 ∪N ∪ {1 , 2}), ρ(M1 ∪N) + 1 + |M2 ∩ I|+ 1,

ρ(M1 ∪N) + 1 + |M2 ∩ J |, ρ(M1) + |M2|+ 1
}

= min
{
s+3, ρ(M1 ∪N)+|M2 ∩ J |+1, ρ(M1)+|M2|+1

}
= ρ̂(M1 ∪M2) + 1,

using (8). Hence, (10) holds.

Case 3. “If k∈K∪L, then M◦/k∈M”. This follows from M◦/k=Mres/k∈M.

Case 4. “If k∈K∪L, then M◦ \k∈M”. The proof is presented for k∈K
because arguments are symmetric for k ∈L. Another modification M̌enc of
the encompassing matroid constructed as follows. First, M⊕U3,4 is extended
as in Steps 1 and 2. Second, disjoint sets U and V of the cardinality s are
chosen to be disjoint from the ground set of Menc, and

3̌. each element of U is added by extending at (K \k)∪N ,
4̌. each element of V is added by extending at L∪N .

Finally,

5̌. each element of I is added by extending at 1 ∪U ,
6̌. each element of J is added by extending at 2 ∪V .

The ground set of M̌enc is I ∪ J ∪K ∪L∪N ∪ {1 ,2} ∪U ∪ V and the
rank function is denoted by ρ̌. By construction, M contains the restriction
of M̌enc to I ∪ J ∪ (K \ k)∪L, denoted by M̌res. It suffices to prove that
M◦ \k=M̌res, thus

(11) ρ◦(M1 ∪M2) = ρ̌(M1 ∪M2), M1 ⊆ (K \ k) ∪ L and M2 ⊆ I ∪ J.

Eqs. (2) are applied to the extensions in Steps 3̌ and 4̌, giving for M3 ⊆
(K \k)∪L∪{1 ,2} and M4⊆U ∪V

ρ̌(M3 ∪M4) = min
{
ρ(M3 ∪ (K \ k) ∪ L ∪N),

ρ(M3 ∪ (K \ k) ∪N) + |M4 ∩ V |,
ρ(M3 ∪ L ∪N) + |M4 ∩ U |, ρ(M3) + |M4|

}
In particular,

ρ̌(M1 ∪ {1 , 2} ∪ U ∪ V )

= min
{
s+ 3, s+ 3 + |V |, s+ 3 + |U |, ρ(M1 ∪ {1 , 2}) + 2s

}
,

ρ̌(M1 ∪ 1 ∪ U) = min
{
s+ 3, ρ(M1 ∪ (K \ k) ∪N) + 1, ρ(M1) + 1 + |U |

}
,

ρ̌(M1 ∪ 2 ∪ V ) = min
{
s+ 3, ρ(M1 ∪ L ∪N) + 1, ρ(M1) + 1 + |V |

}
.
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Thus, ρ̌(M1 ∪{1 ,2}∪U ∪V ) = s+ 3 and in the last two lines s+ 3 in the
minimization can be omitted. By (2) applied to the extensions in Steps 5̌
and 6̌,

ρ̌(M3 ∪M4 ∪M2) = min
{
ρ̌(M3 ∪M4 ∪ {1 , 2} ∪ U ∪ V ),

ρ̌(M3 ∪M4 ∪ 1 ∪ U) + |M2 ∩ J |),
ρ̌(M3 ∪M4 ∪ 2 ∪ V ) + |M2 ∩ I|, ρ̌(M3 ∪M4) + |M2|

}
.

(12)

When M2=I∪J and M3=M4=∅ it follows that

ρ̌(I ∪ J) = min
{
ρ̌({1 , 2} ∪ U ∪ V ), ρ̌(1 ∪ U) + 2, ρ̌(2 ∪ V ) + s+ 1, s+ 3

}
= s+ 3.

Hence, I ∪J is a base of M̌res. It is also a base of M◦ by relaxation. Thus,
eqs. (11) hold for M1=∅.

Eq. (12), takes for M1 6=∅ in the role of M3 and M4=∅ the form

ρ̌(M1 ∪M2) = min
{
s+ 3, ρ̌(M1 ∪ 1 ∪ U) + |M2 ∩ J |),
ρ̌(M1 ∪ 2 ∪ V ) + |M2 ∩ I|, ρ(M1) + |M2|

}
while (8) reduces to

ρ(M1 ∪M2) = min
{
s+ 3, ρ(M1 ∪N) + 1 + |M2 ∩ J |),
ρ(M1 ∪N) + 1 + |M2 ∩ I|, ρ(M1) + |M2|

}
.

