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A B S T R A C T

The complex transverse water proton magnetization subject to diffusion-encoding magnetic field gradient pulses
in a heterogeneous medium can be modeled by the multiple compartment Bloch-Torrey partial differential
equation. Under the assumption of negligible water exchange between compartments, the time-dependent
apparent diffusion coefficient can be directly computed from the solution of a diffusion equation subject to a
time-dependent Neumann boundary condition.

This paper describes a publicly available MATLAB toolbox called SpinDoctor that can be used 1) to solve the
Bloch-Torrey partial differential equation in order to simulate the diffusion magnetic resonance imaging signal; 2)
to solve a diffusion partial differential equation to obtain directly the apparent diffusion coefficient; 3) to compare
the simulated apparent diffusion coefficient with a short-time approximation formula.

The partial differential equations are solved by P1 finite elements combined with built-in MATLAB routines for
solving ordinary differential equations. The finite element mesh generation is performed using an external
package called Tetgen.

SpinDoctor provides built-in options of including 1) spherical cells with a nucleus; 2) cylindrical cells with a
myelin layer; 3) an extra-cellular space enclosed either a) in a box or b) in a tight wrapping around the cells; 4)
deformation of canonical cells by bending and twisting; 5) permeable membranes; Built-in diffusion-encoding
pulse sequences include the Pulsed Gradient Spin Echo and the Oscillating Gradient Spin Echo.

We describe in detail how to use the SpinDoctor toolbox. We validate SpinDoctor simulations using reference
signals computed by the Matrix Formalism method. We compare the accuracy and computational time of Spin-
Doctor simulations with Monte-Carlo simulations and show significant speed-up of SpinDoctor over Monte-Carlo
simulations in complex geometries. We also illustrate several extensions of SpinDoctor functionalities, including
the incorporation of T2 relaxation, the simulation of non-standard diffusion-encoding sequences, as well as the use
of externally generated geometrical meshes.
1. Introduction

Diffusion magnetic resonance imaging is an imaging modality that
can be used to probe the tissue micro-structure by encoding the inco-
horent motion of water molecules with magnetic field gradient pulses.
This motion during the diffusion-encoding time causes a signal attenu-
ation from which the apparent diffusion coefficient, (and possibly higher
order diffusion terms, can be calculated (Hahn, 1950; Stejskal and Tan-
ner, 1965; Bihan et al., 1986).
0
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For unrestricted diffusion, the root of the mean squared displacement
of molecules is given by x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 dim σ0t
p

, where dim is the spatial
dimension, σ0 is the intrinsic diffusion coefficient, and t is the diffusion
time. In biological tissue, the diffusion is usually hindered or restricted
(for example, by cell membranes) and the mean square displacement is
smaller than in the case of unrestricted diffusion. This deviation from
unrestricted diffusion can be used to infer information about the tissue
micro-structure. The experimental parameters that can be varied include.
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Abbreviations frequently used in the text

MRI magnetic resonance imaging
dMRI diffusion magnetic resonance imaging
ADC apparent diffusion coefficient
HADC homogenized ADC
PGSE pulsed gradient spin echo
OGSE oscillating gradient
ECS extra-cellular space
BTPDE Bloch-Torrey partial differential equation
PDE partial differential equation
ODE ordinary differential equation
HARDI high angular resolution diffusion imaging
STA short time approximation
FE finite elements
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1. The diffusion time (one can choose the parameters of the diffusion-
encoding sequence, such as Pulsed Gradient Spin Echo (Stejskal and
Tanner, 1965) and Oscillating Gradient (Does et al., 2003)).

2. The magnitude of the diffusion-encoding gradient (when the mag-
netic resonance imaging signal is acquired at low gradient magni-
tudes, the signal contains only information about the apparent
diffusion coefficient, at higher values, Kurtosis imaging (Jensen et al.,
2005) becomes possible);

3. The direction of the diffusion-encoding gradient (many directions
may be probed, as in HARDIhigh angular resolution diffusion imaging
(Tuch et al., 2002)).

Using diffusion magnetic resonance imaging to get tissue structural
information in the mamalian brain has been the focus of much experi-
mental and modeling work in recent years (Assaf et al., 2008; Alexander
et al., 2010; Zhang et al., 2011, 2012; Burcaw et al., 2015; Palombo et al.,
2016, 2017; Ning et al., 2017). The predominant approach up to now has
been adding the diffusion magnetic resonance imaging signal from sim-
ple geometrical components and extracting model parameters of interest.
Numerous biophysical models subdivide the tissue into compartments
described by spheres, ellipsoids, cylinders, and the extra-cellular space
(Assaf et al., 2008; Alexander et al., 2010; Zhang et al., 2011; Burcaw
et al., 2015; Palombo et al., 2017; McHugh et al., 2015; Reynaud, 2017;
Fieremans et al., 2011; Panagiotaki et al., 2012; Jespersen et al., 2007).
Some model parameters of interest include axon diameter and orienta-
tion, neurite density, dendrite structure, the volume fraction and size
distribution of cylinder and sphere components and the effective diffu-
sion coefficient or tensor of the extra-cellular space.

Numerical simulations can help deepen the understanding of the
relationship between the cellular structure and the diffusion magnetic
resonance imaging signal and lead to the formulation of appropriate
models. They can be also used to investigate the effect of different pulse
sequences and tissue features on the measured signal which can be used
for the development, testing, and optimization of novel diffusion mag-
netic resonance imaging pulse sequences (Ianuş et al., 2016; Drobnjak
et al., 2011a; Mercredi and Martin, 2018; Rensonnet et al., 2018).

Two main groups of approaches to the numerical simulation of
diffusion magnetic resonance imaging are 1) using random walkers to
mimic the diffusion process in a geometrical configuration; 2) solving the
Bloch-Torrey PDE, which describes the evolution of the complex trans-
verse water proton magnetization under the influence of diffusion-
encoding magnetic field gradients pulses.

The first group is referred to as Monte-Carlo simulations in the
literature and previous works include (Palombo et al., 2016; Hughes,
1995; Yeh et al., 2013; Hall and Alexander, 2009; Balls and Frank, 2009).
A GPU-based acceleration of Monte-Carlo simulation was proposed in
(Nguyen et al., 1016a; Waudby and Christodoulou, 2011). Some software
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packages using this approach include.

