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Abstract
In the paper we provide new conditions ensuring the isolated calmness property and the
Aubin property of parameterized variational systems with constraints depending, apart from
the parameter, also on the solution itself. Such systems include, e.g., quasi-variational
inequalities and implicit complementarity problems. Concerning the Aubin property, pos-
sible restrictions imposed on the parameter are also admitted. Throughout the paper, tools
from the directional limiting generalized differential calculus are employed enabling us to
impose only rather weak (non- restrictive) qualification conditions. Despite the very general
problem setting, the resulting conditions are workable as documented by some academic
examples.
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1 Introduction

In variational analysis, a great effort has been devoted to the study of stability and sensitivity
of solution maps to parameter-dependent optimization and equilibrium problems. In partic-
ular, the researchers have investigated various Lipschitzian properties of these maps around
given reference points. To obtain useful results, one employs typically some efficient tools
of generalized differentiation discussed in a detailed way in the monographs [5, 25, 28, 30,
34]. Starting from 2011, the available arsenal of these tools includes also the calculus of
directional limiting normal cones and coderivatives which enables us in some cases a finer
analysis of parametric equilibria than its non-directional counterpart. This new theory has
been initiated in [19] and then thoroughly developed in a number of papers authored and
co-authored by H. Gfrerer [1, 9–13, 15, 16, 18].

In particular, in [16] one finds rather weak (non-restrictive) conditions ensuring the calm-
ness and the Aubin property of general implicitly defined multifunctions. The criterion for
the Aubin property has then been worked out in [17] for a class of parametric variational
systems with fixed (non-perturbed) constraint sets and in [18] for systems with implicit
parameter-dependent constraints. The model from [18] was investigated already in [29] by
using the (classical) generalized differential calculus of B. Mordukhovich. It encompasses
quasi-variational inequalities (QVIs), implicit complementarity problems and also standard
variational inequalities of the first kind with parameter-dependent constraints.

In this paper we consider the same model as in [29] and [18] but remove the (rather
severe) non-degeneracy-type assumption imposed in [18] on the constraint system. Instead
of it, we make use of a (much weaker) metric inequality stated in Assumption 1. Further, we
analyze now not just the standard Aubin property of the considered solution map, denoted
by S, but the Aubin property relative to a given set of feasible parameters. Clearly, S may
enjoy this type of Lipschitzian stability even when the standard Aubin property is violated.
Finally, we provide in this paper also a new condition, ensuring the isolated calmness of S.

The structure of the considered constraint system has enabled us to employ some strong
results from [4, 5] and [16] concerning tangents and normals to the graph of the normal-
cone mapping associated with a convex polyhedral set. More precisely, these tangents and
normals can be expressed via some faces of an associated critical cone. This representation
substantially contributes to the workability of final conditions ensuring the Aubin property
of S. In addition, also some other statements in connection with directional non-degeneracy
and directional metric regularity could be formulated in terms of these faces.

The plan of the paper is as follows. Sections 2.1 and 2.2 provide the reader with basic
notions of the standard and directional generalized differential calculus and with some basic
facts about those Lipschitzian stability properties which are extensively used throughout
the whole paper. Section 2.3 contains the necessary background from the theory of con-
vex polyhedral sets and polyhedral multifunctions. The last preliminary Section 2.4 is then
devoted to the directional metric subregularity of a particular multifunction, which arises
later as a qualification condition, and to the new notion of directional non-degeneracy of
a constraint system, playing a central role in the subsequent development. Section 3 con-
cerns the general model of an implicitly defined multifunction considered in [16]. In this
framework we find there a directional variant of the Levy-Rockafellar characterization of
the isolated calmness property and a counterpart of [16, Theorem 4.4] corresponding to the
Aubin property relative to a set of feasible parameters. In the rest of the paper these state-
ments are worked out for the considered variational system with implicit constraints. So,
in Section 4 the respective graphical derivative is computed, which is a basis for the for-
mulation of the final condition ensuring the isolated calmness property of S presented in
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Section 5. Therafter, in Section 6 one finds a new workable sufficient condition guarantee-
ing the Aubin property of S relative to a given set of feasible parameters. Both these final
results as well as some other important statements are illustrated by examples.

There are well-known equilibria in economy and mechanics modeled by QVIs and
implicit complementarity problems, cf. [2]. As an example, let us mention the generalized
Nash equilibrium problems (GNEPs) which describe, e.g., the behavior of agents acting on
markets with a limited amount of resources. Very often, these equilibria depend on some
uncertain data which can be viewed as parameters. The results of this paper can then be
used in post-optimal analysis of such equilibria, where the stability issues are of ultimate
importance.

Given a set-valued mapping M : R
l × R

n ⇒ R
m, the general implicitly defined

multifunction analyzed in [16] is given by the relation

0 ∈ M(p, x). (1.1)

We are going to analyze the associated solution mapping S : Rl ⇒ R
n defined by

S(p) := {x ∈ R
n | 0 ∈ M(p, x)}. (1.2)

The variational system investigated in [29] and [18] attains the form

0 ∈ M(p, x) := f (p, x) + ̂N�(p,x)(x) with �(p, x) := {z | g(p, x, z) ∈ D}, (1.3)

where f : Rl × R
n → R

n is continuously differentiable, g : Rl × R
n × R

n → R
s is twice

continuously differentiable and D ⊂ R
s is a convex polyhedral set.

The following notation is employed. Given a set A ⊂ R
n, sp A stands for the linear hull

of A, ri A is the relative interior of A and A◦ is the (negative) polar of A. We denote by
dist(x,A) := infy∈A ‖x−y‖ the usual point to set distance with the convention dist(x, ∅) =
∞. For a sequence xk , xk

A→ x̄ stands for xk → x̄ with xk ∈ A. For a convex cone K, lin K

denotes the lineality space of K , i.e., the set K ∩ (−K). Further, BRn , SRn is the unit
ball and the unit sphere in R

n, respectively. Given a vector a ∈ R
n, [a] is the linear space

generated by a and [a]⊥ stands for the orthogonal complement to [a]. Finally, given a set-
valued map F : Rn ⇒ R

m, gph F := {(x, y) ∈ R
n × R

m | y ∈ F(x)} stands for the graph
of F and Lim supx→x̄ F (x) denotes the outer set limit in the sense of Painlevé-Kuratowski.

2 Preliminaries

2.1 Variational Geometry and Generalized Differentiation

We start by recalling several definitions and results from variational analysis. Let � ⊂ R
n

be an arbitrary closed set and x̄ ∈ �. The contingent (also called Bouligand or tangent)
cone to � at x̄, denoted by T�(x̄), is given by

T�(x̄) := {u ∈ R
n | ∃(uk) → u, (tk) ↓ 0 : x̄ + tkuk ∈ � ∀k}.

A tangent u ∈ T�(x̄) is called derivable if dist(x̄ + tu, �) = o(t).
We denote by

̂N�(x̄) := T�(x̄)◦{x∗ ∈ R
n | lim sup

x′ �→ x̄

〈x∗, x′ − x̄〉
‖x′ − x̄‖ ≤ 0}
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the Fréchet (regular) normal cone to � at x̄. The limiting (Mordukhovich) normal cone to
� at x̄ is defined by

N�(x̄) := {x∗ ∈ R
n | ∃(xk)

�→ x̄, (x∗
k ) → x∗ : x∗

k ∈ ̂N�(xk) ∀k}.
Finally, given a direction u ∈ R

n, we denote by

N�(x̄; u) := Lim sup
t↓0

u′→u

̂N�(x̄ + tu′)

the directional limiting normal cone to � in direction u at x̄.
If x̄ /∈ �, we put T�(x̄) = ∅, ̂N�(x̄) = ∅, N�(x̄) = ∅ and N�(x̄; u) = ∅. Further note

that N�(x̄; u) = ∅ whenever u �∈ T�(x̄). If � is convex, then ̂N�(x̄) = N�(x̄) amounts to
the classical normal cone in the sense of convex analysis and we will write N�(x̄).

Given a pair (x̄, x̄∗) ∈ gph ̂N� we denote by

K�(x̄, x̄∗) := T�(x̄) ∩ [x̄∗]⊥
the critical cone to � at x̄ with respect to x̄∗.

The following generalized derivatives of set-valued mappings are defined by means of
the tangent cone and the (directional) limiting normal cone to the graph of the mapping.

Definition 2.1 Let F : R
n ⇒ R

m be a set-valued mapping having locally closed graph
around (x̄, ȳ) ∈ gph F .

(i) The set-valued map DF(x̄, ȳ) : Rn ⇒ R
m, defined by

DF(x̄, ȳ)(u) := {v ∈ R
m | (u, v) ∈ Tgph F (x̄, ȳ)}, u ∈ R

n

is called the graphical derivative of F at (x̄, ȳ).
(ii) The set-valued map ̂D∗F(x̄, ȳ) : Rm ⇒ R

n

̂D∗F(x̄, ȳ)(v∗) := {u∗ ∈ R
n | (u∗,−v∗) ∈ ̂Ngph F (x̄, ȳ)}, v∗ ∈ R

m

is called the regular (Fréchet) coderivative of F at (x̄, ȳ).
(iii) The set-valued map D∗F(x̄, ȳ) : Rm ⇒ R

n, defined by

D∗F(x̄, ȳ)(v∗) := {u∗ ∈ R
n | (u∗,−v∗) ∈ Ngph F (x̄, ȳ)}, v∗ ∈ R

m

is called the limiting (Mordukhovich) coderivative of F at (x̄, ȳ).
(iv) Given a pair of directions (u, v) ∈ R

n×R
m, the set-valued map D∗F((x̄, ȳ); (u, v)) :

R
m ⇒ R

n, defined by

D∗F((x̄, ȳ); (u, v))(v∗) := {u∗ ∈ R
n | (u∗, −v∗) ∈ Ngph F ((x̄, ȳ); (u, v))}, v∗ ∈ R

m

is called the directional limiting coderivative of F in direction (u, v) at (x̄, ȳ).

2.2 Regularity and Lipschitzian Properties of Set-ValuedMappings

First we recall some well-known definitions.

Definition 2.2 Let F : Rn ⇒ R
m be a mapping and let (x̄, ȳ) ∈ gph F . We say that F is

metrically regular around (x̄, ȳ) if there are neighborhoods U of x̄ and V of ȳ along with
some real κ ≥ 0 such that

dist(x, F−1(y)) ≤ κdist(y, F (x)) ∀(x, y) ∈ U × V . (2.4)
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When fixing y = ȳ in this condition, F is said to be metrically subregular at (x̄, ȳ), i.e., we
require

dist(x, F−1(ȳ)) ≤ κdist(ȳ, F (x)) ∀x ∈ U . (2.5)

A well-known coderivative characterization of metric regularity is known as ”Mor-
dukhovich criterion” and reads as follows.

Theorem 2.3 ([30, Theorem 3.3]) Assume that the set-valued mapping F : Rn ⇒ R
m has

locally closed graph around (x̄, ȳ) ∈ gph F . Then F is metrically regular around (x̄, ȳ) if
and only if

0 ∈ D∗F(x̄, ȳ)(v∗) ⇒ v∗ = 0. (2.6)

One can find numerous sufficient conditions for metric subregularity in the literature, see,
e.g., [7–12, 20, 24, 26, 35]. However, these sufficient conditions are often very difficult to
verify. The following sufficient condition for metric subregularity is not as week as possible
but it is stable with respect to certain perturbations, cf. [6].

