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Abstract

A continuous skew-symmetric bilinear (SSB) representation of preferences
has recently been proposed in a topological vector space, assuming a weaker
notion of convexity of preferences than in the classical (algebraic) case. Equip-
ping a linear vector space with the so-called inductive linear topology, we de-
rive the algebraic SSB representation on a topological basis, thus weakening
the convexity assumption. Such a unifying approach to SSB representation
permits also to fully discuss the relationship of topological and algebraic ax-
ioms of continuity, and leads to a stronger existence result for a maximal
element. By applying this theory to probability measures we show the ex-
istence of a maximal preferred measure for an infinite set of pure outcomes,
thus generalizing all available existence theorems in this context.

1 Introduction

Many systematic violations of the expected utility theory [13] have been observed,
see e.g. [12], stimulating the development of alternative decision-making theories [5,
11, 8]. In particular, the axiom of transitivity of preferences, nowadays understood
as an intuitively appealing cornerstone of rationality, is not always supported by
empirical evidence [2]. A concise mathematical model of non-transitive decision-
making has been proposed in [3], representing preferences with a skew-symmetric
bilinear (SSB) functional. Note that from the mathematical point of view, such
representation is closely related to the regret theory [7], see [1].

*This research has been supported by grant GA17-08182S of the Czech Science Foun-
dation.

145



Theory of SSB Representation of Preferences Revised

Denoting an asymmetric relation of strict preferences on a non-empty convex
set P, we say that a functional ¢ on P x P is an SSB representation of  if ¢ is
SSBandp ¢ = ¢(p,q) > 0 for all p,q € P. Let ~ and 7 be indifference and
preference-or-indifference relations defined in a standard way using . Then, the
axioms of (algebraic) SSB representation stated for all p,q,r € P and all A €]0, 1]
are as follows:

(C1) Continuity: p ¢,q 7= q~ ap+ (1—a)r for some a €0, 1],
(C2) Convexity: p gq,prmr=p A+(1-Nr,
p~g,p~T=p~ A+ (1= Nr,
q prZp=A+(1-Nr p
p+r

(C3) Symmetry': p q¢q ©p = |q¢~

(Ap+(1—A)r~l% :Ar+(1—A)p~T;q)].

If P is, moreover, a set of probability measures, axioms (C1)—(C3) hold if and only
if there exists an SSB representation of , see [3, Theorem 1].

Recently, a variant of an SSB representation of preferences has been proposed in
a topological vector space [9]. For a non-empty convex subset P (being equipped
with the relative topology) the axioms for all p,q,r € P and A €]0, 1] are the
following:

(F1) Continuity: sets {s € P:p s} and {s € P:s p} are open,
(F2) Convexity: p gqpzor=p M+ (1-Nr,
q przp=A+(1-Nr p

(F3) Balance': ¢~ %7)\p+ (1= N\)r~ 1% —
Ar (1= \)p ~ T;q.

An asymmetric binary relation  on P satisfies (F1), (F2) and (F3) if and only if
there exists an SSB representation of  that is, moreover, separately continuous in
each variable, see Theorem 1 below. Further, we have shown that in a compact and
convex subset of P there exists a maximal element with respect to , see Theorem
3 below. Consequently, we have generalized the existence result for a maximal
element in the case of an infinite set of outcomes, see Theorem 5.

Finally, equipping a linear vector space X with the so-called inductive linear
topology [6], i.e. the finest topology such that X is a Hausdorff t.v.s. and for any
finite-dimensional subspace Y of X canonical injection of Y into X is continuous,
the algebraic SSB representation may be considered as an application of the above
introduced topological theory [10]. Such an observation leads to a generalization of

I'We use a slightly adapted variant of axiom (C3) to stress that the conclusion of axiom (C3)
is equivalent to axiom (F3). Note that axioms (C3) and (F3) are equivalent given axioms (C1)
and (F2), see [10, Theorem 4.2].
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the algebraic SSB representation theorem, as well as the theorem for the existence
of a maximal element in a linear vector space, see Corollary 2 and Corollary 4,
respectively. The proposed technique may be of general interest since it permits
one to use topological tools to obtain relatively stronger results that may be finally
transposed to a purely algebraic setting employing the inductive linear topology.

The basic notation used is standard. A topological spaceis a set X equipped with
a family of subsets C 2% (called open sets) satisfying the following conditions:
0, X € ; every union of open subsets of X is open; every finite intersection of
open subsets of X is open. A topological space is compact if each of its open
covers has a finite sub-cover; is a Hausdorff space if any two distinct points are
respectively contained in disjoint open sets; is a real topological vector space (t.v.s)
if it is moreover a real linear vector space (1.v.s.) such that operations of addition
and multiplication are continuous. By &(X) we denote a set of all regular Borel
probability measures on X equipped with the so-called weak* topology.

2 Main Results

First, we present the topological version of the SSB representation theorem, see [9,
Theorem 3.6 and Theorem 5.3].

Theorem 1. Let P be a non-empty convex subset of a t.v.s. equipped with the
relative topology. An asymmetric relation  on P satisfies (F1), (F2) and (F3) if
and only if there exists a separately continuous SSB functional ¢ on P x P such

that for allp,g e P,p q  ¢(p,q) > 0.

Transposing the above theorem in a l.v.s. with the use of inductive linear topol-
ogy, one obtains the following generalization of [3, Theorem 1], see [10, Theorem
4.2].

Corollary 2. Let P be a non-empty convex subset of a l.v.s. A binary relation
on P satisfies (C1), (F2) and (F3) if and only if there exists an SSB functional ¢
on P x P such that for allp,q € P,p q &(p,q) > 0.

Comparing the statements of Theorem 1 and Corollary 2, we see that axiom
(C1) plays two different roles. First, it implies asymmetry of  that has to be
explicitly assumed in Theorem 1. Besides, it amounts to continuity axiom (F1)
in the algebraic setting; indeed, any SSB functional is separately continuous with
respect to inductive linear topology, see [6, Proposition 4.1.2 and Proposition 4.5.4].

Next, we show that standard continuity and convexity assumptions imply the
existence of a maximal and a minimal element in a t.v.s., see [9, Corollary 3.4 and
Theorem 3.6].

Theorem 3. Let P be a non-empty compact convexr subset of a Hausdorff t.v.s.,
and  be an asymmetric relation on P satisfying axioms (F1) and (F2), then there
exist a minimal and a mazimal element of P with respect to
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Employing the inductive linear topology again, see [10, Theorem 4.3], one ob-
tains an analogous statement in a l.v.s.

Corollary 4. Let P be a non-empty compact convex subset of a finite-dimensional
lu.s., and  be a relation that satisfies (C1) and (F2) on P, then there exist a
minimal and a mazimal element of P with respect to

Note that previously a similar existence result that has been shown only for a
(finitely generated) polyhedral subset of P assuming, moreover, axiom (C3), see
[5, Theorem 6.2].

Finally, we generalize [4, Theorem 5] on the basis of Theorem 1 and Theorem
3, for a detailed proof see [9, Theorem 6.2].

Theorem 5. Let set of outcomes X be a compact Hausdorff space and ¢ be a
bounded real function on X x X that is separately continuous in each variable and
satisfies p(x,y) = —P(y, x) for allz,y € X. Define functional on P(X)x P(X)
by

(pa) = /X ol dpla)da).

Then  is a separately continuous SSB functional on P (X), and for a closed and
convex set K C P (X) there exists p € K such that (p,q) >0 for allq € K.
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