1. Camino Diffusion MRI Toolkit developed at UCL (http://cmic.cs.uc
l.ac.uk/camino/);

2. DIFSIM developed at UC San Diego (http://csci.ucsd.edu/projects/
simulation.html);

3. Diffusion Microscopist Simulator (Yeh et al., 2013) developed at
Neurospin, CEA.

The second group relies on solving the Bloch-Torrey PDE in a
geometrical configuration. In (Hagslatt et al., 2003; Loren et al., 2005;
Moroney et al., 2013) a simplifying assumption called the narrow pulse
approximation was used, where the pulse duration was assumed to be
much smaller than the delay between pulses. This assumption allows the
solution of the diffusion equation instead of the more complicated
Bloch-Torrey PDE. More generally, numerical methods to solve the
Bloch-Torrey PDE. with arbitrary temporal profiles have been proposed
in (Xu et al., 1737; Li et al., 2014; Nguyen et al., 2014a; Beltrachini et al.,
2015). The computational domain is discretized either by a Cartesian
grid (Xu et al., 1737; Li et al., 2014; Russell et al., 2012) or finite elements
(Hagslatt et al., 2003; Loren et al., 2005; Moroney et al., 2013; Nguyen
et al., 2014a; Beltrachini et al., 2015). The unstructured mesh of a finite
element discretization appeared to be better than a Cartesian grid in both
geometry description and signal approximation (Nguyen et al., 2014a).
For time discretization, both explicit and implicit methods have been
used. In (Moroney et al., 2013) a second order implicit time-stepping
method called the generalized α� method was used to allow for high
frequency energy dissipation. An adaptive explicit Runge-Kutta Cheby-
shev method of second order was used in (Li et al., 2014; Nguyen et al.,
2014a). It has been theoretically proven that the RKCRunge-Kutta Che-
byshev method allows for a much larger time-step compared to the
standard explicit Euler method (Verwer et al., 1990). There is an example
showing that the RKCRunge-Kutta Chebyshev method is faster than the
implicit Euler method in (Nguyen et al., 2014a). The Crank-Nicolson
method was used in (Beltrachini et al., 2015) to also allow for second
order convergence in time. The efficiency of diffusion magnetic reso-
nance imaging simulations is also improved by either a high-performance
FEM computing framework (Nguyen, 2016; Nguyen et al., 1016b) for
large-scale simulations on supercomputers or a discretization on mani-
folds for thin-layer and thin-tube media (Nguyen et al., 2019).

In this paper, we present a MATLAB Toolbox called SpinDoctor that is
a simulation pipeline going from the definition of a geometrical config-
uration through the numerical solution of the Bloch-Torrey PDE to the
fitting of the apparent diffusion coefficient from the simulated signal. It
also includes two other modules for calculating the apparent diffusion
coefficient. The first module is a homogenized apparent diffusion coef-
ficient mathematical model, which was obtained recently using homog-
enization techniques on the Bloch-Torrey PDE. In the homogenized
model, the apparent diffusion coefficient of a geometrical configuration
can be computed after solving a diffusion equation subject to a time-
dependent Neumann boundary condition, under the assumption of
negligible water exchange between compartments. The second module
computes the short time approximation formula for the apparent diffu-
sion coefficient. The short time approximation implemented in Spin-
Doctor includes a recent generalization of this formula to account for
finite pulse duration in the pulsed gradient spin echo. Both of these two
apparent diffusion coefficient calculations are sensitive to the diffusion-
encoding gradient direction, unlike many previous works where the
anisotropy of the is neglected in analytical model development.

In summary, SpinDoctor.

1. Solves the Bloch-Torrey PDE in three dimensions to obtain the
diffusion magnetic resonance imaging signal;

2. Robustly fits the diffusion magnetic resonance imaging signal to
obtain the apparent diffusion coefficient;

http://cmic.cs.ucl.ac.uk/camino/
http://cmic.cs.ucl.ac.uk/camino/
http://csci.ucsd.edu/projects/simulation.html
http://csci.ucsd.edu/projects/simulation.html
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3. Solves the homogenized apparent diffusion coefficient model in three
dimensions to obtain the apparent diffusion coefficient;

4. Computes the short-time approximation of the apparent diffusion
coefficient;

5. Computes useful geometrical quantities such as the compartment
volumes and surface areas;

6. Allows permeable membranes for the Bloch-Torrey PDE (the ho-
mogenized apparent diffusion coefficient assumes negligible
permeabilty).

7. Displays the gradient-direction dependent apparent diffusion coeffi-
cient; in three dimensions using spherical harmonics interpolation;

SpinDoctor provides the following built-in functionalities:

1. Placement of non-overlapping spherical cells (with an optional nu-
cleus) of different radii close to each other;

2. Placement of non-overlapping cylindrical cells (with an optional
myelin layer) of different radii close to each other in a canonical
configuration where they are parallel to the z-axis;

3. Inclusion of an extra-cellular space that is enclosed either
(a) in a tight wrapping around the cells; or
(b) in a rectangular box;

4. Deformation of the canonical configuration by bending and twisting;
Built-in diffusion-encoding pulse sequences include

1. The Pulsed Gradient Spin Echo;
2. The Oscillating Gradient Spin Echo (cos- and sin-type gradients).

SpinDoctor uses the following methods:

1. It generates a good quality surface triangulation of the user specified
geometrical configuration by calling built-in MATLAB computational
geometry functions;

2. It creates a good quality tetrehedra finite elements mesh from the
above surface triangulation by calling Tetgen (Si, 2015), an external
package (executable files are included in the Toolbox package);

3. It constructs finite element matrices for linear finite elements on
tetrahedra (P1) using routines from (Rahman and Valdman, 2013);

4. It adds additional degrees of freedom on the compartment interfaces
to allow permeability conditions for the Bloch-Torrey PDE using the
formalism in (Nguyen et al., 2014b);

5. It solves the semi-discretized FEM equations by calling built-in
MATLAB routines for solving ordinary differential equations.

The SpinDoctor toolbox has been developed in the MATLAB R2017b
and requires no additional MATLAB toolboxes. The toolbox is publicly
available at: https://github.com/jingrebeccali/SpinDoctor.