Theorem 2.4 ([16, Theorem 2.6]) Assume that the set-valued mapping F : Rn ⇒ R
m has

locally closed graph around (x̄, ȳ) ∈ gph F . If

∀0 �= u ∈ R
n : 0 ∈ D∗F ((x̄, ȳ); (u, 0)) (v∗) ⇒ v∗ = 0,

then F is metrically subregular at (x̄, ȳ).

In order to define a directional version of metric (sub)regularity, consider for a direction
u ∈ R

n and positive reals ρ, δ the set

Vρ,δ(u) := {

d ∈ ρBRn | ∥

∥‖u‖d − ‖d‖u∥

∥ ≤ δ‖u‖‖d‖} .

We say that V is a directional neighborhood of u if Vρ,δ(u) ⊂ V for some ρ, δ > 0.

Definition 2.5 Let F : Rn ⇒ R
m be a mapping and let (x̄, ȳ) ∈ gph F .

1. Given a direction u ∈ R
n we say that F is metrically subregular in direction u at (x̄, ȳ)

if (2.5) holds with x̄ + U in place of U , where U is a directional neighborhood of u.
2. Given a direction (u, v) ∈ R

n × R
m we say that F is metrically regular in direc-

tion (u, v) at (x̄, ȳ) if there is a directional neighborhoods W of (u, v) together with
reals κ ≥ 0 and δ > 0 such that (2.4) holds for all (x, y) ∈ (x̄, ȳ) + W satisfying
‖(u, v)‖dist((x, y), gph F) ≤ δ‖(u, v)‖‖(x, y) − (x̄, ȳ)‖.

If a mapping F is metrically regular in direction (u, 0) at (x̄, ȳ) then it is also metri-
cally subregular in direction u, cf. [10, Lemma 1]. Further note that a mapping is always
metrically regular in a direction (u, v) at (x̄, ȳ) whenever (u, v) �∈ Tgph F (x̄, ȳ), i.e.,
v �∈ DF(x̄, ȳ)(u). Similarly, if 0 �∈ DF(x̄, ȳ)(u), then F is metrically subregular in
direction u at (x̄, ȳ).

Theorem 2.6 Assume that the set-valued mapping F : Rn ⇒ R
m has locally closed graph

around (x̄, ȳ) ∈ gph F and let u ∈ R
n be given. Then F is metrically regular in direction

(u, 0) at (x̄, ȳ) if and only if

0 ∈ D∗F ((x̄, ȳ); (u, 0)) (v∗) ⇒ v∗ = 0. (2.7)
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Proof Follows from [10, Theorem 5].

Comparing Definition 2.5 with Definition 2.2 we see that metric regularity around (x̄, ȳ)

is equivalent with metric regularity in direction (0, 0) at (x̄, ȳ). This is reflected also in
conditions (2.6) and (2.7) with u = 0. Further note that the sufficient condition for metric
subregularity of Theorem 2.4 says that mapping F is metrically regular at (x̄, ȳ) in every
direction (u, 0) with u �= 0.

The following notion of stability was introduced by Robinson [31].

Definition 2.7 Consider the system

h(p, x) ∈ C (2.8)

for a mapping h : P × R
n → R

m and a set C ⊂ R
m, where P is a topological space and

denote
S(p) := {x ∈ R

n | h(p, x) ∈ C}, p ∈ P .

We say that the system (2.8) enjoys the Robinson stability property at (p̄, x̄) ∈ gph S if
there are neighborhoods Q of p̄, U of x̄ and a real κ ≥ 0 such that

dist(x, S(p)) ≤ κdist(h(p, x), C) ∀(p, x) ∈ Q × U .

Comparing the definition of Robinson stability with that of metric regularity we see that
in case when P = R

l and h is of the form h(p, x) = h̃(x) − p, the property of Robinson
stability of (2.8) at (p̄, x̄) is equivalent to metric regularity of the mapping h̃(·) − C around
(x̄, p̄). For sufficient conditions for Robinson stability we refer to the recent paper [14].
Here we mention only the following result.

Theorem 2.8 Let (p̄, x̄) ∈ h−1(C) be given and assume that h is differentiable with respect
to the second component and both h and ∇2h are continuous, whereas C is closed. If

∇2h(p̄, x̄)T μ = 0, μ ∈ NC(h(p̄, x̄)) ⇒ μ = 0,

then the system (2.8) enjoys the Robinson stability property at (p̄, x̄).

Proof Follows immediately from [14, Corollary 3.6].

We now turn to Lipschitzian properties of set-valued mappings.

Definition 2.9 Let S : Rm ⇒ R
n be a set-valued map and let (ȳ, x̄) ∈ gph S.

1. S is called to be calm at (ȳ, x̄) if there is a neighborhood U of x̄ together with a real
L ≥ 0 such that

S(y) ∩ U ⊂ S(ȳ) + L‖y − ȳ‖BRn ∀y ∈ R
m.

If, in addition, S(ȳ) = {x̄} is a singleton we say that S has the isolated calmness
property at (ȳ, x̄).

2. Given a set Y ⊂ R
m containing ȳ, the mapping S is said to have the Aubin property

relative to Y around (ȳ, x̄) if there are neighborhoods V of ȳ, U of x̄ and a real L ≥ 0
such that

S(y) ∩ U ⊂ S(y′) + L‖y − y′‖BRn ∀y, y′ ∈ Y ∩ V .

This condition with V in place of Y ∩ V is simply the Aubin propery around (ȳ, x̄).
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It is well-known [4] that F is metrically subregular at (x̄, ȳ) if and only if its inverse map-
ping F−1 is calm at (ȳ, x̄). Further, metric regularity is equivalent with the Aubin property
of the inverse mapping.

2.3 Polyhedral Sets

Recall that a set D ⊂ R
s is said to be convex polyhedral if it can be represented as the

intersection of finitely many halfspaces. We say that a set E ⊂ R
s is polyhedral if it is the

union of finitely many convex polyhedral sets. If a set E is polyhedral, then for every z̄ ∈ E

there is some neighborhood W of z̄ such that

(E − z̄) ∩ W = TE(z̄) ∩ W .

Given a convex polyhedral set D and a point z̄ ∈ D, then the tangent cone TD(z̄) and the
normal cone ND(z̄) are convex polyhedral cones and there is a neighborhood W of z̄ such
that

TD(z) = TD(z̄) + [z − z̄] ⊃ TD(z̄), ND(z) = ND(z̄) ∩ [z − z̄]⊥ ⊂ ND(z̄) ∀z ∈ D ∩ W .

The graph of the normal cone mapping to D is a polyhedral set and for every pair (z, z∗) ∈
gph ND we have

Tgph ND
(z, z∗) = gph NKD(z,z∗), (2.9)

see, e.g., [5, Lemma 2E.4].
For two convex polyhedral cones K1,K2 ⊂ R

s their polars as well as their sum K1 +K2
and their intersection K1 ∩ K2 are again convex polyhedral cones and

(K1 + K2)
◦ = K◦

1 ∩ K◦
2 , (K1 ∩ K2)

◦ = K◦
1 + K◦

2 .

For a convex polyhedral cone K ⊂ R
s and a point z ∈ K we have

TK(z) = K + [z], NK(z) = K◦ ∩ [z]⊥.

A face F of K can always be written in the form

F = K ∩ [z∗]⊥

for some z∗ ∈ K◦. The cone K has the representation

K =
{

z ∈ R
s | aT

i z = 0, i ∈ J̄ , aT
i z ≤ 0 i ∈ Ī \ J̄

}

, (2.10)

where J̄ ⊂ Ī are two finite index sets and ai ∈ R
s , i ∈ Ī . By enlarging J̄ when necessary

we can assume that there exists some z0 such that aT
i z0 = 0, i ∈ J̄ , aT

i z0 < 0, i ∈ Ī \ J̄ .
Then a subset F ⊂ K is a face if and only if there is some index set J , J̄ ⊂ J ⊂ Ī such that

F =
{

z ∈ R
s | aT

i z = 0, i ∈ J, aT
i z ≤ 0 i ∈ Ī \ J

}

.

By possibly enlarging J we can find a unique index set, denoted by JF , such that

ri F =
{

z ∈ R
s | aT

i z = 0, i ∈ JF , aT
i z < 0 i ∈ Ī \ JF

}

. (2.11)

It follows that

F − F = {z ∈ R
s | aT

i z = 0, i ∈ JF }.
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2.4 Directional Non-Degeneracy

In what follows the property of directional metric (sub)regularity of a particular mapping
will play an important role. Let D ⊂ R

s be a convex polyhedral set, let g̃ : Rm → R
s be

continuously differentiable and consider the mapping F : Rm × R
s ⇒ R

s × R
s given by

F(y, λ) := (g̃(y), λ) − gph ND . (2.12)

Given some point (ȳ, λ) ∈ F−1(0) and some direction (v, η) ∈ R
m × R

s , we want to
investigate metric subregularity of F in direction (v, η) at (ȳ, λ), in particular when v �= 0.
We denote
	(ȳ, v) := {(λ, η) ∈ ND(g̃(ȳ)) × R

s | (∇g̃(ȳ)v, η) ∈ gph NKD(g̃(ȳ),λ)}, (ȳ, v) ∈ g̃−1(D) × R
m.

Recall that F is by definition metrically subregular in direction (v, η) at ((ȳ, λ), (0, 0))

whenever

(0, 0) �∈ DF ((ȳ, λ), (0, 0)) (v, η) = (∇g̃(ȳ)v, η)−Tgph ND
(g̃(ȳ), λ) ⇔ (∇g̃(ȳ)v, η) �∈ Tgph ND

(g̃(ȳ), λ),

i.e., taking into account (2.9), whenever (λ, η) �∈ 	(ȳ, v).
In our analysis we restrict ourselves to the characterization of metric regularity of F in

directions ((v, η), (0, 0)) which implies metric subregularity of F in direction (v, η). The
following lemma is a slight generalization of [18, Proposition 2].

Lemma 2.10 Let ȳ ∈ g̃−1(D), v ∈ R
m and (λ, η) ∈ 	(ȳ, v) be given. Then the mapping

F defined in (2.12) is metrically regular in direction ((v, η), (0, 0)) at ((ȳ, λ), (0, 0)) if and
only if for every face F of the critical cone KD (g̃(ȳ), λ) with ∇g̃(ȳ)(v) ∈ F ⊂ [η]⊥ one
has

∇g̃(ȳ)T μ = 0, μ ∈ (F − F )◦ ⇒ μ = 0.

Proof The characterization (3.23) reads in our special case as

(∇g̃(ȳ)T μ, ξ) = (0, 0), (μ, ξ) ∈ Ngph ND
((g̃(ȳ), λ), (∇g̃(ȳ)v, η)) ⇒ (μ, ξ) = (0, 0),

see also [13, Theorem 1]. By [16, Theorem 2.12], Ngph ND
((g̃(ȳ), λ), (∇g̃(ȳ)v, η)) amounts

to the union of all product sets K◦×K associated with cones K of the form F1−F2, where
F1,F2 are faces of the critical cone KD (g̃(ȳ), λ) with ∇g̃(ȳ)(v) ∈ F2 ⊂ F1 ⊂ [η]⊥.
Thus, by Theorem 2.6 the claimed directional metric regularity is equivalent to the condition
that the implication

∇g̃(ȳ)T μ = 0, μ ∈ (F1 − F2)
◦ ⇒ μ = 0

holds for every pair of faces F1,F2 with ∇g̃(ȳ)(v) ∈ F2 ⊂ F1 ⊂ [η]⊥. By taking into
account that (F1 − F2)

◦ ⊂ (F2 − F2)
◦, the statement of the lemma follows.

