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a b s t r a c t

A continuous skew-symmetric bilinear (SSB) representation of preferences has recently been proposed
in a topological vector space, assuming a weaker notion of convexity of preferences than in the classical
(algebraic) case. Equipping a linear vector space with the so-called inductive linear topology, we derive
the algebraic SSB representation on such topological basis, thus weakening the convexity assumption.
Such a unifying approach to SSB representation leads, moreover, to a stronger existence result for a
maximal element and opens a way for a non-probabilistic interpretation of the algebraic theory. Note
finally that our method of using powerful topological techniques to derive purely algebraic result may
be of general interest.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Many systematic violations of the expected utility theory
(Von Neumann and Morgenstern, 1953) have been observed, see
e.g. Tversky (1969), stimulating the development of alternative
decision-making theories (Fishburn, 1988; Starmer, 2000;
Machina et al., 2004). In particular, the axiom of transitivity of
preferences, nowadays understood as an intuitively appealing
cornerstone of rationality, is not always supported by empirical
evidence (Bar-Hillel and Margalit, 1988; Butler et al., 2016). A
concise mathematical model of non-transitive decision-making
has been proposed in Kreweras (1961) and Fishburn (1982),
representing preferences with a skew-symmetric bilinear (SSB)
functional. Note that from the mathematical point of view, such
representation is closely related to the regret theory (Loomes and
Sugden, 1982), see Blavatskyy (2006).

Denoting ≻ an asymmetric relation of strict preferences on a
non-empty convex set P , we say that a functional φ on P × P is
an SSB representation of ≻ if φ is SSB and p ≻ q ⇐⇒ φ(p, q) > 0
for all p, q ∈ P . Let ∼ and ≿ be indifference and preference-or-
indifference relations defined in a standard way using ≻. Then,
the axioms of (algebraic) SSB representation stated for all p, q, r ∈

P and all λ ∈ ]0, 1[ are as follows:

(C1) Continuity: p ≻ q, q ≻ r H⇒ q ∼ αp + (1 − α)r
for some α ∈]0, 1[,

(C2) Convexity: p ≻ q, p ≿ r H⇒ p ≻ λq + (1 − λ)r,
p ∼ q, p ∼ r H⇒ p ∼ λq + (1 − λ)r,
q ≻ p, r ≿ p H⇒ λq + (1 − λ)r ≻ p,
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(C3) Symmetry1 : p ≻ q, q ≻ r, p ≻ r H⇒

[
q ∼

p + r
2

H⇒(
λp + (1 − λ)r ∼

p + q
2

⇐⇒ λr

+(1 − λ)p ∼
r + q
2

)]
.

If P is, moreover, a set of probability measures, axioms (C1)–
(C3) hold if and only if there exists an SSB representation of ≻,
see Fishburn (1982, Theorem 1).

Recently, a variant of SSB representation of preferences has
been proposed in a topological vector space. For a non-empty
convex subset P (being equipped with the relative topology) the
axioms for all p, q, r ∈ P and λ ∈ ]0, 1[ are the following:

(F1) Continuity: sets {s ∈ P : p ≻ s} and {s ∈ P : s ≻ p} are open,

(F2) Convexity: p ≻ q, p ≿ r H⇒ p ≻ λq + (1 − λ)r,
q ≻ p, r ≿ p H⇒ λq + (1 − λ)r ≻ p,

(F3) Balance: q ∼
p + r
2

, λp + (1 − λ)r ∼
p + q
2

H⇒

λr + (1 − λ)p ∼
r + q
2

.

An asymmetric binary relation ≻ on P satisfies (F1), (F2) and
(F3) if and only if there exists an SSB representation of ≻ that
is, moreover, separately continuous in each variable, see Pištěk
(2018, Theorem 3.6 and Theorem 5.3).2 Further, the existence

1 We use a slightly adapted variant of axiom (C3) to facilitate the discussion
below Theorem 4.2. Note that then the conclusion of axiom (C3) is equivalent
to axiom (F3).
2 In the algebraic SSB representation asymmetry of ≻ is implied by axiom

(C1). However, using axiom (F1) instead of axiom (C1), asymmetry of ≻ has to
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of a maximal element of Q ⊂ P with respect to ≻ has been
shown, assuming compactness and convexity of Q , see Pištěk
(2018, Corollary 3.4 and Theorem 3.6). In the algebraic setting of
SSB representation, a similar result has been shown only for a
(finitely generated) polyhedral set (Fishburn, 1988, Theorem 6.2).