2. Theory

Suppose the user would like to simulate a geometrical configuration of
cells with an optional myelin layer or a nucleus. If spins will be leaving the
cells or if the userwants to simulate the extra-cellular space (ECS), then the
ECSwill enclose the geometrical shapes. LetΩe be the ECS,Ωin

i the nucleus
(or the axon) andΩout

i the cytoplasm (or themyelin layer) of the ith cell.We
denote the interface betweenΩin

i andΩout
i by Γi and the interface between

Ωout
i and Ωe by Σi, finally the outside boundary of the ECS by Ψ.
2.1. Bloch-Torrey PDE

In diffusion MRI, a time-varying magnetic field gradient is applied to
the tissue to encode water diffusion. Denoting the effective time profile of
the diffusion-encoding magnetic field gradient by f ðtÞ, and letting the
vector g contain the amplitude and direction information of the magnetic
field gradient, the complex transverse water proton magnetization in the
rotating frame satisfies the Bloch-Torrey PDE:
3

∂
∂tM

in
i ðx; tÞ¼ � Iγf ðtÞg � x Min

i ðx; tÞ þ r ��σinrMin
i ðx; tÞ

�
; x 2 Ωin

i ; (1)
∂
∂tM

out
i ðx; tÞ¼ � Iγf ðtÞg � x Mout

i ðx; tÞ þ r ��σoutrMout
i ðx; tÞ�; x 2 Ωout

i ;

(2)

∂
∂tM

eðx; tÞ¼ � Iγf ðtÞg � x Meðx; tÞ þ r �ðσerMeðx; tÞÞ; x 2 Ωe; (3)

where γ ¼ 2:67513� 108 rad s�1T�1 is the gyromagnetic ratio of the
water proton, I is the imaginary unit, σl is the intrinsic diffusion coeffi-
cient in the compartmentΩl

i. The magnetization is a function of position x
and time t, and depends on the diffusion gradient vector g and the time
profile f ðtÞ. We denote the restriction of the magnetization in Ωin

i byMin
i ,

and similarly for Mout
i and Me.

Some commonly used time profiles (diffusion-encoding sequences)
are:

1. The pulsed-gradient spin echo (PGSE) (Stejskal and Tanner, 1965)
sequence, with two rectangular pulses of duration δ, separated by a
time interval Δ� δ, for which the profile f ðtÞ is

f ðtÞ¼

8>><
>>:

1; t1 � t � t1 þ δ;
�1; t1 þ Δ < t � t1 þ Δþ δ;
0; otherwise;

(4)

where t1 is the starting time of the first gradient pulse with t1 þΔ > TE=2,
TE is the echo time at which the signal is measured.

2. The oscillating gradient spin echo (OGSE) sequence (Does et al., 2003;
Callaghan and Stepianik, 1995)was introduced to reach short diffusion
times. An OGSE sequence usually consists of two oscillating pulses of
duration T, each containing n periods, hence the frequency is ω ¼ n 2π

T ,
separated by a time interval τ� T. For a cosine OGSE, the profile f ðtÞ is

f ðtÞ¼

8>>>>>>>>><
>>>>>>>>>:

cos
�
n
2π
T

t
�
; t1 < t � t1 þ T ;

�cos
�
n
2π
T

ðt � τÞ
�
; τ þ t1 < t � t1 þ τ þ T ;

0; otherwise;

(5)

where τ ¼ TE=2.
The BTPDE needs to be supplemented by interface conditions. We

recall the interface between Ωin
i and Ωout

i is Γi, the interface between Ωout
i

and Ωe is Σi, and the outside boundary of the ECS is Ψ. The two interface
conditions on Γi are the flux continuity and a condition that incorporates
a permeability coefficient κin;out across Γi::

σinrMin
i ðx; tÞ �nin

i ¼ �σoutrMout
i ðx; tÞ �nout

i ; x 2 Γi;

σinrMin
i ðx; tÞ �nin

i ¼ κin;out
�
Mout

i ðx; tÞ�Min
i ðx; tÞ

�
; x 2 Γi;

where n is the unit outward pointing normal vector. Similarly, between
Ωout

i and Ωe we have

σoutrMout
i ðx; tÞ �nout

i ¼ �σerMeðx; tÞ � ne; x 2 Σi;

σoutrMout
i ðx; tÞ �nout

i ¼ κout;e
�
Meðx; tÞ�Mout

i ðx; tÞ�; x 2 Σi:

Finally, on the outer boundary of the ECS we have

0¼ σerMeðx; tÞ � ne; x 2 Ψ:

https://github.com/jingrebeccali/SpinDoctor


Table 1
Physical units of the quantities in the input files for SpinDoctor.

Parameter Unit

length μm
time μs
diffusion coefficient μm2=μs ¼ mm2=s
permeability coefficient μm=μs ¼ m=s
b-value μs=μm2 ¼ s=mm2

q-value ðμsμmÞ�1

Table 2
Input file containing cells parameters.

Line Variable name Example Explanation

1 cell_shape 1 1¼ spheres;
2¼ cylinders;

2 fname_params_cells ’current_cells' file name to store cells description
3 ncell 10 number of cells
4 Rmin 1.5 min Radius
5 Rmax 2.5 max Radius
6 dmin 1.5 min (%) distance between cells:

dmin� ðRminþ RmaxÞ
2

7 dmax 2.5 max (%) distance between cells

dmax� ðRminþ RmaxÞ
2

8 para_deform 0.05 0.05 [α β];
α defines the amount of bend;
β defines the amount of twist

9 Hcyl 20 height of cylinders
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The BTPDE also needs initial conditions:

Min
i ðx; 0Þ¼ ρin; Mout

i ðx; 0Þ ¼ ρout; Meðx; 0Þ ¼ ρe:

where ρ is the initial spin density.
The dMRI signal is measured at echo time t ¼ TE > Δþ δ for PGSE

and TE > 2σ for OGSE. This signal is the integral of Mðx;TEÞ:

S : ¼
Z
x2[fΩin

i ; Ω
out
i ; Ωeg

Mðx;TEÞ dx: (6)

In a dMRI experiment, the pulse sequence (time profile f ðtÞ) is usually
fixed, while g is varied in amplitude (and possibly also in direction).
When g varies only in amplitude (while staying in the same direction), S
is usually plotted against a quantity called the b-value. The b-value de-
pends on g and f ðtÞ and is defined as

bðgÞ¼ γ2kgk2
Z TE

0
du
�Z u

0
f ðsÞds

�2

:

For PGSE, the b-value is (Stejskal and Tanner, 1965):

bðg; δ;ΔÞ¼ γ2kgk2δ2ðΔ� δ = 3Þ: (7)

For the cosine OGSE with integer number of periods n in each of the
two durations σ, the corresponding b-value is (Xu et al., 1737):

bðg; σÞ¼ γ2jjgjj2 σ3

4n2π2
¼ γ2jjgjj2 σ

ω2
: (8)

The reason for these definitions is that in a homogeneous medium, the
signal attenuation is e�σb, where σ is the intrinsic diffusion coefficient.