This characterization of directional metric regularity can be considerably simplified.

Theorem 2.11 Let ȳ ∈ g̃−1(D) and v ∈ R
m be given and assume that 	(ȳ, v) �= ∅. Then

the following statements are equivalent:

1. There is some (λ̄, η̄) ∈ 	(ȳ, v) such that the mapping F given by (2.12) is metrically
regular in direction ((v, η̄), (0, 0)) at

(

(ȳ, λ̄), (0, 0)
)

.
2. The mapping F given by (2.12) is metrically regular in direction ((v, η), (0, 0)) at

((ȳ, λ), (0, 0)) for every (λ, η) ∈ 	(ȳ, v).
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3.
∇g̃(ȳ)T μ = 0, μ ∈ spNTD(g̃(ȳ))(∇g̃(ȳ)v) ⇒ μ = 0. (2.13)

Proof Assume that the tangent cone TD(g̃(ȳ)) has the representation (2.10) and consider
any (λ, η) ∈ 	(ȳ, v). Since η ∈ NKD(g̃(ȳ),λ)(∇g̃(ȳ)v) = KD(g̃(ȳ), λ)◦ ∩ [∇g̃(ȳ)v]⊥,
∇g̃(ȳ)v is contained in the face KD(g̃(ȳ), λ) of TD(g̃(ȳ)) and therefore

J (v) := {i ∈ Ī | aT
i ∇g̃(ȳ)v = 0} ⊃ Jλ := JKD(g̃(ȳ),λ),

where JKD(g̃(ȳ),λ) is given by (2.11). Further, η has the representation η = ∑

i∈Iη
σiai with

Jλ ⊂ Iη ⊂ J (v) and σi > 0, i ∈ Iη \ Jλ. Next consider any face F of the critical cone
KD(g̃(ȳ), λ) satisfying ∇g̃(ȳ)v ∈ F ⊂ [η]⊥. Then F is again a face of TD(g̃(ȳ)) and
from ∇g̃(ȳ)v ∈ F ⊂ [η]⊥ we deduce

Iη ⊂ JF ⊂ J (v).

Thus
F ⊃ Fv :=

{

z | aT
i z = 0, i ∈ J (v), aT

i z ≤ 0, i ∈ Ī \ J (v)
}

and therefore (F −F )◦ ⊂ (Fv −Fv)
◦. Since Fv is also a face of KD(g̃(ȳ), λ) satisfying

∇g̃(ȳ)v ∈ Fv ⊂ [η]⊥, by Lemma 2.10, F is metrically regular in direction ((v, η), (0, 0))

at ((ȳ, λ), (0, 0)) if and only if

∇g̃(ȳ)T μ = 0, μ ∈ (Fv − Fv)
◦ ⇒ μ = 0. (2.14)

Since Fv depends neither on λ nor on η, the equivalence between 1. and 2. is estab-
lished. To show the equivalence of (2.14) with (2.13) just observe that Fv − Fv =
{z | aT

i z = 0, i ∈ J (v)} implying (Fv − Fv)
◦ = {∑i∈J (v) σiai | σi ∈ R, i ∈

J (v)} and NTD(g̃(ȳ))(∇g̃(ȳ)v) = {∑i∈J (v) σiai | σi ≥ 0, i ∈ J (v) \ J̄ }. Thus
sp NTD(g̃(ȳ))(∇g̃(ȳ)v) = (Fv − Fv)

◦ and the proof is complete.

From the proof of Theorem 2.11 we also obtain the following corollary.

Corollary 2.12 Let ȳ ∈ g̃−1(D), λ ∈ ND(g̃(ȳ)), v ∈ R
m and η ∈ NKD(g̃(ȳ),λ)(∇g̃(ȳ)v)

be given. Then the union of all sets (F − F )◦, where F is a face of the critical cone
KD(g̃(ȳ), λ) satisfying ∇g̃(ȳ)v ⊂ F ⊂ [η]⊥, is exactly spNTD(g̃(ȳ))(∇g̃(ȳ)v).

Definition 2.13 Let ȳ ∈ g̃−1(D) and v ∈ R
m be given. We say that the system g̃(·) ∈ D

is non-degenerate in direction v at ȳ if condition (2.13) is fulfilled. In case when v = 0 we
simply say that the system g̃(·) ∈ D is non-degenerate at ȳ.

Note that (2.13) is automatically fulfilled if ∇g̃(ȳ)v �∈ TD(g̃(ȳ)). Further, if ∇g̃(ȳ)v ∈
TD(g̃(ȳ)), then (2.13) is equivalent to

R
s = {0}⊥ =

(

ker ∇g̃(ȳ)T ∩ sp NTD(g̃(ȳ))(∇g̃(ȳ)v))
)⊥ = ∇g̃(ȳ)Rm + (

sp NTD(g̃(ȳ))(∇g̃(ȳ)v)
)⊥

= ∇g̃(ȳ)Rm + (

NTD(g̃(ȳ))(∇g̃(ȳ)v) − NTD(g̃(ȳ))(∇g̃(ȳ)v)
)◦

= ∇g̃(ȳ)Rm + (

NTD(g̃(ȳ))(∇g̃(ȳ)v)
)◦ ∩ (−NTD(g̃(ȳ))(∇g̃(ȳ)v)

)◦

which in turn is equivalent to

∇g̃(ȳ)Rm + lin TTD(g̃(ȳ))(∇g̃(ȳ)v) = R
s . (2.15)

Clearly, for v = 0 we obtain the standard definition of non-degeneracy from [3, Formula
4.172] and [32, Definition 2.1.].
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We now state some properties of directional non-degeneracy.

Proposition 2.14 Let ȳ ∈ g̃−1(D) and v ∈ R
n such that the system g̃(·) ∈ D is non-

degenerate in direction v at ȳ. Then there is a directional neighborhood V of v and a
constant β > 0 such that for all y ∈ (

(ȳ + V ) ∩ g̃−1(D)
)

, y �= ȳ, one has

‖∇g̃(y)T μ‖ ≥ β‖μ‖ ∀μ ∈ spND(g̃(y)). (2.16)

In particular, for all y ∈ (

(ȳ + V ) ∩ g̃−1(D)
)

, y �= ȳ, the system g̃(·) ∈ D in
non-degenerate at y.

Proof By contraposition. Assume on the contrary that there are sequences tk ↓ 0, yk ∈
g̃−1(D), μk ∈ (sp ND(g̃(yk)) ∩ SRs such that limk→∞ ∇g̃(yk)

T μk = 0 and limk→∞(yk −
ȳ)/tk → v. Since for all k sufficiently large we have

ND(g̃(yk)) = (TD(g̃(ȳ))◦ ∩ [g̃(yk) − g̃(ȳ)]⊥ =
(

TD(g̃(ȳ)) +
[

g̃(yk) − g̃(ȳ)

tk

])◦

=
(

TTD(g̃(ȳ))

(

g̃(yk) − g̃(ȳ)

tk

))◦
= NTD(g̃(ȳ))

(

g̃(yk) − g̃(ȳ)

tk

)

= NTD(g̃(ȳ))(∇g̃(ȳ)v) ∩
[

g̃(yk) − g̃(ȳ)

tk
− ∇g̃(ȳ)v

]⊥
⊂ NTD(g̃(ȳ))(∇g̃(ȳ)v),

it holds that μk ∈ sp NTD(g̃(ȳ))(∇g̃(ȳ)v) and, by passing to some subsequence if necessary,
we can assume that μk converges to some μ ∈ (

sp NTD(g̃(ȳ))(∇g̃(ȳ)v)
) ∩ SRs . Obviously

we also have ∇g(ȳ)T μ = 0, a contradiction to the assumed directional non-degeneracy and
(2.16) is proved. The additional statement concerning the non-degeneracy is an immediate
consequence of (2.16).

It turns out that the directional non-degeneracy can be fulfilled in all non-zero directions
even if the (standard) non-degeneracy is violated.

Example 2.15 Let D = R
s− and assume g̃(ȳ) = 0. Given a direction v satisfying

∇g̃(ȳ)v ≤ 0, we have sp NTD(g̃(ȳ))(∇g̃(ȳ)v) = {μ ∈ R
s | μi = 0, i �∈ J (v)},

where J (v) := {i | ∇g̃i (ȳ)v = 0}. Thus, non-degeneracy in direction v is equivalent
to the linear independence of the gradients ∇g̃i (ȳ), i ∈ J (v) whereas non-degeneracy
amounts to the so-called linear independence constraint qualification (LICQ), i.e., to the
linear independence of all gradients ∇g̃i (ȳ), i = 1, . . . , s.

Consider the system

y1 −y4 ≤ 0, −y1 −y4 ≤ 0, y2 −y4 ≤ 0, −y2 −y4 ≤ 0, y3 +y2
1 −y4 ≤ 0, −y3 −y4 ≤ 0.

Obviously LICQ is violated at ȳ = 0. However, it is not difficult to verify that the system is
non-degenerate in every direction v �= 0.
Further note that in this example also the so-called constant rank constraint qualification is
violated at ȳ. �

3 Stability Properties Through Generalized Differentiation

Throughout this section we consider the solution mapping S given by (1.2). Given some
reference point (p̄, x̄) ∈ gph S, we will provide point-based sufficient conditions for the
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isolated calmness property, the Aubin property and the Aubin property relative to some set
P ⊂ R

l , respectively, in terms of generalized derivatives of the mapping M .
We start with the Levy-Rockafellar characterization of isolated calmness [27], who

showed that

S is isolated calm at (p̄, x̄) ∈ gph S ⇔ DS(p̄, x̄)(0) = {0}. (3.17)

Theorem 3.1 Assume that M has locally closed graph around the reference point
(p̄, x̄, 0) ∈ gph M . If

0 ∈ DM(p̄, x̄, 0)(0, u) ⇒ u = 0, (3.18)

then S has the isolated calmness property at (p̄, x̄). Conversely, if there is some u �= 0 such
that 0 ∈ DM(p̄, x̄, 0)(0, u) and M is metrically subregular in direction (0, u) then S is not
isolatedly calm at (p̄, x̄).

Proof Note that the closedness of gph M readily implies that gph S = M−1(0) is locally
closed around (p̄, x̄). The sufficiency of (3.18) for the isolated calmness property of S is
due to (3.17) together with the inclusion

DS(p̄, x̄)(0) ⊂ {u | 0 ∈ DM(p̄, x̄, 0)(0, u)}
following from the definition of the graphical derivative, see also [27, Theorem 3.1]. In
order to show the second statement, consider u �= 0 verifying 0 ∈ DM(p̄, x̄, 0)(0, u) and
assume that M is metrically subregular in direction (0, u) at (p̄, x̄, 0). By [16, Proposition
4.1] we obtain (0, u) ∈ TM−1(0)(p̄, x̄) = Tgph S(p̄, x̄) and consequently u ∈ DS(p̄, x̄)(0).
Thus mapping S is not isolatedly calm at (p̄, x̄) by (3.17).

Since metric subregularity of M implies metric subregularity in any direction, we obtain
the following corollary.

Corollary 3.2 Assume thatM has locally closed graph around and is metrically subregular
at (p̄, x̄, 0) ∈ gph M . Then S is isolatedly calm at (p̄, x̄) if and only if (3.18) holds.

A sufficient condition for the Aubin property of S around (p̄, x̄) is constituted by the
following theorem.