In this article, we show that algebraic SSB representation
may be, somehow surprisingly, considered only as an application
of the above introduced topological theory. By using the so-
called inductive linear topology (Jarchow, 1981; Bogachev and
Smolyanov, 2017) for an underlying linear vector space, we show
that axioms (C1) and (F2) imply axiom (F1) with respect to such
topology, see Proposition 4.1. This step is essential to prove that
axioms (C1), (F2) and (F3) are equivalent to the existence of
algebraic SSB representation of preferences on P in a fully abstract
setting, see Theorem 4.2. As a consequence, axioms (C3) and
(F3) are equivalent given axioms (C1) and (F2), thus we have
generalized Fishburn (1982, Theorem 1) that has been stated for
a set of probabilistic measures using a stronger convexity axiom
(C2). Further, we propose a generalized existence result for a
maximal element w.r.t. ≻, see Theorem 4.3. Note finally that the
technique used may be of general interest since it permits one
to use topological tools to obtain relatively stronger results that
may be finally transposed to a purely algebraic setting employing
the inductive linear topology.

The article is organized as follows. Section 2 presents the basic
notation and preliminary results. In Section 3 we introduce the
notion of the inductive linear topology and discuss its basic prop-
erties. The main theorem of the algebraic SSB representation is
presented in Section 4 together with all the related results. When
working on this article, several inaccuracies in Pištěk (2018) have
been discovered; all of them are corrected in Appendix.

2. Notation and preliminary results

For a set X we denote 2X the set of all subsets of X . A
topological space is a set X equipped with a family of subsets
τ ⊂ 2X (called open sets) satisfying the following conditions:
∅, X ∈ τ ; every union of open subsets of X is open; every finite
intersection of open subsets of X is open. A set Y ⊂ X is a closed
set if X \ Y ∈ τ . For any Z ⊂ X , we define the relative topology of
Z as τZ = {U ∩ Z : U ∈ τ }. A topological space is compact if each
of its open covers has a finite sub-cover; is connected if it is not
a disjoint union of two non-empty open subsets; is a Hausdorff
space if any two distinct points are respectively contained in
disjoint open sets; is a real topological vector space (t.v.s) if it is
moreover a real linear vector space (l.v.s.) such that operations
of addition and multiplication are continuous. Note that Pištěk
(2018) restricts attention to topological vector spaces that are
Hausdorff. By P(X) we denote a set of all regular Borel probability
measures on X . Note that once equipped with the so-called weak⋆

topology, P(X) is a convex subset of a t.v.s., see e.g. Goodearl
(2010).

For a real function f satisfying a specified condition, we say
that it is unique up to a similarity transformation if all functions
satisfying the given condition are of the form αf with α > 0.
Let X be l.v.s. and Y ⊂ X , then we denote by co(Y ) and cone(Y )
the convex and conic hull of Y , i.e. the smallest convex and conic
set in X that contains Y , respectively. For points p, q ∈ X we use
[p, q] ≡ {λp + (1 − λ)q : λ ∈ [0, 1]}, and analogously we define
]p, q[ and ]p, q]. Point p ∈ M ⊂ X is called an internal point of M
if for each x ∈ X there exists an α > 0 such that [p, p+ αx] ⊂ M .
For sets K , L ⊂ X we denote by K + L set {k+ l : k ∈ K , l ∈ L}; set
K − L is defined analogously.

be explicitly assumed. This fact has been omitted in Pištěk (2018); see corrected
statements in Appendix.

For a set X and a binary relation S defined on X , S ⊂ X × X ,
we write xSy if (x, y) ∈ S, and define inverse relation to S as
{(x, y) ∈ X × X : ySx}. We say that x ∈ X is a maximal
element of X with respect to S if set {y ∈ X : ySx} is empty.
Relation S is asymmetric if for all x, y ∈ X , xSy implies that ySx
is not satisfied. The preference interior of X with respect to S is
denoted by X⋆

≡ {y ∈ X : xSy, ySz for some x, z ∈ X}. Given
a (preference) binary relation ≻, the indifference relation ∼ and
preference-or-indifference relation ≿ are

p ∼ q ≡ neither p ≻ q nor q ≻ p,
p ≿ q ≡ p ≻ q or p ∼ q.