2.2. Fitting the ADC from the dMRI signal

An important quantity that can be derived from the dMRI signal is the
“Apparent Diffusion Coefficient” (ADC), which gives an indication of the
root mean squared distance travelled by water molecules in the gradient
direction g=kgk, averaged over all starting positions:

ADC : ¼� ∂
∂b log

SðbÞ
Sð0Þ

����
b¼0

: (9)

We numerically compute ADC by a polynomial fit of

log SðbÞ¼ c0 þ c1bþ⋯þ cnbn;

increasing n from 1 onwards until we get the value of c1 to be stable
within a numerical tolerance.

2.3. HADC model

In a previous work (Haddar et al., 2016), a PDE model for the
time-dependent ADC was obtained starting from the Bloch-Torrey
equation, using homogenization techniques. In the case of negligible
water exchange between compartments (low permeability), there is no
coupling between the compartments, at least to the quadratic order in g,
which is the ADC term. The ADC in compartment Ω is given by

HADC¼ σ � 1R TE
0 FðtÞ2dt

Z TE

0
FðtÞ hðtÞ dt; (10)

where FðtÞ ¼ R t
0 f ðsÞ ds; and

hðtÞ¼ 1
jΩj

Z
∂Ω
ωðx; tÞ�ug �n

�
ds (11)

is a quantity related to the directional gradient of a function ω that is the
solution of the homogeneous diffusion equation (DE) with Neumann
boundary condition and zero initial condition:
4

∂
∂tωðx; tÞ � rðσrωðx; tÞÞ ¼ 0; x 2 Ω;
σrωðx; tÞ �n ¼ σFðtÞ ug � n; x 2 ∂Ω;

ωðx; 0Þ ¼ 0; x 2 Ω;

(12)

n being the outward normal and t 2 ½0; TE�, ug is the unit gradient di-
rection. The above set of equations, (16)-(18), comprise the homogenized
model that we call the HADC model.
2.4. Short diffusion time approximation of the ADC

Awell-known formula for the ADC in the short diffusion time regime is
the following short time approximation (STA) (Mitra et al., 1992, 1993):

STA¼ σ
�
1� 4

ffiffiffi
σ

p
3

ffiffiffi
π

p ffiffiffiffi
Δ

p A
dim V

�
;

where A
V is the surface to volume ratio and σ is the intrinsic diffusivity

coefficient. In the above formula the pulse duration δ is assumed to be
very small compared to Δ. A recent correction to the above formula
(Haddar et al., 2016), taking into account the finite pulse duration δ and
the gradient direction ug, is the following:

STA¼ σ
�
1� 4

ffiffiffi
σ

p
3

ffiffiffi
π

p Cδ;Δ
Aug

V

	
; (13)

where

Aug ¼
Z
∂Ω

�
ug �n

�2
ds;

and

Cδ;Δ ¼ 4
35

ðΔþ δÞ7=2 þ ðΔ� δÞ7=2 � 2
�
δ7=2 þ Δ7=2

�
δ2ðΔ� δ=3Þ

¼
ffiffiffiffi
Δ

p �
1þ 1

3
δ

Δ
� 8
35


δ
Δ

�3=2
þ⋯

�
:

When δ ≪ Δ, the value Cδ;Δ. Is approximately
ffiffiffiffi
Δ

p
.
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3. Method

Below is a chart describing the work flow of SpinDoctor.
The physical units of the quantities in the input files for SpinDoctor are

shown in Table 1, in particular, the length is in μm and the time is in μs.
Belowwe discuss the various components of SpinDoctor inmore detail.
3.1. Read cells parameters

The user provides an input file for the cell parameters, in the format
described in Table 2.
3.2. Create cells (canonical configuration)

SpinDoctor supports the placement of a group of non-overlapping
cells in close vicinity to each other. There are two proposed configura-
tions, one composed of spheres, the other composed of cylinders. The
algorithm is described in Algorithm 1.

Algorithm 1. Placing ncell non-overlapping cells.
3.3. Plot cells

SpinDoctor provides a routine to plot the cells to see if the configu-
ration is acceptable (see Fig. 2).
5

3.4. Read simulation domain parameters

The user provides an input file for the simulation domain parameters,
in the format described in Table 3.
3.5. Create surface triangulation

Finite element mesh generation software requires a good surface
triangulation. This means the surface triangulation needs to be water-
tight and does not self-intersect. How closely these requirements are
met in floating point arithmetic has a direct impact on the quality of the
finite element mesh generated.

It is often difficult to produce a good surface triangulation for arbi-
trary geometries. Thus, we restrict the allowed shapes to cylinders and
spheres. Below in Algorithms 3.5 and 3.5 we describe how to obtain a
surface triangulation for spherical cells with nucleus, cylindrical cells
with myelin layer, and the ECS (box or tightly wrapped). We describe a
canonical configuration where the cylinders are placed parallel to the z-
axis. More general shapes are obtained from the canonical configuration
by coordinate transformation in a later step.
Algorithm 2. Surface triangulation of spherical cells and ECS.
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Algorithm 3. Surface triangulation of cylindrical cells and ECS.
3.6. Plot surface triangulation

SpinDoctor provides a routine to plot the surface triangulation (see
Fig. 3).
3.7. Finite element mesh generation

SpinDoctor calls Tetgen (Si, 2015), an external package (executable
files are included in the toolbox package), to create a tetrehedra finite
6

elements mesh from the surface triangulation generated by Algorithms 2
and 3. The FE mesh is generated on the canonical configuration. The
numbering of the compartments and boundaries used by SpinDoctor are
given in Tables 4 and 5. The labels are related to the values of the
intrinsic diffusion coefficient, the initial spin density, and the perme-
ability requested by the user. Then the FE mesh nodes are deformed
analytically by a coordinate transformation, described in Algorithm 4.