Theorem 3.3 ([16, Theorem 4.4]) Assume that M has locally closed graph around the
reference point (p̄, x̄, 0) ∈ gph M and assume that

(i)

{u ∈ R
n | 0 ∈ DM(p̄, x̄, 0)(q, u)} �= ∅ for all q ∈ R

l;
(ii) M is metrically subregular at (p̄, x̄, 0);

(iii) For every nonzero (q, u) ∈ R
l × R

n verifying 0 ∈ DM(p̄, x̄, 0)(q, u) one has the
implication

(q∗, 0) ∈ D∗M((p̄, x̄, 0); (q, u, 0))(v∗) ⇒ q∗ = 0.

Then S has the Aubin property around (p̄, x̄) and for any q ∈ R
l

DS(p̄, x̄)(q) = {u | 0 ∈ DM(p̄, x̄, 0)(q, u)}.
The above assertions remain true provided assumptions (ii), (iii) are replaced by
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(iv) For every nonzero (q, u) ∈ R
l × R

n verifying 0 ∈ DM(p̄, x̄, 0)(q, u) one has the
implication

(q∗, 0) ∈ D∗M((p̄, x̄, 0); (q, u, 0))(v∗) ⇒
{

q∗ = 0
v∗ = 0.

Sufficient conditions for the Aubin property of S relative to some set P are based on the
following statement.

Proposition 3.4 Let (p̄, x̄, 0) ∈ gph M and consider a subset P ⊂ R
l containing p̄,

equipped with the induced norm topology of Rl . If the system 0 ∈ M(p, x), rewritten as

h(p, x) ∈ gph M (3.19)

with h(p, x) := (p, x, 0), enjoys the Robinson stability property at (p̄, x̄), then S has the
Aubin property relative to P around (p̄, x̄).

Proof Obviously S is also the solution mapping of the inclusion (p, x, 0) ∈ gph M . By the
definition of the Robinson stability together with the assumption on the topology of P , there
are neighborhoods Q of p̄ in R

l , U of x̄ and a constant κ ≥ 0 such that

dist(x, S(p)) ≤ κdist((p, x, 0), gph M) ∀(p, x) ∈ (Q ∩ P) × U .

Next consider p, p′ ∈ Q ∩ P and x ∈ S(p) ∩ U . Then

dist(x, S(p′)) ≤ κdist((p′, x, 0), gph M) ≤ κ
(

dist((p, x, 0), gph M) + ‖p − p′‖) = κ‖p − p′‖
and thus x ∈ S(p′) + (κ + 1)‖p − p′‖BRn . It follows that S(p) ∩ U ⊂ S(p′) + (κ +

1)‖p − p′‖BRn showing the Aubin property of S relative to P .

Theorem 3.5 Assume that M has a locally closed graph around the reference point
(p̄, x̄, 0) ∈ gph M and consider a closed set P ⊂ R

l containing p̄. Further assume that

(i) for every q ∈ TP (p̄) and every sequence tk ↓ 0 there exists some u ∈ R
n satisfying

lim inf
k→∞ dist((p̄ + tkq, x̄ + tku, 0), gph M)/tk = 0 (3.20)

(ii) For every nonzero (q, u) ∈ TP (p̄) × R
n verifying 0 ∈ DM(p̄, x̄, 0)(q, u) one has the

implication

(q∗, 0) ∈ D∗M((p̄, x̄, 0); (q, u, 0))(v∗) ⇒
{

q∗ = 0
v∗ = 0.

(3.21)

Then S has the Aubin property relative to P around (p̄, x̄) and for any q ∈ TP (p̄)

DS(p̄, x̄)(q) = {u | 0 ∈ DM(p̄, x̄, 0)(q, u)}. (3.22)

Proof First, we apply [14, Corollary 3.6] to show the Robinson stability property of the
system (3.19) at (p̄, x̄). By taking ζ(p) = ‖p − p̄‖ we obtain that the image derivative
Imζ Dph(p̄, x̄) defined in [14] as the closed cone generated by 0 and those v ∈ R

l×R
n×R

m

for which there is a sequence {pk} ⊂ P with

0 < ‖h(pk, x̄) − h(p̄, x̄)‖ < k−1, ‖∇xh(pk, x̄) − ∇xh(p̄, x̄)‖ < k−1, |ζ(pk) − ζ(p̄)| < k−1,

v = lim
k→∞

h(pk, x̄) − h(p̄, x̄)

‖h(pk, x̄) − h(p̄, x̄)‖ = lim
k→∞

(pk − p̄, 0, 0)

‖pk − p̄‖ ,
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is exactly the set {(q, 0, 0) | q ∈ TP (p̄)}. Further for every u ∈ R
n we have ∇xh(p̄, x̄)u =

(0, u, 0) and thus [14, Condition 3.10] is fulfilled by (3.20). Next we have to verify that
for every pair (0, 0) �= (q, u) ∈ TP (p̄) × R

n satisfying (q, u, 0) ∈ Tgph M(p̄, x̄, 0) the
implication

λ ∈ Ngph M ((p̄, x̄, 0), (q, u, 0)) , ∇xh(p̄, x̄)T λ = 0 ⇒ λ = 0

is fulfilled. Setting λ := (q∗, u∗,−v∗) this amounts to

(q∗, u∗) ∈ D∗M((p̄, x̄, 0); (q, u, 0))(v∗), u∗ = 0 ⇒ (q∗, u∗,−v∗) = (0, 0, 0),

which is obviously equivalent to (3.21). By taking into account that the condition
(q, u, 0) ∈ Tgph M(p̄, x̄, 0) is the same as requiring 0 ∈ DM(p̄, x̄, 0)(q, u), all assump-
tion of [14, Corollary 3.6] are fulfilled and the claimed Robinson stability property of
the system (3.19) at (p̄, x̄) follows. By virtue of Proposition 3.4 this implies the Aubin
property of S relative to P around (p̄, x̄). There remains to show (3.22). Since {u |
0 ∈ DM(p̄, x̄, 0)(q, u)} ⊃ DS(p̄, x̄)(q) always holds by [27, Theorem 3.1], we only
have to show {u | 0 ∈ DM(p̄, x̄, 0)(q, u)} ⊂ DS(p̄, x̄)(q). Consider u satisfying
0 ∈ DM(p̄, x̄, 0)(q, u) for some q ∈ TP (p̄). By Theorem 2.6, condition (3.21) implies
that M is metrically subregular in direction (q, u) at (p̄, x̄, 0) and hence we can invoke
[16, Proposition 4.1] to obtain (q, u) ∈ TM−1(0)(p̄, x̄) = Tgph S(p̄, x̄) and consequently
u ∈ DS(p̄, x̄)(q). Thus {u | 0 ∈ DM(p̄, x̄, 0)(q, u)} ⊂ DS(p̄, x̄)(q) and the proof of the
theorem is complete.

Remark 3.6 By virtue of Theorem 2.6, the mapping M is metrically regular in direction
(q, u, 0) at (p̄, x̄, 0) if and only if

(0, 0) ∈ D∗M (p̄, x̄, 0); (q, u, 0)) (v∗) ⇒ v∗ = 0. (3.23)

Thus, condition (ii) of Theorem 3.5 implies that for every nonzero (q, u) ∈ TP (p̄) × R
n

verifying 0 ∈ DM(p̄, x̄, 0)(q, u) the mapping M is metrically regular in direction (q, u, 0).

Remark 3.7 Let us briefly compare the above theorems. Theorem 3.3 was directly obtained
in this form in [16]. As a result, it offers the more refined result, based on assumptions (ii)
and (iii), as well as the simplified version using condition (iv) instead. On the other hand,
Theorem 3.5 is based on the result for the Robinson stability property from [14], which
enables us to consider perturbations restricted to set P . Compared to Theorem 3.3, it is only
available under the stronger assumption (3.21). Assumption (i) of Theorem 3.5 is fulfilled
in particular if for every q ∈ TP (p̄) there is some u ∈ R

n satisfying 0 ∈ DM(p̄, x̄, 0)(q, u)

and the tangent (q, u, 0) to gph M is derivable. We see that in this case Theorem 3.5 is a
generalization of (the simplified form of) Theorem 3.3.

4 Graphical Derivative of the Normal ConeMapping

This section deals with computation of the graphical derivative of M given by (1.3).
Throughout the rest of the paper we assume that we are given a reference solution (p̄, x̄) of
(1.3) fulfilling the following assumption.

Assumption 1 There is some κ > 0 such that for all (p, x, z) belonging to a neighborhood
of (p̄, x̄, x̄) the inequality

dist(z, �(p, x)) ≤ κdist(g(p, x, z),D)



M. Benko et al.

holds.

Note that by Theorem 2.8 Assumption 1 is fulfilled, e.g., in the case when

∇3g(p̄, x̄, x̄)T μ = 0, μ ∈ ND(g(p̄, x̄, x̄)) ⇒ μ = 0 (4.24)

which is equivalent to Robinson’s constraint qualification

∇3g(p̄, x̄, x̄)Rn + TD(g(p̄, x̄, x̄)) = R
s .

As a consequence of Assumption 1 we obtain that for all (p, x, z) ∈ gph � sufficiently close
to (p̄, x̄, x̄) the mapping g(p, x, ·) − D is metrically subregular at (z, 0) with modulus κ

and therefore, by virtue of [21, Theorem 5]

̂N�(p,x)(z) = N�(p,x)(z) = ∇3g(p, x, z)T ND(g(p, x, z)).

Moreover, for every z∗ ∈ ̂N�(p,x)(z) there is a multiplier λ ∈ ND(g(p, x, z)) with

z∗ = ∇3g(p, x, z)T λ, ‖λ‖ ≤ κ‖z∗‖,
cf. [14, Lemma 2.1]. Finally, since gph � = {(p, x, z) | g(p, x, z) ∈ D} and
dist((p, x, z), gph �) ≤ dist(z, �(p, x)), we conclude that the mapping g(·) − D is metri-
cally subregular at ((p, x, z), 0) for every (p, x, z) ∈ gph � sufficiently close to (p̄, x̄, x̄).
Therefore

Tgph �(p, x, z) =
{

(q, u,w) ∈ R
l × R

n × R
n | ∇g(p, x, z)(q, u,w) ∈ TD (g(p, x, z))

}

,

̂Ngph �(p, x, z) = ∇g(p, x, z)T ND (g(p, x, z)) .

In order to unburden the notation we introduce the mappings

b(p, x) := ∇3g(p, x, x), g̃(p, x) := g(p, x, x)

and denote the set-valued part of M(p, x) as G(p, x) := ̂N�(p,x)(x). For (p, x) close to
(p̄, x̄) one has

G(p, x) = b(p, x)T ND(g̃(p, x)).

The graphical derivative of G is closely related with the graphical derivative of the
mapping � : Rl × R

n × R
n ⇒ R

n given by

�(p, x, z) := ̂N�(p,x)(z).

In order to give a formula for the graphical derivative of ψ we employ the following nota-
tion. Given any y := (p, x, z) ∈ gph � and any y∗ = (p∗, x∗, z∗) ∈ ̂Ngph �(y), we denote
by

�(y, y∗) := {λ ∈ ND(g(y)) | ∇g(y)T λ = y∗}
the corresponding set of multipliers and for any v = (q, u,w) ∈ R

l × R
n × R

n by

�(y, y∗; v) := arg max{vT ∇2〈λT g〉(y)v | λ ∈ �(y, y∗)}
the directional set of multipliers. Further, for any y∗ = (p∗, x∗, z∗) ∈ R

l × R
n × R

n we
denote by π3(y

∗) the canonical projection of y∗ on its third component, i.e., π3(y
∗) = z∗.