Symbols ≺ and ≾ denote the inverse relations to ≻ and ≿, respec-
tively. Given a topological space X , a binary relation ≻ on X is
coherent (with topology of X) if {y ∈ X : y ≻ x} = {y ∈ X : y ≿ x}
for all x ∈ X such that {y ∈ X : y ≻ x} ̸= ∅.

Let P be a convex subset of a t.v.s., a coherent and asymmetric
relation > on P is upper semi-Fishburn if {q ∈ P : q > p} is convex
for all p ∈ P . A binary relation is lower semi-Fishburn if its inverse
is upper semi-Fishburn; a Fishburn relation is both lower and
upper semi-Fishburn. A binary relation ≻ defined on P is balanced
if for all p, q, r ∈ P and all λ ∈ ]0, 1[ such that q ∼

1
2p +

1
2 r and

λp+(1−λ)r ∼
1
2p+

1
2q it holds that λr+(1−λ)p ∼

1
2 r+

1
2q. Finally,

we say that a functional φ : P × P⋆
→ R is a continuous partial

representation of a binary relation ≻ on P if φ(p, q) is continuous
and linear in p for all q ∈ P⋆, and for all (p, q) ∈ P × P⋆ it holds
that p ≻ q ⇐⇒ φ(p, q) > 0 and p ≺ q ⇐⇒ φ(p, q) < 0.

Next, a variant of Fishburn (1982, Lemma 3) with weaker
convexity assumptions is provided, allowing us later a respective
weakening of axioms in the theory of SSB representation. Note
that Lemma 2.1 plays also a key role in Appendix.

Lemma 2.1. Let P be a non-empty convex subset of a l.v.s., ≻ be
a relation on P satisfying (C1) and (F2), and q ∈ P⋆. Then there
exists a linear functional f on P such that for all p ∈ P it holds that
p ≻ q ⇐⇒ f (p) > f (q) and q ≻ p ⇐⇒ f (q) > f (p).

Proof. Let G ≡ {p ∈ P : p ≻ q}, I ≡ {p ∈ P : p ∼ q}, and
L ≡ {p ∈ P : p ≺ q}. Note that {G, I, L} is a disjunctive cover of P
since (C1) implies asymmetry of ≻, and sets G and L are convex
due to (F2) and non-empty. Denoting by Y the linear span of G,
we first prove that P ⊂ Y . Take any p ∈ I ∪ L and r ∈ G; axiom
(C1) implies that there is s ∈ [p, r[ such that s ∈ I , and (F2) then
implies that ]s, r[⊂ G, thus p ∈ Y .

Assuming 0 ∈ L without loss of generality, we denote V ≡

−(L ∩ cone(G)) and U ≡ co(L ∪ V ). Then U =
⋃

λ∈[0,1](λL + (1 −

λ)V ) ⊂ L + V since L and V are convex and contain 0. Observing
(L+V )∩G ⊂ (L∩(G−V ))+V and L∩(G−V ) ⊂ L∩(G+cone(G)), we
see that U∩G = ∅ may be shown by proving L∩(G+cone(G)) = ∅.
For a contradiction, we take g, h ∈ G and λ ≥ 0 such that
g + λh ∈ L, the convexity of G and L then implies [g, h] ⊂ G
and [0, g + λh] ⊂ L. Since [g, h] ∩ [0, g + λh] ̸= ∅, we reached
the contradiction with G ∩ L = ∅ and so U ∩ G = ∅.

Further we will show that 0 is an internal point of U . Fixing
y ∈ Y we will find α > 0 such that [0, αy] ⊂ U . Since Y =

cone(G) − cone(G), there are λ1, λ2 ≥ 0 and y1, y2 ∈ G such that
y = λ1y1−λ2y2. Using (C1) together with (F2), there is α1 ∈ ]0, 1[
such that [0, α1y1] ⊂ L; analogously one may find α2 ∈ ]0, 1[ such
that [0, −α2y2] ⊂ V . Note that [α1y1, −α2y2] ⊂ U due to the
convexity of U . Without loss of generality we may assume y ̸= 0,
then λ1 + λ2 > 0, and α−1

≡
λ1
α1

+
λ2
α2

is well defined. A short
calculation reveals that αy ∈ [α1y1, −α2y2], and so [0, αy] ⊂ U .