Algorithm 4. Bending and twisting of the FE mesh of the canonical
configuration.
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3.8. Plot FE mesh

SpinDoctor provides a routine to plot the FE mesh (see Fig. 4 for
cylinders and ECS that have been bent and twisted).
3.9. Read experimental parameters

The user provides an input file for the simulation experimental pa-
rameters, in the format described in Table 6.

3.10. BTPDE

The spatial discretization of the BTPDE is based on a finite element
7

method where interface (ghost) elements (Nguyen et al., 2014a) are used to
impose the permeable interface conditions. The time stepping is done
using the MATLAB built-in ODE routine ode23t. See Algorithm 5.

Algorithm 5. BTPDE.
3.11. HADC model

Similarly, the DE of the HADCmodel is discretized by finite elements.
See Algorithm 6.

Algorithm 6. HADC model.



Fig. 1. Flow chart describing the work flow of SpinDoctor.

Fig. 2. SpinDoctor plots cells in the canonical configuration.
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3.12. Some important output quantities

In Table 7 we list some useful quantities that are the outputs of
SpinDoctor. The braces in the ”Size” column denote MATLAB cell data
structure and the brackets denote MATLAB matrix data structure.

4. Numerical resultsSpinDoctor examples

In this section we show some prototypical examples using the avail-
able functionalities of SpinDoctor.
8

4.1. Comparison of BTPDE and HADC with short time approximation

In Fig. 5 we show that both BTPDE and HADC solutions match the
STA values at short diffusion times for cylindrical cells (compartments 1
to 5). We also show that for the ECS (compartment 6), the STA is too low,
because it does not account for the fact that spins in the ECS can diffuse
around several cylinders. This also shows that when the interfaces are
impermeable, the BTPDE ADC and that from the HADC model are
identical. The diffusion-encoding sequence here is cosine OGSE with 6
periods.



Table 3
Input file of simulation domain parameters.

Line Variable name Example Explanation

1 Rratio 0.0 if Rratio is outside [0,1], it is set
to 0;

else Rratio ¼ Rin

Rout
;

2 include_ECS 2 0¼ no ECS;
1¼ box ECS;
2¼ tight wrap ECS;

3 ECS_gap 0.3 ECS thickness: a. If box: as
percentage of domain length;
b. If tight wrap: as percentage of
mean radius

4 dcoeff_IN 0.002 diffusion coefficient in IN cmpt:
a. nucleus;
b. Axon (if there is myelin);

5 dcoeff_OUT 0.002 diffusion coefficient in OUT
cmpt:
a. Cytoplasm;
b. Axon (if there is no myelin);

6 dcoeff_ECS 0.002 diffusion coefficient in ECS
cmpt;

7 ic_IN 1 initial spin density in In cmpt:
a. nucleus;
b. Axon (if there is myelin)

8 ic_OUT 1 initial spin density in OUT
cmpt:
a. Cytoplasm;
b. Axon (if there is no myelin);

9 ic_ECS 1 initial spin density in ECS cmpt:
10 kappa_IN_OUT 1e-5 permeability between IN and

OUT cmpts:
a. between nucleus and
cytoplasm;
b. between axon and myelin;

11 kappa_OUT_ECS 1e-5 permeability between OUT and
ECS cmpts:
a. If no nucleus: between
cytoplasm and ECS;
b. If no myelin: between axon
and ECS;

12 Htetgen �1 Requested tetgen mesh size;
�1¼Use tetgen default;

13 tetgen_cmd ’SRC/TETGEN/
tetGen/win64/
tetgen’

path to tetgen_cmd

Fig. 3. SpinDoctor plots the surface triangulation of the canonical configu
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4.2. Permeable membranes

In Fig. 6 we show the effect of permeability: the BTPDE model in-
cludes permeable membranes (κ ¼ 1� 10�3 m=s) whereas the HADC has
impermeable membranes. We see in the permeable case, the ADC in the
spheres are higher than in the impermeable case, whereas the ECS show
reduced ADC because the faster diffusing spins in the ECS are allowed to
moved into the slowly diffusing spherical cells. We note that in the
permeable case, the ADC in each compartment is obtained by using the
fitting formula involving the logarithm of the dMRI signal, and we
defined the ”signal” in a compartment as the total magnetization in that
compartment at TE, which is just the integral of the solution of the BTPDE
in that compartment.

4.3. Myelin layer

In Fig. 7 we show the diffusion in cylindrical cells, the myelin layer,
and the ECS. The ADC is higher in the myelin layer than in the cells,
because for spins in the myelin layer diffusion occurs in the tangential
direction (around the circle). At longer diffusion times, the ADC of both
the myelin layer and the cells becomes very low. The ADC is the highest
in the ECS, because the diffusion distance can be longer than the diam-
eter of a cell, since the diffusing spins can move around multiple cells.

4.4. Twisting and bending

In Fig. 8 we show the effect of bending and twising in cylindrical cells
in multiple gradient directions. The HADC is obtained in 20 directions
uniformly distributed in the sphere. We used spherical harmonics inter-
polation to interpolate the HADC in the entire sphere. Then we deformed
the radius of the unit sphere to be proportional to the interpolated HADC
and plotted the 3D shape. The color axis also indicates the value of the
interpolated HADC.

4.5. Timing

In Table 8 we give the average computational times for solving the
BTPDE and the HADC. All simulations were performed on a laptop
computer with the processor Intel(R) Core(TM) i5-4210U CPU @
1.70 GHz 2.40 GHz, running Windows 10 (1809). The geometrical
configuration includes 2 axons and a tight wrap ECS, the simulated
sequence is PGSE (δ ¼ 2:5ms;Δ ¼ 5ms). In the impermeable case, the
compartments are uncoupled, and the computational times are given
separately for each compartment. In the permeable membrane case, the
ration. Left: spherical cells with ECS; Right: cylindrical cells with ECS.



Table 4
The labels and numbers of compartments.

Spherical cells without nucleus

Cmpt Cytoplasm Nucleus ECS
Label OUT ECS
Number ½1 : ncell� ncell þ 1
Spherical cells with nucleus
Cmpt Cytoplasm Nucleus ECS
Label OUT IN ECS
Number ½1 : ncell� ½ncell þ 1 : 2ncell� 2ncell þ 1
Cylindrical cells without myelin
Cmpt Axon Myelin ECS
Label OUT ECS
Number ½1 : ncell� ncell þ 1
Cylindrical cells with myelin
Cmpt Axon Myelin ECS
Label IN OUT ECS
Number ½1 : ncell� ½ncell þ 1 : 2ncell� 2ncell þ 1

Table 5
The labels and numbers of boundaries.