The next statement is a counterpart of [18, Proposition 1] and uses a substantially weaker
assumption.



Stability Analysis for Parameterized Variational Systems

Proposition 4.1 Assume that Assumption 1 is fulfilled. Then for all y := (p, x, z) ∈ gph �

sufficiently close to (p̄, x̄, x̄), all z∗ ∈ �(y) and all v := (q, u,w) ∈ R
l ×R

n×R
n we have

D�(y, z∗)(v)

= {∇(∇3g(·)T λ)(y)v + π3(NKgph �(y,y∗)(v)) | y∗ ∈ NTgph �(y)(v), π3(y
∗) = z∗, λ ∈ �(y, y∗; v)}

= {∇(∇3g(·)T λ)(y)v + ∇3g(y)T NKD(g(y),λ)(∇g(y)v) | λ ∈ �(y, ∇g(y)T μ; v),

∇3g(y)T μ = z∗, μ ∈ ND (g(y)) , μT ∇g(y)v = 0}.

Proof The first equality is an immediate consequence of [15, Theorem 5.3]. By y∗ ∈
NTgph �(y)(v) = ̂Ngph �(y) ∩ [v]⊥ we have y∗ = ∇g(y)T μ for some μ ∈ ND (g(y)) with
μT ∇g(y)v = 0 and due to λ ∈ �(y,∇g(y)T μ; v) we also have ∇g(y)T λ = y∗. Since

Kgph �(y, y∗) = Kgph �(y, ∇g(y)T λ) = {v | ∇g(y)v ∈ TD(g(y)), λT ∇g(y)v = 0} = ∇g(y)−1KD(g(y), λ),

we obtain Kgph �(y, y∗)◦ = ∇g(y)T KD(g(y), λ)◦ by [33, Corollary 16.3.2] and by taking
into account that the set ∇g(y)T KD(g(y), λ)◦ is a convex polyhedral cone and therefore
closed. Thus

NKgph �(y,y∗)(v) = Kgph �(y, y∗)◦ ∩ [v]⊥ = {∇g(y)T η | η ∈ KD(g(y), λ)◦, vT ∇g(y)T η = 0}
= ∇g(y)T NKD(g(y),λ)(∇g(y)v)

showing π3(NKgph �(y,y∗)(v)) = ∇3g(y)T NKD(g(y),λ)(∇g(y)v) and the proof is complete.

�((p, x), x∗) := {μ ∈ ND(g̃(p, x)) | b(p, x)T μ = x∗},
�((p, x), x∗; (q, u)) := {μ ∈ �((p, x), x∗) | ∇g̃(p, x)(q, u) ∈ KD(g̃(p, x), μ)},
�̃((p, x), x∗; (q, u)) :=

{

λ ∈ �
(

(p, x, x), ∇g(p, x, x)T μ; (q, u, u)
)

| μ ∈ �((p, x), x∗; (q, u))
}

defined for (p, x, x∗) ∈ gph G and directions (q, u) ∈ R
l × R

n. The next theorem
generalizes [18, Theorem 2]. In particular, it provides a useful additional derivability result.

Theorem 4.2 Assume that Assumption 1 is fulfilled. Then for all (p, x) ∈ dom G

sufficiently close to (p̄, x̄), all x∗ ∈ G(p, x) and all (q, u) ∈ R
l × R

n we have

DG((p, x), x∗)(q, u) ⊂ D�((p, x, x), x∗)(q, u, u)

=
{

∇(b(·)T λ)(p, x)(q, u) + b(p, x)T NKD(g̃(p,x),λ) (∇g̃(p, x)(q, u)) |(4.25)

λ ∈ �̃
(

(p, x), x∗; (q, u)
)

}

. (4.26)

On the other hand, given (q, u) ∈ R
l × R

n, λ ∈ �̃((p, x), x∗; (q, u)) and η ∈
NKD(g̃(p,x),λ)(∇g̃(p, x)(q, u)), assume that the mapping F : Rl × R

n × R
s ⇒ R

s × R
s

given by

F(p′, x′, μ) := (

g̃(p′, x′), μ
) − gph ND (4.27)

is metrically subregular in direction (q, u, η) at ((p, x, λ), (0, 0)). Then we have

∇(b(·)T λ)(p, x)(q, u) + b(p, x)T η ∈ DG((p, x), x∗)(q, u) (4.28)

and the tangent
(

q, u,∇(b(·)T λ)(p, x)(q, u) + b(p, x)T η
)

to gph G is derivable.
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Proof The inclusion (4.25) follows immediately from the definition of the graphical deriva-
tive, whereas (4.26) is a consequence of Proposition 4.1. Consider now (q, u) ∈ R

l × R
n,

λ ∈ �̃((p, x), x∗; (q, u)) and η ∈ NKD(g̃(p,x),λ)(∇g̃(p, x)(q, u)) such that the mapping
(4.27) is directionally metrically subregular. We conclude that

(∇g̃(p, x)(q, u), η) ∈ gph NKD(g̃(p,x),λ) = Tgph ND
(g̃(p, x), λ)

and thus
(g̃(p, x), λ) + t (∇g̃(p, x)(q, u), η) ∈ gph ND

for all t ≥ 0 sufficiently small, because gph ND is a polyhedral set.
Consequently we have

dist((g̃(p + tq, x + tu), λ + tη), gph ND) = o(t)

and by the assumed directional metric subregularity of F we can find for every t > 0 some
(qt , ut , ηt ) with limt↓0(qt , ut , ηt ) = (q, u, η) and 0 ∈ F(p+ tqt , x + tut , λ+ tηt ) implying

b(p + tqt , x + tut )
T (λ + tηt ) ∈ G(p + tqt , x + tut ).

On the other hand, by Taylor expansion we obtain

b(p + tqt , x + tut )
T (λ + tηt ) = b(p, x)T λ + t

(

∇(b(·)T λ)(p, x)(q, u) + b(p, x)T η
)

+ o(t)

= x∗ + t
(

∇(b(·)T λ)(p, x)(q, u) + b(p, x)T η
)

+ o(t)

showing (4.28) and the derivability of the tangent
(

q, u,∇(b(·)T λ)(p, x)(q, u) + b(p, x)T η
)

.

Theorem 4.3 Assume that Assumption 1 is fulfilled and assume that we are given
(p, x) ∈ g̃−1(D) sufficiently close to (p̄, x̄), x∗ ∈ G(p, x) and (q, u) ∈ R

l × R
n with

�((p, x), x∗; (q, u)) �= ∅.
(i) Assume that for every λ ∈ �̃((p, x), x∗; (q, u)) and every η ∈

NKD(g̃(p,x),λ)(∇g̃(p, x)(q, u)) the mapping F given by (4.27) is metrically
subregular in direction ((q, u), η). Then

DG((p, x), x∗)(q, u) = D�((p, x, x), x∗)(q, u, u) (4.29)

and all tangents (q, u, v∗) ∈ Tgph G((p, x), x∗) are derivable.
(ii) If the system g̃(·) ∈ D is non-degenerate in direction (q, u) at (p, x) then (4.29)

holds, all tangents (q, u, v∗) ∈ Tgph G((p, x), x∗) are derivable and for all μ ∈
�((p, x), x∗; (q, u)) the set �((p, x, x),∇g(p, x, x)T μ; (q, u, u)) is the singleton
{μ}. Moreover, there is a directional neighborhood V of (q, u) such that for all
(p′, x′) ∈ ((p, x) + V ) ∩ g̃−1(D), (p′, x′) �= (p, x), the system g̃(·) − D is
non-degenerate at (p′, x′) and for every x∗′ ∈ G(p′, x′) we have

DG((p′, x′), x∗′
)(q ′, u′) = D�((p′, x′, x′), x∗′

)(q ′, u′, u′) ∀(q ′, u′) ∈ R
l × R

n.

Proof (i) follows immediately from Theorem 4.2. In order to show the second state-
ment, note that by Theorem 2.11 the directional non-degeneracy of g̃(·) ∈ D in direction
(q, u) implies the assumptions of (i) and therefore (4.29) follows. In order to show
�((p, x, x),∇g(p, x, x)T μ, (q, u, u)) = {μ} ∀μ ∈ �((p, x), x∗; (q, u)), fix μ ∈
�((p, x), x∗; (q, u)) and consider the feasible set

T := �((p, x, x), ∇g(p, x, x)T μ) = {ζ ∈ ND(g̃(p, x)) | ∇g(p, x, x)T ζ = ∇g(p, x, x)T μ}
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of the linear program defining �((p, x, x),∇g(p, x, x)T μ, (q, u, u)). We claim that T ={μ}.
Indeed, μ ∈ T and consider any element ζ ∈ T . Since ∇g̃(p, x) = (∇1g(p, x, x),

∇2g(p, x, x) + ∇3g(p, x, x)), we readily obtain ∇g̃(p, x)T ζ = ∇g̃(p, x)T μ. By defini-
tion of �((p, x), x∗; (q, u)) we also have ζ T ∇g̃(p, x)(q, u) = μT ∇g̃(p, x)(q, u) = 0
implying ζ, μ ∈ NTD(g̃(p,x))(∇g̃(p, x)(q, u)). Thus ∇g̃(p, x)T (ζ − μ) = 0, ζ − μ ∈
sp NTD(g̃(p,x))(∇g̃(p, x)(q, u)) and we deduce ζ − μ = 0 from the assumed directional
non-degeneracy showing T = {μ}. Now �((p, x, x),∇g(p, x, x)T μ, (q, u, u)) = {μ} fol-
lows immediately from the definition. The last part of (ii) is implied by Proposition 2.14
taking into account that non-degeneracy of g̃(·) − D at (p′, x′) implies non-degeneracy in
any direction and by Remark 4.4 below.

Remark 4.4 Note that in case when �((p, x), x∗; (q, u)) = ∅ we have
D�((p, x, x), x∗)(q, u, u) = ∅ and thus the equality (4.29) automatically holds by virtue
of (4.25). In particular we have DG((p, x), x∗)(q, u) = D�((p, x, x), x∗)(q, u, u) = ∅
for all directions (q, u) with ∇g̃(p, x)(q, u) = ∇g(p, x, x)(q, u, u) �∈ TD(g̃(p, x)).

Observe that Theorem (4.3) (ii) extends the results stated in [18, Theorem 2 and
Proposition 2].

5 Isolated Calmness of the SolutionMapping

In what follows we use the following notation. We denote by

�̄ := {λ ∈ ND(g̃(p̄, x̄)) | b(p̄, x̄)T λ = −f (p̄, x̄)}
the set of multipliers at our reference solution. we define for every λ ∈ R

s the Lagrangian
Lλ(p, x) : Rl × R

n → R
n by

Lλ(p, x) := f (p, x) + b(p, x)T λ.

Definition 5.1 We say that the second-order condition for isolated calmness (SOCIC) holds
at (p̄, x̄) if for every u �= 0 and every λ ∈ �̃ ((p̄, x̄), −f (p̄, x̄); (0, u)) with

∇2g̃(p̄, x̄)u ∈ KD(g̃(p̄, x̄)), λ)

there exists some v ∈ R
n such that

b(p̄, x̄)v ∈ TKD(g̃(p̄,x̄),λ) (∇2g̃(p̄, x̄)u)

and

vT ∇2Lλ(p̄, x̄)u < 0. (5.30)

Theorem 5.2 Assume that Assumption 1 is fulfilled. If SOCIC holds at (p̄, x̄), then the
solution map S to the variational system (1.3) has the isolated calmness property at (p̄, x̄).