Hence, when M1 intersects both K \k and L then

ρ̌(M1 ∪M2) = ρ(M1 ∪M2) = min
{
s+ 3, ρ(M1) + |M2|

}
and when M1 intersects only one of K \k and L then

ρ̌(M1 ∪M2) = ρ(M1 ∪M2)

= min
{
s+ 3, s+ 2 + |M2 ∩ J |, s+ 2 + |M2 ∩ I|, ρ(M1) + |M2|

}
.

It follows that eqs. (11) hold.
(iii) By Lemma 11, Zhang-Yeung inequality is tight in Mres for the sets

I, J , K, L. This instance of the inequality fails in M◦ because its right-hand
side is greater by one due to the relaxation.

The presented proof of Theorem 1 is partially inspired by that of [31,
Theorem 1.1]. Both are constructive and mimic the construction of Vámos
matroid to violate Ingleton or Zhang-Yeung inequalities. Several subtle ar-
guments based previously on reasoning in projective geometries had to be
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avoided and replaced here. This necessitated to maintain the encompassing
matroid during the whole proof and to introduce its variants. The approach
via rank functions was preferred because it bypasses intuitive arguments on
freeness in projective spaces and leads to mere computations with minima.
The most difficult Case 4 needed new arguments since modularity was not
available, as in projective geometries.

6. Proof of Theorem 2

This section contains the proof of Theorem 2. First, three lemmas are worked
out.

It is assumed throughout that M =(N,r) is a matroid and M =(N∪0, r̄)
its principal extension by 0 at L⊆N .

Lemma 12. If M is multilinear of the degree δ>1 over a finite field F, then
M is multilinear of the same degree δ over a finite field extending F.

Proof. Let M be multilinear of the degree δ over F and be represented by
subspaces Ei, i∈N , of a linear space over F. Thus, δ ·r(I)=dimEI , I⊆N ,
where EI abbreviates the sum

⊕
i∈IEi. Then, the above holds in a linear

space over any field extension E of F.
An extension E is chosen to have the cardinality q that is greater than the

number ` of hyperplanes of M. Let HL denote the family of the hyperplanes
that do not contain cl(L). Thus, H ∈ HL if and only if r(H ∪L) = r(N).
Then, δ+dimEH∩EL6dimEL. The union of EH∩EL over H∈HL contains
at most ` ·qδ·r(L)−δ vectors. This is less than qδ·r(L), the number of vectors
in EL. Therefore, there exists v1 ∈ EL outside of each hyperplane from
HL. If δ = 1 then let E0 be the span of v1. Otherwise, the argument is
repeated with (EH ∩EL)⊕ v1 in the role of EH ∩EL. By finite induction,
there exist independent vectors v1, . . . ,vδ in EL whose span intersects each
EH∩EL, H∈HL, in the zero vector. Let E0 be the span of these vectors. By
construction, dimE0=δ, and EH and E0 sum directly to EN once H∈HL.

The remaining part of the proof shows that Ei, i∈N , and E0 represent
M multilinearly with the degree δ over E. To this end, it suffices to prove

(13) δ · r̄(I ∪ 0) = dimEI ⊕ E0, I ⊆ N.

If r(I ∪L) = r(I), then E0⊆EL⊆EI∪L =EI . Since r̄(I ∪0) = r(I) eq. (13)
rewrites to δ · r(I) = dimEI which holds because Ei, i∈N , represent M. If
r(I∪L)>r(I), then a hyperplane H fromHL contains I. Then, eq. (13) holds
because r̄(I∪0)=r(I)+1, and EH⊕E0=EN implies dimEI⊕E0=δ ·r(I)+δ.

For the field extension theory the reader is referred to [17]. Let a matroid
M with the ground set {1, . . . ,n} have an algebraic representation over a
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field F by elements e1, . . . ,en of an extension field E. The tower of fields
F0⊆ . . .⊆Fn is constructed from F0=F inductively by Fi=Fi−1(i), 16 i6n,
where Fi−1(i) is the smallest subfield of E that contains Fi−1 and ei. If ei is
transcendental over Fi−1, then Fi is isomorphic to the quotient field Fi−1(x)
of an indeterminate x. Otherwise, ei is algebraic and Fi is isomorphic to
the quotient ring Fi−1[x]/pi where pi is an irreducible polynomial in x with
coefficients in Fi−1. There is no loss of generality in assuming that E=Fn.
As well known, for I ⊆N the transcendence dimension dimtrF(I) of F(I)
over F equals the number of transcendental extensions Fi−1(i), i∈I, in the
tower construction. The dimension does not depend on the construction of
the tower when e1, . . . ,en are permuted.