Spherical cells without nucleus

Boundary Sphere Outer ECS boundary
Label OUT_ECS κ ¼ 0
Number 1 : ncell ncell þ 1
Spherical cells with nucleus
Boundary Outer sphere Inner sphere Outer ECS boundary
Label OUT_ECS IN_OUT κ ¼ 0
Number 1 : ncell ncell þ 1 : 2ncell 2ncell þ 1
Cylindrical cells without myelin
Boundary Cylinder Cylinder Outer ECS boundary

side wall top and bottom minus cylinder top/
bottom

Label OUT_ECS κ ¼ 0 κ ¼ 0
Number 2½1 : ncell� � 1 2½1 : ncell � 2ncell þ 1
Cylindrical cells with myelin
Boundary Inner cylinder

side wall
Inner cylinder top
and bottom

Label IN_OUT κ ¼ 0
Number 4½1 : ncell� � 3 4½1 : ncell � � 2

Outer cylinder
side wall

Outer cylinder top
and bottom

Outer ECS boundary minus
cylinder top/bottom

Label OUT_ECS κ ¼ 0 κ ¼ 0
Number 4½1 : ncell� � 1 4½1 : ncell � 4ncell þ 1

Fig. 4. FE mesh of cylinders and ECS after bending and twisting. C
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compartments are coupled, and the computational time is for the coupled
system (relevant to the BTPDE only).

5. Numerical validation of SpinDoctor

In this section, we validate SpinDoctor by comparing SpinDoctor with
the Matrix Formalism method (Callaghan, 1997; Barzykin, 1999) in a
simple geometry. The Matrix Formalism method is a closed form repre-
sentation of the dMRI signal based on the eigenfunctions of the Laplace
operator subject to homogeneous Neumann boundary conditions. These
eigenfunctions are available in explicit form for elementary geometries
such as the line segment, the disk, and the sphere (Grebenkov, 2007,
2010; Ozarslan et al., 2009; Drobnjak et al., 2011b). The dMRI signal
obtained using the Matrix Formalism method will be considered the
reference solution in this section.

The accuracy of the SpinDoctor simulations can be tuned using three
simulation parameters:

1. Htetgen controls the finite element mesh size;
(a) Htetgen ¼ �1means the FEmesh size is determined automatically

by the internal algorithm of Tetgen to ensure a good quality mesh
(subject to the constraint that the radius to edge ratio of tetra-
hedra is no larger than 2.0).

(b) Htetgen ¼ h requests a desired FE mesh tetrahedra height of h μm
(in later versions of Tetgen, this parameter has been changed to
the desired volume of the tetrahedra).

2. rtol controls the accuracy of the ODE solve. It is the relative residual
tolerance at all points of the FE mesh at each time step of the ODE
solve;

3. atol controls the accuracy of the ODE solve. It is the absolute residual
tolerance at all points of the FE mesh at each time step of the ODE
solve;

We varied the finite element mesh size and the ODE solve accuracy of
SpinDoctor and ran 6 simulations with the following simulation param-
eters:
ompartment number is 1–8 for the cylinders and 9 for the ECS.



Table 6
Input file for simulation experiment parameters.

Line Variable
name

Example Explanation

1 ngdir 20 number of gradient direction;
if ngdir > 1, the gradient directions are
distributed uniformly on a sphere;
if ngdir ¼ 1, take the gradient direction
from the line below;

2 gdir 1.0 0.0 0.0 gradient direction; No need to
normalize;

3 nexperi 3 number of experiments;
4 sdeltavec 2500 10000

10000
small delta;

5 bdeltavec 2500 10000
10000

big delta;

6 seqvec 1 2 3 diffusion sequence of experiment;
1¼ PGSE; 2¼OGSEsin; 3¼OGSEcos;

7 npervec 0 10 10 number of period of OGSE;
8 solve_hadc 1 0¼ do not solve HADC;

Otherwise solve HADC;
9 rtol_deff,

atol_deff
1e-4 1e-4 ½rtol atol�; relative and absolute

tolerance for HADC ODE solver;
10 solve_btpde 1 0¼ do not solve BTPDE;

Otherwise solve BTPDE;
11 rtol_bt,

atol_bt
1e-5 1e-5 ½rtol atol�; relative and absolute

tolerance for BTPDE ODE solver;
12 nb 2 number of b-values;
13 blimit 0 0¼ specify bvec;

1¼ specify [bmin, bmax];
2¼ specify [gmin, gmax];

14 const_q 0 0: use input bvalues for all experiments;
1: take input bvalues for the first
experiment and use the same q for the
remaining experiments

15 bvalues 0 50 100 200 bvalues or [bmin, bmax] or [gmin,
gmax];
depending on line 13;

Table 7
Some important SpinDoctor output quantities.

Variable name Size Explanation

TOUT {nexperi� nb�
Ncmpt}[1 � nt]

ODE time discretization

YOUT {nexperi� nb�
Ncmpt}[Nnodes � nt]

Magnetization

MF_cmpts [Ncmpt � nexperi �
nb]

integral of magnetization at TE in
each compartment.

MF_allcmpts [nexperi � nb] integral of magnetization at TE
summed over all compartments.

ADC_cmpts [Ncmpt � nexperi ] ADC in each compartment.
ADC_allcmpts [nexperi � 1] ADC accounting for all

compartments.
ADC_cmpts_dir [ngdir � Ncmpt �

nexperi ]
ADC in each compartment in each
direction.