Conversely, if for every u �= 0 there holds

DG ((p̄, x̄), −f (p̄, x̄)) (0, u) = D� ((p̄, x̄, x̄), −f (p̄, x̄)) (0, u, u) (5.31)

and the mapping M = f + G is metrically subregular in direction (0, u) at ((p̄, x̄), 0),
SOCIC is also necessary for the isolated calmness property of S at (p̄, x̄).
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Proof We claim that SOCIC is equivalent to the condition

0 ∈ ∇f (p, x)(0, u) + D�((p̄, x̄, x̄),−f (p̄, x̄))(0, u, u) ⇒ u = 0. (5.32)

Assume on the contrary that there is some u �= 0 such that

0 ∈ ∇f (p, x)(0, u) + D�((p̄, x̄, x̄), −f (p̄, x̄))(0, u, u).

By (4.26) this is equivalent to

0 ∈ ∇f (p, x)(0, u) + ∇(b(·)T λ)(p̄, x̄)(0, u) + b(p̄, x̄)T NKD(g̃(p̄,x̄),λ) (∇g̃(p̄, x̄)(0, u))

= ∇2Lλ(p̄, x̄)u + b(p̄, x̄)T NKD(g̃(p̄,x̄),λ) (∇2g̃(p̄, x̄)u) (5.33)

for some λ ∈ �̃((p̄, x̄), −f (x̄); (0, u)). In particular, ∇2g̃(p̄, x̄)u ∈ KD(g̃(p̄, x̄), λ)

follows. Next observe that

NKD(g̃(p̄,x̄),λ) (∇2g̃(p̄, x̄)u) = KD(g̃(p̄, x̄), λ)◦ ∩ [∇2g̃(p̄, x̄)u]⊥ = (KD(g̃(p̄, x̄), λ) + [∇2g̃(p̄, x̄)u])◦
= (

TKD(g̃(p̄,x̄),λ) (∇2g̃(p̄, x̄)u)
)◦

and thus

b(p̄, x̄)T NKD(g̃(p̄,x̄),λ) (∇2g̃(p̄, x̄)u) = {

v | b(p̄, x̄)v ∈ TKD(g̃(p̄,x̄),λ) (∇2g̃(p̄, x̄)u)
}◦ .

This follows from [33, Corollary 16.3.2] because the set on the left hand side is a convex
polyhedral set and therefore closed. Thus (5.33) is equivalent to

−∇2Lλ(p̄, x̄)u ∈ {

v | b(p̄, x̄)v ∈ TKD(g̃(p̄,x̄),λ) (∇2g̃(p̄, x̄)u)
}◦

which in turn is equivalent to

−vT ∇2Lλ(p̄, x̄)u ≤ 0 ∀v : b(p̄, x̄)v ∈ TKD(g̃(p̄,x̄),λ) (∇2g̃(p̄, x̄)u)

contradicting (5.30). Thus the claimed equivalence between SOCIC and (5.32) holds true.
Combining Theorem 3.1 and (4.25) we see that the condition (5.32) and consequently
SOCIC as well are sufficient for the isolated calmness property of S at (p̄, x̄).

In order to show the second statement of the theorem, just note that condition (5.31)
ensures that (5.32) and SOCIC are equivalent to the condition

0 ∈ ∇f (p, x)(0, u) + DG((p̄, x̄, x̄), −f (p̄, x̄))(0, u) ⇒ u = 0

and thus by Theorem 3.1 the necessity of SOCIC for the isolated calmness property of S

follows.

By Theorem 4.3(ii), a sufficient condition for (5.31) is that the system g̃(·) ∈ D is non-
degenerate in every direction (0, u), u �= 0 at (p̄, x̄). We now state a sufficient condition for
the metric regularity of the mapping M = f + G in some direction (q, u).

Theorem 5.3 Let (q, u) ∈ R
l ×R

n and assume that the system g̃(·) ∈ D is non-degenerate
in direction (q, u) at (p̄, x̄). Further assume that for every λ̂ ∈ �((p̄, x̄), −f (p̄, x̄); (q, u)),
every η ∈ NKD(g̃(p̄,x̄),λ̂)

(∇g̃(p̄, x̄)(q, u)) satisfying 0 = ∇L
λ̂
(p̄, x̄)(q, u) + b(p̄, x̄)T η,

every pair of faces F1,F2 of the critical cone KD(g̃(p̄, x̄), λ̂) with ∇g̃(p̄, x̄)(q, u) ∈
F2 ⊂ F1 ⊂ [η]⊥ and for every 0 �= w ∈ R

n with b(p̄, x̄)w ∈ F1 − F2 there is some
(q̃, ũ) such that ∇g̃(p̄, x̄)(q̃, ũ) ∈ F1 − F2 and

wT ∇L
λ̂
(p̄, x̄)(q̃, ũ) > 0.

Then the mapping M is metrically regular in direction ((q, u), 0) at ((p̄, x̄), 0).
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Proof By contraposition. Assume on the contrary that M = f +G is not metrically regular
in direction ((q, u), 0) at ((p̄, x̄), 0). By virtue of Theorem 2.6 there is some w �= 0 such
that (0, 0) ∈ D∗(f + G) (((p̄, x̄), 0); ((q, u), 0)) (−w). In particular, this implies

0 ∈ DM((p̄, x̄), 0)(q, u) = ∇f (p̄, x̄)(q, u) + DG((p̄, x̄), −f (p̄, x̄))(q, u).

By the definition of the directional limiting coderivative there are sequences tk ↓ 0,
(qk, uk, w

∗
k ) → (q, u, 0) and (q∗

k , u∗
k, wk) → (0, 0, w) such that

(q∗
k , u∗

k, wk) ∈ ̂Ngph (f +G)((pk, xk), tkw
∗
k ),

where pk := p̄ + tkqk , xk := x̄ + tkuk . Hence ((q∗
k , u∗

k) + ∇f (pk, xk)
T wk,wk) ∈

̂Ngph G((pk, xk), x
∗
k ), where x∗

k := tkw
∗
k − f (pk, xk), which is equivalent to

(q∗
k + ∇1f (p̄, x̄)T wk)

T σ + (u∗
k + ∇2f (p̄, x̄)T wk)

T ξ + wT
k ξ∗ ≤ 0 ∀(σ, ξ, ξ∗) ∈ gph DG((pk, xk), x

∗
k ).

(5.34)

By Proposition 2.14, the system g̃(·) ∈ D is non-degenerate at (pk, xk) and we deduce
from Theorem 4.3 that DG((pk, xk), x

∗
k )(q ′, u′) = D�((pk, xk), x

∗
k )(q ′, u′, u′) ∀(q ′, u′) ∈

R
l × R

n. Hence, by taking σ = 0, ξ = 0 we obtain

wT
k b(pk, xk)

T ζ ∗ ≤ 0 ∀ζ ∗ ∈ KD(g̃(pk, xk), λ)◦, λ ∈ �̃
(

(pk, xk), x
∗
k , (0, 0)

)

. (5.35)

Since �̃
(

(pk, xk), x
∗
k ; (0, 0)

) = {λ ∈ ND(g̃(pk, xk)) | b(pk, xk)
T λ = x∗

k } and x∗
k ∈

G(pk, xk), by Assumption 1 there exists for every k some λk ∈ �̃
(

(pk, xk), x
∗
k , (0, 0)

) ∩
κ‖x∗

k ‖BRs . By passing to a subsequence if necessary we can assume that λk converges to
some λ̂. Obviously we have λ̂ ∈ ND(g̃(p̄, x̄)) and b(p̄, x̄)T λ̂ = −f (p̄, x̄). By [5, Lemma
4H.2], for each k sufficiently large there are two closed faces F k

2 ⊂ F k
1 of the critical

cone KD(g̃(p̄, x̄), λ̂) such that KD(g̃(pk, xk), λk) = F k
1 − F k

2 and a close look at the
proof of [5, Lemma 4H.2] tells us that we also have g̃(pk, xk) − g̃(p̄, x̄) ∈ ri F k

2 . Since
KD(g̃(p̄, x̄), λ̂) is a closed convex cone, it has only finitely many faces and by passing to
a subsequence once more we can assume F k

1 = F1 and F k
2 = F2 for all k. A face of a

closed convex cone is again a cone and thus (g̃(pk, xk)−g̃(p̄, x̄))/tk ∈ ri F2 ∀k. This yields
by passing to the limit that ∇g̃(p̄, x̄)(q, u) ∈ F2 ⊂ KD(ḡ(p̄, x̄), λ̂), and consequently
λ̂ ∈ �((p̄, x̄), −f (p̄, x̄), (q, u)).

tkw
∗
k − f (pk, xk) = x∗

k = b(pk, xk)
T λk = b(p̄, x̄)T λk + tk∇(b(·)T λk)(p̄, x̄)(qk, uk) + o(tk)

= −f (p̄, x̄) + b(p̄, x̄)T (λk − λ̂) + tk∇(b(·)T λ̂)(p̄, x̄)(q, u) + o(tk),

yielding

b(p̄, x̄)T
λk − λ̂

tk
= w∗

k − f (pk, xk) − f (p̄, x̄)

tk
− ∇(b(·)T λ̂)(p̄, x̄)(q, u) + o(tk)/tk

= w∗
k − ∇L

λ̂
(q, u) + o(tk)/tk . (5.36)

Since λk ∈ ND(g̃(pk, xk)) ⊂ ND(g̃(p̄, x̄)), it holds that λk − λ̂ and consequently
λk−λ̂

tk
belong to TND(g̃(p̄,x̄))(λ̂). Because of ∇g̃(p̄, x̄)(q, u) ∈ F2 ⊂ F1 we conclude
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∇g̃(p̄, x̄)(q, u) ∈ F1 − F2 = KD(g̃(pk, xk), λk) showing λT
k ∇g̃(p̄, x̄)(q, u) = 0.

Together with λ̂T ∇g̃(p̄, x̄)(q, u) = 0 we obtain

λk − λ̂

tk
∈ TND(g̃(p̄,x̄))(λ̂) ∩ [∇g̃(p̄, x̄)(q, u)]⊥ =

(

ND(g̃(p̄, x̄)) + [λ̂]
)

∩ [∇g̃(p̄, x̄)(q, u)]⊥

=
(

TD(g̃(p̄, x̄)) ∩ [λ̂]⊥
)◦ ∩ [∇g̃(p̄, x̄)(q, u)]⊥ = NKD(g̃(p̄,x̄),λ̂)

(∇g̃(p̄, x̄)(q, u)).

Since F1 −F2 = KD(g̃(pk, xk), λk) ⊂ [λk]⊥ and F2 ⊂ F1 ⊂ KD(g̃(p̄, x̄), λ̂), we have

F1 − F2 ⊂ [λk]⊥ ∩ [λ̂]⊥ =
(

[λk] + [λ̂]
)⊥ ⊂ [λk − λ̂]⊥

and consequently [λk − λ̂] ⊂ (sp F1)
⊥. We can now invoke Hoffman’s lemma [3, Theorem

2.200] to find for every k some ηk ∈ NKD(g̃(p̄,x̄),λ̂)
(∇g̃(p̄, x̄)(q, u)) ∩ (sp F1)

⊥ satisfying

b(p̄, x̄)T
λk − λ̂

tk
= b(p̄, x̄)T ηk

and ‖ηk‖ ≤ β‖b(p̄, x̄)T (λk − λ̂)/tk‖ for some constant β > 0 not depending on k. Since
the right hand side of (5.36) is bounded, so is ηk and by possibly passing to a subsequence
we can assume that ηk converges to some η ∈ NKD(g̃(p̄,x̄),λ̂)

(∇g̃(p̄, x̄)(q, u)) ∩ (sp F1)
⊥

satisfying

b(p̄, x̄)T η = lim
k→∞

(−∇L
λ̂
(p̄, x̄)(q, u) + o(tk)/tk + w∗

k

) = −∇L
λ̂
(p̄, x̄)(q, u).