Next, since 0 is an internal point of U , a convex set that is
disjunctive with G, there exists a linear functional f on Y such
that G ⊂ {p ∈ P : f (p − q) ≥ 0} and L ⊂ U ⊂ {p ∈ P :
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f (p−q) ≤ 0} using the basic separation theorem, see e.g. Dunford
and Schwartz (1958, Theorem V.1.12). Observe further that I ⊂

{p ∈ P : f (p − q) = 0} not to violate (F2). Next, since {G, I, L} is a
disjunctive cover of P , it necessarily holds that {p ∈ P : f (p−q) >

0} ⊂ G and {p ∈ P : f (p−q) < 0} ⊂ L. Thus, to satisfy (C1), it holds
that I = {p ∈ P : f (p−q) = 0}, and then G = {p ∈ P : f (p−q) > 0}
and L = {p ∈ P : f (p − q) < 0}. □

3. Inductive linear topology

Let us denote by X the underlying l.v.s. In order to derive
the theory of algebraic SSB representation based on the contin-
uous SSB representation, we need to provide X with a Hausdorff
topology such that any linear functional on X will be continuous.
This is non-trivial only for an infinite-dimensional X; a finite-
dimensional l.v.s. is a Hausdorff t.v.s. only once equipped with
Euclidean topology, and then all linear mappings are continuous.

Next we provide the existence of the inductive linear topology
τι together with its basic properties; a more detailed survey is to
be found in Jarchow (1981) and Bogachev and Smolyanov (2017).
In particular, open sets of τι may be explicitly constructed, see
e.g. Jarchow (1981, Theorem 4.1.3).

Lemma 3.1. Let X be a l.v.s., then there exists a finest topology τι on
X such that (X, τι) is a t.v.s. and for any finite-dimensional subspace
Y of X canonical injection of Y into X is continuous. Moreover, (X, τι)
is a Hausdorff space.

Proof. See Proposition 4.1.1 and Proposition 4.5.4 in Jarchow
(1981) (with the subsequent discussion). □

Lemma 3.2. Every linear mapping from (X, τι) to R is continuous.

Proof. See Proposition 4.1.2 and Proposition 4.5.4 in Jarchow
(1981). □

A similar concept is the finite topology on X; a subset U of
X is finitely open if, for each finite-dimensional linear subspace
Y of X , the set U ∩ Y is open in the Euclidean topology of Y .
The finite topology is equivalent to the inductive linear topology
for a countable-dimensional X; an uncountable-dimensional X
equipped with the finite topology may not be a t.v.s. since then
vector addition is not necessarily jointly continuous, see Kakutani
and Klee (1963).

4. Main results

Next we show that axioms (C1) and (F2) imply axiom (F1)
w.r.t. the inductive linear topology.

Proposition 4.1. Let P be a non-empty convex subset of a l.v.s.
equipped with the inductive linear topology τι, and ≻ be a relation
on P satisfying (C1) and (F2). Then ≻ satisfies (F1) with respect to
the relative topology of P.

Proof. Fix any p ∈ P , we will show that sets G ≡ {q ∈ P : q ≻ p}
and L ≡ {q ∈ P : q ≺ p} are open in the relative topology of P .
For L ̸= ∅ and G ̸= ∅, i.e. p ∈ P⋆, the statement follows directly
from Lemma 2.1. Indeed, any linear functional is continuous with
respect to topology τι, see Lemma 3.2. Thus, G and L are open in
topology τι restricted to P , and axiom (F1) is satisfied.

Next, consider the case of G = ∅ and L ̸= ∅, i.e. of p being
a maximal element of P . To show that L is open we will prove
that any r ∈ L has an open neighbourhood contained in L. We
have p ≻ r , thus p ≻

p+r
2 using (F2); and similarly p+r

2 ≻ r .
One thus gets r ∈ V ≡

{
s ∈ P :

p+r
2 ≻ s

}
as well as p+r

2 ∈ P⋆

implying openness of V using the result of the above paragraph.
Then U ≡

{ s+r
2 : s ∈ V

}
is an open neighbourhood of r and U ⊂ L

using p ≻ r and p ≿ s for all s ∈ V . The case of L = ∅ and G ̸= ∅

is symmetric, and for L = G = ∅ the statement is immediate. □

The following generalization of Fishburn (1982, Theorem 1) is
our main result.

Theorem 4.2. Let P be a non-empty convex subset of a l.v.s. and
≻ be a binary relation on P. Then the following three statements are
equivalent:

(a) relation ≻ satisfies axioms (C1), (F2), and (F3),
(b) relation ≻ satisfies axioms (C1), (F2), and (C3),
(c) there exists an SSB functional φ on P × P, unique up to a

similarity transformation, such that for all p, q ∈ P, p ≻ q ⇔

φ(p, q) > 0.