ADC_allcmpts_dir [ngdir � nexperi � 1] ADC accounting for all
compartments in each direction.
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SpinD Simul 5� 1: rtol ¼ 10�3; atol ¼ 10�6; Htetgen ¼ �1
SpinD Simul 5� 2: rtol ¼ 10�6; atol ¼ 10�9; Htetgen ¼ �1

SpinD Simul 5� 3: rtol ¼ 10�9; atol ¼ 10�12; Htetgen ¼ �1
SpinD Simul 5� 4: rtol ¼ 10�3; atol ¼ 10�6; Htetgen ¼ 1
SpinD Simul 5� 5: rtol ¼ 10�6; atol ¼ 10�9; Htetgen ¼ 1
SpinD Simul 5� 6: rtol ¼ 10�9; atol ¼ 10�12; Htetgen ¼ 1

The geometry simulated is the following:

� 3LayerCylinder is a 3-layer cylindrical geometry of height 1μm and the
layer radii, R1 ¼ 2:5μm, R2 ¼ 5μm and R3 ¼ 10μm. The middle layer
is subject to permeable interface conditions on both the interior and
the exterior interfaces, with permeability coefficient κ. The exterior
boundary R ¼ R3 is subject to impermeable boundary conditions. The
11
top and bottom boundaries are also subject to impermeable boundary
conditions.

� For this geometry, Htetgen ¼ �1 gives finite elements mesh size
(nnodes ¼ 440; nelem ¼ 1397). Htetgen ¼ 1 gives finite elements mesh
size (nnodes ¼ 718;nelem ¼ 2088).
The dMRI experimental parameters are the following:

� the diffusion coefficient in all compartments is 2� 10�3 mm2=s;
� the diffusion-encoding sequence is PGSE (δ ¼ 10ms, Δ ¼ 13ms);
� 8 b-values: b ¼ f0;100; 500; 1000;2000;3000;6000;10000g s=mm2;
� 1 gradient direction: ½1;1;0�;

In Fig. 9 we show the signal differences (in percent) of the reference
Matrix Formalism method and the SpinDoctor simulations, normalized
by the reference signal at b ¼ 0:

EðbÞ¼
��SMFðbÞ � SSpinDðbÞ��

SMFðb ¼ 0Þ � 100: (16)

We see that the signal difference is less than 0:35% for κ ¼ 10�5 m=s
and it is less than 0:25% for κ ¼ 10�4 m=s for all 6 SpinDoctor simula-
tions. The signal difference becomes smaller when the ODE solve toler-
ances are changed from (rtol ¼ 10�3, atol ¼ 10�6) to (rtol ¼ 10�6, atol ¼
10�9), but there is no change when the tolerances are further reduced to
(rtol ¼ 10�9, atol ¼ 10�12). If we refine the FE mesh, but keep the ODE
solve tolerances the same, the signal difference is in fact larger using the
refined mesh than using the coarse mesh at the smaller b-values, though
this effect disappears at higher b-values and larger permeability. This is
probably due to parasitic oscillatory modes on the finer mesh that need
smaller time steps to be sufficiently damped.

6. Computational time and comparison with Monte-Carlo
simulation

In this section, we compare SpinDoctor with Monte-Carlo simulation
using the publicly available software package Camino Diffusion MRI
Toolkit (Hall and Alexander, 2009), downloaded from http://cmic.cs.ucl.
ac.uk/camino. All the simulations were performed on a server computer
with 12 processors (Intel (R) Xeon (R) E5-2667 @2.90 GHz), 192 GB of
RAM, running CentOS 7. SpinDoctor was run using MATLAB R2019a on
the same computer.

We give SpinDoctor computational times for three relatively
complicated geometries. We also give Camino computational times for
the first two geometries. We did not use Camino for the third geometry
due to the excessive time required by Camino.

The number of the degrees of freedom in the SpinDoctor simulations
is the finite element mesh size (the number of nodes and the number of
elements). For Camino it is the number of spins. The time stepping choice
of the SpinDoctor simulations is given by the ODE solve tolerances. For
Camino it is given by the number of time steps. Camino has an initiali-
zation step where it places the spins and we give the time of this
initialization step separately from the Camino random walk simulation
time.

Given the interest of the dMRI community in the extra-cellular space
(Burcaw et al., 2015) and neuron simulations, we chose the following
three geometries:

1. ECS400axons. See Fig. 10. This models the extra-cellular space
outside of 400 axons. We generated 400 cylinders with height 1μm
and radii ranging from 2� 5μm, randomly placed according to Al-
gorithm 1. The small height of the cylinders means that this geometry
should be used only for studying transverse diffusion. We used a tight-
wrap ECS: this choice means we do not need to have a complicated
algorithm to avoid large empty spaces as would be the case when the
ECS is box-shaped.

2. DendriteBranch. See Fig. 11. This is a dendrite branch whose original
morphological reconstruction SWC file published in NeuroM

http://cmic.cs.ucl.ac.uk/camino
http://cmic.cs.ucl.ac.uk/camino
http://NeuroMorpho.Org


Fig. 5. Geometry: 5 cylinders, tight wrap ECS, ECS gap¼ 0.2, ug ¼ ½1;1;1�, σout ¼ σecs ¼ 2� 10�3 mm2=s, κ ¼ 0 m=s, OGSE cosine (δ ¼ 14ms;Δ ¼ 14ms, number of
periods¼ 6). The vertical bars indicate the ADC in each compartment. The ADC in the rightmost position is the ADC that takes into account the diffusion in all the
compartments.
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orpho.Org (Ascoli et al., 2007). By wrapping the geometry described
in the SWC file in a new watertight surface and using the external FE
meshing package GMSH (Geuzaine and Remacle, 2009), we created a
FE mesh for this dendrite branch. The FE mesh was in imported and
used in SpinDoctor. We note this is an externally generated FE mesh
and this illustrate the capacity of SpinDoctor to simulate the dMRI on
general geometries provided by the user.

3. ECS200axons. See Fig. 12. This models the extra-cellular space
outside of 200 axons. To study 3-dimensional diffusion, the height of
the cylinders was increased to 50μm. To keep the finite element mesh
size reasonable, we decreased the number of axons to 200, keeping
the range of radii between 2� 5 microns, placed randomly as above,
with a tight-wrap ECS.

The dMRI experimental parameters are the following:

� the diffusion coefficient is 2� 10�3 mm2=s;
� the diffusion-encoding sequence is PGSE (δ ¼ 10ms, Δ ¼ 13ms);
� 8 b-values: b ¼ f0; 100; 500;1000;2000;3000; 6000; 10000g s=mm2;
� 1 gradient direction: ½1;1; 0�.