From η ∈ (sp F1)
⊥ we conclude F1 ⊂ sp F1 ⊂ [η]⊥. Moreover, by passing k to infinity

in (5.35) it follows that

wT b(p̄, x̄)T ζ ∗ ≤ 0 ∀ζ ∗ ∈ (F1 − F2)
◦,

which is the same as b(p̄, x̄)w ∈ F1 −F2. By the assumption of the theorem there is some
(q̃, ũ) with ∇g̃(p̄, x̄)(q̃, ũ) ∈ F1 − F2 and wT ∇L

λ̂
(p̄, x̄)(q̃, ũ) > 0. Applying Corollary

2.12 we obtain

sp NTD(g̃(p̄,x̄))(∇g̃(p̄, x̄)(q, u)) ⊃ (F2 − F2)
◦ ⊃ (F1 − F2)

◦

implying the condition

∇g̃(p̄, x̄)T μ = 0, μ ∈ (F1 − F2)
◦ ⇒ μ = 0.

From Theorem 2.8 we can deduce that for every k there is some (q̃k, ũk) satisfying

∇g̃(pk, xk)(q̃k, ũk) ∈ F1 − F2 = KD(g̃(pk, xk), λk)

and

‖(q̃k, ũk)− (q̃, ũ)‖ ≤ β ′dist(∇g̃(pk, xk)(q̃, ũ), F1 −F2) ≤ β ′‖(∇g̃(pk, xk)−∇g̃(p̄, x̄))(q̃, ũ)‖
for some constant β ′ ≥ 0 not depending on k. Since g̃(·) ∈ D is non-degenerate at (pk, xk)

by Proposition 2.14, we obtain �((pk, xk, xk), ∇g(pk, xk, xk)
T λk; (q̃k, ũk, ũk)) = {λk} by

Theorem 4.3 and thus

((q̃k, ũk), ∇(b(·)T λk)(pk, xk)(q̃k, ũk)) ∈ gph DG((px, xk), x
∗
k ).

Hence we obtain from (5.34)

(q∗
k + ∇1f (pk, xk)

T wk)
T q̃k + (u∗

k + ∇2f (pk, xk)
T wk)

T ũk + wT
k ∇(b(·)T λk)(pk, xk)(q̃k, ũk)

= q∗
k

T q̃k + u∗
k
T ũk + wT

k ∇Lλk
(pk, xk)(q̃k, ũk) ≤ 0.
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By passing k to infinity this yields the contradiction wT ∇L
λ̂
(p̄, x̄)(q̃, ũ) ≤ 0 and hence

M is metrically regular in direction ((q, u), 0) at ((p̄, x̄), 0).

In case when (q, u) = (0, 0) Theorem 5.3 constitutes a sufficient condition for the metric
regularity of M around ((p̄, x̄), 0). This is an interesting result for its own sake. On the other
hand, when applying Theorem 5.3 for directions (0, u), u �= 0, we have an efficient tool for
verifying the necessity of SOCIC for the isolated calmness property of S.

Remark 5.4 Condition (5.31) and the requirement that M is metrically subregular are ful-
filled in particular in case of canonical perturbations, i.e., parametric systems given by (1.3)
with p = (p1, p2) ∈ R

n × R
s , f (p, x) = f̂ (x) − p1 and g̃(p, x) = ĝ(x) − p2.

Example 5.5 Consider the variational system (1.3) with D := R
2− and f : R2 × R

2 → R
2,

g : R2 × R
2 × R

2 → R
2 given by

f (p, x) :=
(

x1 − p1
−x2

)

, g(p, x, z) :=
(

p2 − x1 + x2 + z2
−x1 − 3x2 + z2

)

at p̄ = x̄ = (0, 0). Condition (4.24) ensuring Assumption 1 reads as
(

0
μ1 + μ2

)

=
(

0
0

)

, μ1, μ2 ≥ 0 ⇒ μ1 = μ2 = 0

and is certainly fulfilled. Further,

b(p, x) =
(

0 1
0 1

)

, g̃(p, x) =
(

p2 − x1 + 2x2
−x1 − 2x2

)

and for each p ∈ R
2 the solution set S(p) consists of those x such that there exists some

λ ∈ N
R

2−(g̃(p, x)) fulfilling

0 = Lλ(p, x) =
(

x1 − p1
−x2 + λ1 + λ2

)

.

Straightforward calculations yield that the solution map S is given by

S(p) =
⎧

⎨

⎩

{(p1, 0), (p1,
p1−p2

2 )} if p2 − p1 ≤ 0, p1 ≥ 0,

{(p1,−p1
2 ), (p1,

p1−p2
2 )} if p2 − 2p1 ≤ 0, p1 < 0,

∅ otherwise.
(5.37)

We see that S has the isolated calmness property at (p̄, x̄) and we now want to verify that
SOCIC is fulfilled. Consider u �= 0 such that

∇2g̃(p̄, x̄)u =
( −u1 + 2u2

−u1 − 2u2

)

∈ TD(g̃(p̄, x̄)) = R
2−.

In particular we have u1 �= 0 because u1 = 0 implies u2 = 0 and the case u = 0 is
excluded. Since �((p̄, x̄), −f (p̄, x̄)) = {μ ∈ R

2+ | (0, μ1 + μ2) = (0, 0)} = {(0, 0)}, we
have � ((p̄, x̄), −f (p̄, x̄); (0, u)) = �̃ ((p̄, x̄), −f (p̄, x̄); (0, u)) = {(0, 0)}. By choosing
v = (−u1, 0) we have b(p̄, x̄)v = 0 ∈ TKD(g̃(p̄,x̄),λ)(∇2g̃(p̄, x̄)u) and vT ∇2L0(p̄, x̄)u =
−u2

1 < 0 and SOCIC is established.
Next we show that the mapping (p, x) ⇒ M(p, x) = f (p, x) + G(p, x) is met-

rically regular around ((p̄, x̄), 0) by applying Theorem 5.3 with (q, u) = (0, 0). The
Jacobian ∇g̃(p̄, x̄) has full row rank and hence the system g̃(·) ∈ R

2− is non-degenerate.
It can be easily deduced that the only λ̂ ∈ �((p̄, x̄), −f (p̄, x̄); (0, 0)) and the only
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η ∈ NKD(g̃(p̄,x̄),λ̂)
(∇g̃(p̄, x̄)(0, 0)) satisfying 0 = ∇L

λ̂
(p̄, x̄)(0, 0) + b(p̄, x̄)T η are

λ̂ = η = (0, 0). We have to show that for every pair of faces F2 ⊂ F1 ⊂ R
2− and every

0 �= w ∈ R
2 satisfying b(p̄, x̄)w = (w2, w2)

T ∈ F1 − F2 there is some (q̃, ũ) with

∇g̃(p̄, x̄)(q̃, ũ) =
(

q̃2 − ũ1 + 2ũ2
−ũ1 − 2ũ2

)

∈ F1−F2 and wT ∇L0(p̄, x̄)(q̃, ũ) = w1(ũ1−q̃1)−w2ũ2 > 0.

(5.38)
If w1 �= 0, this can be easily accomplished by taking q̃2 = ũ1 = ũ2 = 0 and q̃1 = −w1.

So let w1 = 0 and consequently w2 �= 0. Then condition (5.38) is fulfilled when we take,
e.g., ũ2 = −w2, ũ1 = −2ũ2, q̃2 = ũ1 − 2ũ2 and an arbitrary q̃1. So, we have detected the
metric regularity of M from Theorem 5.3. �

6 On the Aubin Property of the SolutionMap

In the following theorem we state our main result concerning the Aubin property of the
solution map S relative to some set P . It improves [18, Theorem 6], because Assumption
1 is weaker than Assumption (A) in [18] and we use here a less restrictive non-degeneracy
condition.

Theorem 6.1 Assume that Assumption 1 is fulfilled and we are given a closed set P ⊂ R
l

containing p̄ such that the following assumptions are fulfilled:

(i) For every q ∈ TP (p̄) there is some u ∈ R
n such that

0 ∈ ∇f (p̄, x̄)(q, u) + D� ((p̄, x̄, x̄), −f (p̄, x̄)) (q, u, u). (6.39)

(ii) For every (0, 0) �= (q, u) verifying (6.39) the (partial) directional non-degeneracy
condition

∇2g̃(p̄, x̄)T μ = 0, μ ∈ spNTD(g̃(p̄,x̄))(∇g̃(p̄, x̄)(q, u)) ⇒ μ = 0 (6.40)

is fulfilled and for every λ̂ ∈ �((p̄, x̄), −f (p̄, x̄); (q, u)), every η ∈
NKD(g̃(p̄,x̄),λ̂)

(∇g̃(p̄, x̄)(q, u)) satisfying 0 = ∇L
λ̂
(p̄, x̄)(q, u) + b(p̄, x̄)T η, every

pair of faces F1,F2 of the critical cone KD(g̃(p̄, x̄), λ̂) with ∇g̃(p̄, x̄)(q, u) ∈
F2 ⊂ F1 ⊂ [η]⊥ and every w �= 0 with b(p̄, x̄)w ∈ F1 − F2 there is some w̃ with
∇2g̃(p̄, x̄)w̃ ∈ F1 − F2 such that

wT ∇2Lλ̂
(p̄, x̄)w̃ > 0.

Then the solution mapping S to the variational system (1.3) has the Aubin property relative
to P around (p̄, x̄) and for every q ∈ TP (p̄) there holds

DS(p̄, x̄)(q) = {u | 0 ∈ ∇f (p̄, x̄)(q, u) + D� ((p̄, x̄, x̄), −f (p̄, x̄)) (q, u, u)}.