Proof. First, one may observe that statement (a) directly implies
statement (b) since axiom (F3) implies axiom (C3), see Pištěk
(2018, Proposition 5.2).

To show that (b) implies (c), we first equip the underlying
l.v.s. with the inductive linear topology τι, and denote by τP the
respective relative topology of P . Given (C1) and (F2), axiom (F1)
is satisfied w.r.t. τP , see Proposition 4.1. Axioms (F1) and (F2)
with asymmetry of ≻ due to axiom (C1) together imply that ≻

is a Fishburn relation using Pištěk (2018, Theorem 3.6). Now, to
show the existence of an SSB representation, it suffices to note
that Pištěk (2018, Theorem 5.3) is valid even if one assumes a
formally weaker axiom (C3) instead of (F3); indeed, axiom (F3)
is used only in the proof of Pištěk (2018, Lemma 5.4) to deduce
axiom (C3).

Finally, a short calculation reveals that a relation represented
by an SSB functional has to satisfy axioms (C1), (F2) and (F3), thus
(c) implies (a). □

We have introduced axiom (F3) for several reasons. The
premise of axiom (C3) has been motivated by its interplay with
axioms (C1) and (C2), see the first paragraph on Fishburn (1982,
p. 44). This is no more the case once axiom (F2) is used instead
of axiom (C2). In particular, contrary to Pištěk (2018, Proposition
5.2), it seems to be difficult to show directly that axioms (F3)
and (C3) are equivalent given (C1) and (F2). Furthermore, the
conclusion of axiom (C3), which is equivalent to axiom (F3),
holds generally for any preference relation admitting an SSB
representation. Thus axiom (F3) may serve as a more concise
variant of axiom (C3). Finally, axiom (F3) appears to be more
amenable to empirical verification than axiom (C3).

Previously, the existence of a maximal element has been
shown only for a (finitely generated) polyhedral set, see Fishburn
(1988, Theorem 6.2). The following result is more general and
may be used when set P is non-linearly constrained.

Theorem 4.3. Let P be a non-empty convex compact subset of a
finite-dimensional l.v.s., and ≻ be a relation that satisfies (C1) and
(F2) on P; then there exist a minimal and a maximal element of P
with respect to ≻.

Note that compactness in the above statement is considered
w.r.t. the standard, Euclidean topology of the involved finite-
dimensional l.v.s.

Proof. Given (C1) and (F2), relation ≻ satisfies axiom (F1) w.r.t.
the relative (inductive linear) topology of P due to Proposition 4.1.
Moreover, relation ≻ is asymmetric owing to (C1), thus it is
also a Fishburn relation using Pištěk (2018, Theorem 3.6). For a
finite-dimensional space the Euclidean topology coincides with
the inductive linear topology; thus P is compact in the inductive
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linear topology as well. Since the inductive linear topology is
Hausdorff, see Lemma 3.1, the statement is due to Pištěk (2018,
Corollary 3.4). □
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Appendix

In this Appendix we correct several gaps arising in Pištěk
(2018), the corrected results being numbered as they were in
the original paper. In contrast to the note above (Pištěk, 2018,
Definition 3.2), a coherent relation is not necessarily asymmetric.
Thus asymmetry has to be assumed in the definition of Fishburn
relation as follows.

Definition 3.2 (Fishburn Relation). Let a convex subset P of a t.v.s.
be equipped with the relative topology, and ≻ be an asymmetric
and coherent relation on P . We say that ≻ is upper semi-Fishburn
if {q ∈ P : q ≻ p} is convex for all p ∈ P . A binary relation is
lower semi-Fishburn if its inverse relation is upper semi-Fishburn.
Finally, a binary relation is a Fishburn relation if it is both lower
and upper semi-Fishburn.

In the proof of Pištěk (2018, Theorem 3.6) asymmetry of ≻

has been used to invoke (Pištěk, 2018, Lemma 2.1); the corrected
statement of Pištěk (2018, Theorem 3.6) follows.

Theorem 3.6. Let P be a non-empty convex subset of a t.v.s., and ≻

be a binary relation on P. Then ≻ is a Fishburn relation if and only
if ≻ is asymmetric and satisfies (F1) and (F2).

Next, asymmetry of ≻ is needed also to prove (Pištěk, 2018,
Lemma 3.8), the statement of which may be shortened using the
above theorem.