Lemma 13. The principal extensions of the algebraic matroids over a field
are algebraic over the same field.

Proof. Let M be represented by e1, . . . ,en as above. It suffices to consider
the principal extension M at L ⊆ N such that {1, . . . ,m} is a maximal
independent subset of L for some 0 6 m 6 n. Thus, e1, . . . ,em are alge-
braically independent transcendentals over F. If en+i=e1e

i
2 · · ·ei

m

m , i>1, then
e1, . . . ,em,en+1, . . . ,en+i represent algebraically a uniform matroid Um,m+i

over F [33, Example 6.7.8].
Let I⊆N . If r(I∪L)>r(I), then cl(I) does not contain L whence it does

not cover {1, . . . ,m}. Hence, F(I) does not contain some of e1, . . . ,em. In turn,
it contains less than m elements of the sequence en+i, i>1. It follows that for
i sufficiently large none of the sets I satisfying r(I∪L)>r(I) contains en+i.
Let e0 =en+i for that i. Extending F(I) by e0 the transcendence dimension
jumps up by one. This is not the case when r(I∪L)=r(I) by the construction
of the sequence. Comparing with (1), it follows that the principal extension
M is represented by e0, . . . ,en.

Let π : N → π(N) be a bijection fixing the points of N ∩π(N). A ma-
troid M = (N,r) is selfadhesive at N ∩ π(N) if it extends to a ma-
troid (N ∪ π(N), rπ) such that π becomes a matroid monomorphism and
r(N)+rπ(π(N)) = rπ(N ∪π(N))+r(N ∩π(N)). The equality expresses the
adhesivity. A matroid is selfadhesive if it is selfadhesive at each of its subsets.

Lemma 14. The algebraic matroids are selfadhesive.

Proof. Let M be algebraically represented by e1, . . . ,en as above. It is as-
sumed that for some 06m6n the bijection π : N→π(N) is given by π(i)= i,
16 i6m, and π(i)= i+n−m, m<i6n. The field E=Fn, closing the tower
construction, is further extended by prolonging the tower F0 ⊆ . . .⊆ Fn to
Fn+1 ⊆ . . . ⊆ F2n−m. Here, if n < i 6 2n−m, then Fi = Fi−1(x) whenever
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ei−n+m is transcendental over Fi−n+m−1 and Fi = Fi−1[x]/pi otherwise. In
each extension x is successively renamed to ei.

The elements ei, 1 6 i ∈ 2n−m, represent a matroid on N ∪π(N) that
extends M. The restriction of the matroid to π(N) is the isomorphic copy
of M by π. The adhesivity condition follows by the construction of the
prolonged tower.

Corollary 2. The rank functions of the algebraic matroids enjoy Zhang-
Yeung inequality.

Proof. It suffices to combine Lemma 14 with the fact that the selfadhesive
polymatroids satisfy Zhang-Yeung inequality, see [29, Corollary 1]2.

Proof of Theorem 2. To apply Theorem 1, the assumptions that each of
the classes is closed under minors, addition of coloops and principal exten-
sions are verified. The addition of coloops is by elementary constructions
and is not commented below.

It follows from elements of the basic theory of the linear matroids that
every class Mmlin

F,d is closed under minors. The matroids from Mmlin
F,d have

the principal extensions representable if F is infinite, see [24, p. 246]. Rep-
resentability of the extensions in the caseMmlin

δ is covered by Lemma 12. It
is inherited to Mmlin. This implies the assumptions in the first three cases.

The class Malg

F is closed under minors by [33, Cor. 6.7.14]. Lemma 13
asserts that it is closed under principal extensions. The two properties inherit
to Malg.

The class Maent is closed under minors by [30, Lemma 1]. It is closed
under parallel extensions and convolutions [28, Theorem 2] whence also to
the principal extensions.

To apply Theorem 1 to one of the classes, it remains to verify that Zhang-
Yeung inequality is valid. In Malg the inequality holds by Corollary 2. In
Maent it holds by limiting in [42, Theorems 3 and 5]. Then, it suffices to
invoke Figure 1 and the inclusions explained in Remarks 1 and 2.

It is left open whether Mmlin
F ,

⋃
δ>1Mmlin

F,δ and Mpare are closed under
principal extensions. A positive answer would enable to include these two
classes to Theorem 2.
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2 The reverse implication holds when |N |=4 [29, Theorem 3].
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