Proof We will invoke Theorem 3.5 in order to prove the proposition. Observe that
(6.40) implies the non-degeneracy of the system g̃(·) ∈ D in direction (q, u)

at (p̄, x̄) and by Theorem 4.3 we have that D� ((p̄, x̄, x̄), −f (p̄, x̄)) (q, u, u) =
DG ((p̄, x̄), −f (p̄, x̄)) (q, u) and all tangents (q, u, u∗) to gph G at ((p̄, x̄),−f (p̄, x̄)) are
derivable. Since DM((p̄, x̄), 0)(q, u) = ∇f (p̄, x̄)(q, u) + DG((p̄, x̄), −f (p̄, x̄))(q, u)

and taking into account Remark 3.7, assumption (i) of Theorem 3.5 is satisfied due to the
first assumption.
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We now show that assumption (ii) of Theorem 3.5 is fulfilled as well. Assume that we
are given a direction (0, 0) �= (q, u) satisfying

0 ∈ DM((p̄, x̄), 0)(q, u) = ∇f (p̄, x̄)(q, u) + DG((p̄, x̄), −f (p̄, x̄))(q, u)

⊂ ∇f (p̄, x̄)(q, u) + D�((p̄, x̄, x̄), −f (p̄, x̄))(q, u, u)

and (q∗, w) such that (q∗, 0) ∈ D∗M (((p̄, x̄), 0); ((q, u), 0)) (−w).
By the definition of the directional limiting coderivative there are sequences tk ↓ 0,

(qk, uk, w
∗
k ) → (q, u, 0) and (q∗

k , u∗
k, wk) → (q∗, 0, w) such that

(q∗
k , u∗

k, wk) ∈ ̂Ngph (f +G)((pk, xk), tkw
∗
k ),

where pk := p̄ + tkqk , xk := x̄ + tkuk . We can now proceed as in the proof of Theorem 5.3
to find the sequences x∗

k and λk as well as

λ̂ = lim
k→∞ λk ∈ �((p̄, x̄), −f (p̄, x̄); (q, u)), η ∈ NKD(g̃(p̄,x̄),λ̂)

(∇g̃(p̄, x̄)(q, u))

with 0 = ∇L
λ̂
(p̄, x̄)(q, u) + b(p̄, x̄)T η and the faces F1,F2 of the critical cone

KD(g̃(p̄, x̄), λ̂) with ∇g̃(p̄, x̄)(q, u) ⊂ F2 ⊂ F1 ⊂ [η]⊥ such that KD(g̃(pk, xk), λk)) =
F1 − F2 ∀k. As in the proof of Theorem 5.3 we can also deduce b(p̄, x̄)w ∈ F1 − F2.
By assumption (ii) of the theorem there is some w̃ with ∇2g̃(p̄, x̄)w̃ ∈ F1 − F2 and
wT ∇2Lλ̂

(p̄, x̄)w̃ > 0, provided w �= 0, which we now assume.
Next observe that the implication

∇2g(p̄, x̄)T μ = 0, μ ∈ (F1 − F2)
◦ ⇒ μ = 0 (6.41)

follows from (6.40) by virtue of Corollary 2.12. By condition (6.41) and Theorem 2.8, there
is some real β > 0 such that for every k sufficiently large there are some w̃k satisfying
∇2g̃(pk, xk)w̃k ∈ F1 − F2 and

‖w̃k − w̃‖ ≤ βdist(∇2g̃(pk, xk)w̃,F1 − F2) ≤ β‖(∇2g̃(pk, xk) − ∇2g̃(p̄, x̄))w̃‖.

Hence ∇g̃(pk, xk)(0, w̃k) ∈ F1 − F2 = KD(g̃(pk, xk), λk) and, since g̃(·) ∈ D is non-
degenerate at (pk, xk), we obtain �((pk, xk, xk), x

∗
k ; (0, w̃k, w̃k)) = {λk} by Theorem 4.3.

Using Theorem 4.3 once more together with (4.26) we obtain

(0, w̃k,∇(b(·)T λk)(pk, xk)(0, w̃k)) ∈ gph DG((pk, xk), x
∗
k ),

yielding

(u∗
k +∇2f (pk, xk)

T wk)
T w̃k +wT

k ∇2(b(·)T λk)(pk, xk)w̃k = u∗
k
T
w̃k +wT

k ∇2Lλk
(pk, xk)w̃k ≤ 0

from (5.34). By passing to the limit we obtain the contradiction wT ∇2Lλ̂
w̃ ≤ 0 and thus

w = 0. It remains to show that q∗ = 0. Observe that (6.41) is equivalent to

(ker ∇2g(p̄, x̄)T ∩ (F1 − F2)
◦)◦ = ∇2g(p̄, x̄)Rn + (F1 − F2) = {0}◦ = R

s .

Hence there is some ū ∈ R
n with ∇1g̃(p̄, x̄)q∗ + ∇2g̃(p̄, x̄)ū ∈ F1 − F2. Further, by

assumption (6.41) and Theorem 2.8, there is some real β > 0 such that for every k suffi-
ciently large there exist some vectors ūk satisfying ∇1g̃(pk, xk)q

∗+∇2g̃(pk, xk)ūk ∈ F1 −
F2 and ‖ūk − ū‖ ≤ βdist(∇1g̃(pk, xk)q

∗ + ∇2g̃(pk, xk)ū,F1 − F2) ≤ β‖(∇g̃(pk, xk) −
∇g̃(p̄, x̄))(q∗, ū)‖. Using similar arguments as before we deduce

(q∗, ūk,∇(b(·)T λk)(pk, xk)(q
∗, ūk)) ∈ gph DG((pk, xk), x

∗
k ),
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resulting in

(q∗
k + ∇1f (pk, xk)

T wk)
T q∗ + (u∗

k + ∇2f (pk, xk)
T wk)

T ūk + wT
k ∇(b(·)T λk)(pk, xk)(q

∗, ūk)

= q∗
k

T
q∗ + u∗

k
T
ūk + wT

k ∇Lλk
(pk, xk)(q

∗, ūk) ≤ 0

by means of (5.34). By passing k to infinity we obtain q∗T q∗ ≤ 0 implying q∗ = 0. Thus
all assumptions of Theorem 3.5 are fulfilled and the statement is established.

In case when P = R
l Theorem 6.1 improves [18, Theorem 6] by weakening the

assumption that the multiplier λ ∈ ND(g̃(p, x)) satisfying b(p̄, x̄)T λ = −f (p̄, x̄) is
unique.

Example 6.2 It is easy to see that for the variational system of Example 5.5 the solution
map S given by (5.37) has the Aubin property relative to its domain dom S = {(p1, p2) |
p2 − p1 ≤ 0, p2 − 2p1 ≤ 0}. We want now to analyze the conditions on the set P provided
by Theorem 6.1 such that S has the Aubin property relative to P . After some calculations
we obtain the following table where we list all directions (q, u) such that (6.39) holds as
well as λ̂ ∈ �((p̄, x̄), −f (p̄, x̄); (q, u)) and η ∈ NKD(g̃(p̄,x̄),λ̂)

(∇g̃(p̄, x̄)(q, u)) such that

0 = ∇L
λ̂
(p̄, x̄)(q, u) + b(p̄, x̄)T η. In addition we display vector ∇g̃(p̄, x̄)(q, u), useful

also for the computation of η.

q u λ̂ (∇g̃(p̄, x̄)(q, u))T η ∈ R
2+

q1 ≥ 0, q2 − q1 ≤ 0 (q1, 0) 0 (q2 − q1,−q1) (0, 0)

q2 − q1 ≤ 0, q2 − 2q1 < 0 (q1,
q1−q2

2 ) 0 (0, q2 − 2q1) (
q1−q2

2 , 0)

q1 ≤ 0, q2 = 2q1 (q1,
−q1

2 ) 0 (0, 0) η1 + η2 = −q1
2

q1 ≤ 0, q2 − 2q1 < 0 (q1,
−q1

2 ) 0 (q2 − 2q1, 0) (
−q1

2 , 0)

(6.42)

From this table we see that condition (i) of Theorem 6.1 amounts to the requirement that

TP (p̄) ⊂ {q ∈ R
2 | q2 − q1 ≤ 0, q2 − 2q1 ≤ 0}(= dom S).

In the next step we will analyze condition (ii) of Theorem 6.1. Since ∇2g̃(p̄, x̄) has
full rank, implication (6.40) holds for any direction (q, u). Consider now (0, 0) �= (q, u)

together with λ̂ = 0 and η from table (6.42) and faces F1,F2 of the critical cone
KD(g̃(p̄, x̄), λ̂) = R

2− satisfying ∇g̃(p̄, x̄)(q, u) ⊂ F2 ⊂ F1 ⊂ [η]⊥. Observe that
(q, u) �= (0, 0) implies q �= 0. Further, consider 0 �= w ∈ R

2 such that b(p̄, x̄)w =
(w2, w2)

T ∈ F1 − F2. It follows that w2 = 0 whenever η �= 0. Further, F1 = R
2− when

w2 �= 0 and F1 − F2 = R
2 if w2 > 0. Our next analysis is split into three cases.

Case w2 > 0: Then F1 − F2 = R
2 and obviously w̃ = (0,−w2) fulfills ∇2g̃(p̄, x̄)w̃ ∈

R
2 and

wT ∇2Lλ̂
(p̄, x̄)w̃ = w2

2 > 0.

Case w2 < 0: It follows that η = 0 and F1 = R
2−. If ∇g̃1(p̄, x̄)(q, u) < 0 then

F1 − F2 ⊃ R × R− and we can take w̃ = (0, −w2) to obtain ∇2g̃(p̄, x̄)w̃ =
(−2w2, 2w2)

T ∈ R×R− ⊂ F1 − F2 and wT ∇2Lλ̂
(p̄, x̄)w̃ = w2

2 > 0. Hence assume
that ∇g̃1(p̄, x̄)(q, u) = 0. A look at table (6.42) tells us that this together with η = 0 and
q �= 0 is only possible when q2 = q1 and q1 > 0. In this case we can take w = (−1, −2)

and F2 = {0} × R−, F1 = R
2− resulting in F1 − F2 = R− × R and it follows that

there does not exist any

w̃ ∈ {w̃ | ∇2g̃(p̄, x̄)w̃ ∈ F1 − F2} = {w̃ | −w̃1 + 2w̃2 ≤ 0}
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fulfilling

wT ∇2Lλ̂
(p̄, x̄)w̃ = −w̃1 + 2w̃2 > 0.

Case w2 = 0: Note that w �= 0 implies w1 �= 0. If ∇g̃1(p̄, x̄)(q, u) < 0 then F1 −F2 ⊃
R × {0} and we can take w̃ = (w1, w1/2) to obtain ∇2g̃(p̄, x̄)w̃ ∈ {0} × R ⊂ F1 − F2
and wT ∇2Lλ̂

(p̄, x̄)w̃ = w2
1 > 0. If ∇g̃2(p̄, x̄)(q, u) < 0, then we can argue as before to

show that w̃ = (w1,−w1/2) fulfills the required conditions. There remains the case that
∇g̃(p̄, x̄)(q, u) = (0, 0). A look at Table 6.42 shows that this is possible for nonzero q

only in case when q2 = 2q1 and q1 < 0. Taking η = (−q1/2, 0), F2 = F1 = {(0, 0)},
we obtain that the only w̃ with ∇2g̃(p̄, x̄)w̃ ∈ F1 − F2 is w̃ = (0, 0) and therefore we
again cannot fulfill the condition wT ∇2Lλ̂

(p̄, x̄)w̃ > 0.
The above analysis shows that we have to exclude the sets P such that

TP ((0, 0)) ∩ {(t, t), (−t, −2t) | t > 0} �= ∅.

This means that, by virtue of Theorem 6.1, S has the Aubin property relative to P around
(p̄, x̄) for every closed set P containing (0, 0) such that

TP ((0, 0)) ⊂ {q ∈ R
2 | q2 −q1 ≤ 0, q2 −2q1 ≤ 0}\{(t, t), (−t, −2t) | t > 0}(= int dom S∪{(0, 0)}).

�

7 Conclusion

In most rules of generalized differentiation one associates with the data a certain mapping
and requires, as a qualification condition, the metric subregularity of this mapping at the
considered point, see, e.g., [20, 22–24]. Correspondingly, in the directional limiting calculus
the qualification conditions amount typically to the directional metric subregularity of the
respective associated mappings, cf. [1]. In both cases, however, the required property should
be verifiable via suitable conditions expressed solely in terms of problem data. In this paper
we construct such conditions on the basis of the (stronger) property of directional metric
regularity, see Theorems 2.11, 3.5, 5.3 and 6.1.

In general, the principal questions related to metric subregularity, calmness and the asso-
ciated areas of error bounds and subtransversality have been thoroughly investigated by
many notable researchers including A. Y. Kruger ([6–8, 26] and many other works on this
subject). Via the research, discussed in this paper, the authors would like to give credit to
their friend Alex on the occasion of his 65th birthday.
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