Lemma 3.8. Let a non-empty convex subset P of a t.v.s. be equipped
with the relative topology, and ≻ be a Fishburn relation on P, then
≻ satisfies (C1).

To prove the above lemma one cannot use the classical sepa-
ration theorem (Treves, 1967, Proposition 18.1) since P equipped
with the relative topology is not a t.v.s.; thus we propose a
corrected proof.

Proof. For p, q, r ∈ P such that p ≻ q and q ≻ r we define
G ≡ {t ∈ P : t ≻ q}, I ≡ {t ∈ P : t ∼ q}, and L ≡ {t ∈ P : t ≺ q}.
Note that sets G and L are τP -open and convex using (F1) and (F2),
respectively. Thus, denoting K ≡ [p, r], there are p′, r ′

∈]p, r[
such that K ∩ G = [p, p′[ and K ∩ L =]r ′, r]. Now, since K is
connected, set [p′, r ′

] is non-empty. Moreover, [p′, r ′
] ⊂ I since

{G, I, L} is a disjunctive cover of P using asymmetry of ≻. To finish
the proof, take any s ∈ [p′, r ′

] and observe that s = αp+ (1−α)r
for some α ∈ ]0, 1[. □

For the same reason we have to adjust the proof of Pištěk
(2018, Theorem 4.2).

Theorem 4.2. Let P be a non-empty convex subset of a t.v.s., and
≻ be a Fishburn relation on P. Then ≻ admits a continuous partial
representation φ : P × P⋆

→ R. Moreover, for any fixed q ∈ P⋆,
function p → φ(p, q) is unique up to a similarity transformation.

Proof. Using Theorem 3.6 and Lemma 3.8 we see that relation
≻ satisfies axioms (F1), (F2) and (C1). Fixing any q ∈ P⋆, we
define φ(p, q) ≡ f (p − q) for all p ∈ P using functional f due to
Lemma 2.1. Functional φ represents relation ≻, to complete the
proof we have to show that φ(p, q) is continuous in p on P . To
this end, note that non-empty sets {p ∈ P : f (p) > f (q)} and
{p ∈ P : f (p) < f (q)} are open in the relative topology of P
due to (F1), and so {p ∈ P : f (p) = f (q)} is relatively closed.
Using (Jamison et al., 1976, Proposition 1)3 for f and −f we show
that f is lower- and upper-semicontinuous on P , respectively.
Thus f is continuous on P . □

Finally, the statement of Pištěk (2018, Lemma 6.1) is erroneous
as one may not speak about convexity in a topological space.
Thus Pištěk (2018, Theorem 6.2) has to be restated as follows.

Theorem 6.2. Let set of outcomes X be a compact Hausdorff space
and φ be a bounded real function on X × X that is separately
continuous in each variable and satisfies φ(x, y) = −φ(y, x) for all
x, y ∈ X. Define functional Φ on P(X) × P(X) by

Φ(p, q) ≡

∫
X×X

φ(x, y)dp(x)dq(y).

Then Φ represents a balanced Fishburn relation > on P(X), and for
a closed and convex set K ⊂ P(X) there exists p ∈ K such that
p ≥ q for all q ∈ K.

Proof. Note first that separate continuity of φ and compactness
of X imply that φ is Borel measurable on X ×X , see Burke and Pol
(2005, Proposition 5.2)4. Thus, functional Φ is well-defined using
boundedness of φ. Next, Φ is bilinear on P(X) × P(X) from the
definition, and skew-symmetric since φ(x, y) = −φ(y, x). Weak⋆-
continuity of Φ in each variable (separately) may be shown as
in the proof of Pištěk (2018, Lemma 6.1). Thus, Φ represents a
balanced Fishburn relation >, see Pištěk (2018, Theorem 5.3).
The statement is then due to Pištěk (2018, Corollary 3.4) since
K ⊂ P(X) is a convex and compact subset of a Hausdorff t.v.s.,
see Goodearl (2010, Proposition 5.22). □

Note that for such a corrected statement, the discussion fol-
lowing Pištěk (2018, Theorem 6.2) is still valid; in particular,
Theorem 6.2 strictly generalizes (Fishburn, 1984, Theorem 5).
Furthermore, since a jointly continuous function on a compact set
is necessarily bounded and separately continuous, the corrected
statement of Theorem 6.2 generalizes the setting of Fishburn
(1984, Theorem 5) also in this respect.
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