The SpinDoctor simulations were done using one compartment. The
boundary of compartment is subject to impermeable boundary condi-
tions. We took the surface triangulations associated with the finite
element mesh for the SpinDoctor simulations and used them as the input
PLY files for Camino. Camino is called with the command datasynth.
The options of Camino that are relevant to the simulations in the above
three geometries are the following:
12
� -walkers ${N}: N is the number of walkers;
� -tmax ${T}: T is the number of time steps;
� -p ${P}: P is the probability that a spin will step through a barrier. We
set P to zero;

� -voxels 1: using 1 voxel for the experiment;
� -initial intra: random walkers are placed uniformly inside the
geometry and none outside of it; In the case of the extra-cellular
space, intra means inside the geometry, with the geometry repre-
senting the extracellular space;

� -voxelsizefrac 1: the signal is computed using all the spins inside
the geometry described by the PLY file, and not just in a center region;

� -diffusivity 2E-9: the diffusion coefficient (m2=s);
� -meshsep ${xsep} ${ysep} ${zsep}: specifies the separation
between bounding box for mesh substrates. We used a box that fully
contains the geometry described by the PLY file;

� -substrate ply: mesh substrates are constructed using a PLY file;
� -plyfile ${plyfile}: the name of the PLY file. We wrote a MATLAB
function that outputs the list of triangles that make up the boundary
of the finite element mesh and formatted it as a PLY file. We note
these triangles form a surface triangulation;
6.1. ECS of 400 axons

SpinDoctor was run with the following 3 sets of simulation parame-
ters:

http://NeuroMorpho.Org


Fig. 6. Geometry: 3 spheres, tight wrap ECS, ECS gap¼ 0.3, ug ¼ ½1; 1;0�, σin ¼ σecs ¼ 2� 10�3 mm2=s, κ ¼ 1� 10�3 m=s (left), κ ¼ 0 m=s (right). PGSE (δ ¼ 5ms;
Δ ¼ 5ms). The vertical bars indicate the ADC in each compartment. The ADC in the rightmost position is the ADC that takes into account the diffusion in all the
compartments.
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SpinD Simul 6:1-1: rtol ¼ 10�3; atol ¼ 10�6; Htetgen ¼ 0:5
SpinD Simul 6:1-2: rtol ¼ 10�3; atol ¼ 10�6; Htetgen ¼ 1

SpinD Simul 6:1-3: rtol ¼ 10�3; atol ¼ 10�6; Htetgen ¼ �1

For this geometry, Htetgen ¼ �1 gives finite elements mesh size
(nnodes ¼ 53280;nelem ¼ 125798). Htetgen ¼ 1 gives finite elements mesh
size (nnodes ¼ 58018;nelem ¼ 139582). Htetgen ¼ 0:5 gives finite elements
mesh size (nnodes ¼ 70047;nelem ¼ 177259).

Camino was run with the following 2 sets of simulation parameters:

Camino Simul 6:1-1: N ¼ 1000; T ¼ 200
Camino Simul 6:1-2: N ¼ 4000; T ¼ 800

The reference signals are SpinD Simul 6.1–1, the SpinDoctor signals
computed on the finest FE mesh (Htetgen ¼ 0:5).

We computed the signal differences between the reference simula-
tions and the 2 remaining SpinDoctor simulations as well as the two
Camino signals:

EðbÞ¼
����SðbÞSð0Þ�

Sref ðbÞ
Sref ð0Þ

����� 100: (17)

In Fig. 13 we see EðbÞ for the SpinDoctor simulation on the coarsest
mesh (Htetgen ¼ � 1) is less than 0:4% for all b-values and for the
SpinDoctor simulation on the mesh (Htetgen ¼ 1) it is less than 0:2%. The
Camino simulation with (N ¼ 1000, T ¼ 200) has a signal difference of
1.9% for b-value up to 2000 s=mm2, and the Camino simulation with
(N ¼ 4000, T ¼ 800) has a signal difference of 0.7% for b-value up to
13
2000 s=mm2. However, for b-value b ¼ 3000 s=mm2 and greater, it
seems the first Camino simulation is closer to the reference signal than
the second Camino simulation. It likely means that 4000 spins and 800
time steps are not enough to achieve signal convergence at higher b-
values. In fact, they are below the recommended values for Monte-Carlo
simulations (Hall and Alexander, 2009), but we chose them to keep the
Camino simulations running within a reasonable amount of time. On the
other hand, the refinement of the FE mesh for the SpinDoctor achieves
convergence for all b-values up to 10000 s=mm2. There is a significant
increase of the computational time of SpinDoctor as the
diffusion-encoding amplitude is increased from 0.03 T/m to 0.37 T/m. At
the finest mesh, the computational time increased from 35 s to 200 s. At
the coarsest mesh, the computational time increased from 20 s to 115 s.
This is due to the fact that at higher gradient amplitudes, the magneti-
zation is more oscillatory, so to achieve a fixed ODE solver tolerance,
smaller time steps are needed.

In Table 9 we show the total computational time to compute the dMRI
signals at the 8 b-values for 2 SpinDoctor and 2 Camino simulations. We
also include the time for Camino to place the initial spins in the geometry
described by the PLY file. We include in the Table the maximum signal
differences for b-values up to 2000 s=mm2 instead of all the b-values
because Camino is not convergent for b-values greater than 3000 s=mm2.
We see that at a similar level of signal difference (0:4% for SpinDoctor
versus 0:7% for Camino), the total computational time of SpinDoctor
(438 s) is more than 100 times faster than Camino (59147 s).



Fig. 7. Geometry: 5 cylinders, myelin layer, Rin=Rout ¼ 0:5, tight wrap ECS, ECS gap¼ 0.3, κ ¼ 0 m=s, ug ¼ ½1;1; 1�, σin ¼ σout ¼ σecs ¼ 2� 10�3 mm2= s, 3 ex-
periments: PGSE (δ ¼ 5ms;Δ ¼ 5; 10; 20ms). Left: the magnetization at Δ ¼ 5ms. Right: the ADC values. The vertical bars indicate the ADC in each compartment. The
ADC in the rightmost position is the ADC that takes into account the diffusion in all the compartments.

J.-R. Li et al. NeuroImage 202 (2019) 116120
6.2. Dendrite branch

SpinDoctor was run with the following 2 sets of simulation parame-
ters:

SpinD Simul 6:2-1: rtol ¼ 10�3; atol ¼ 10�6

SpinD Simul 6:2-2: rtol ¼ 10�2; atol ¼ 10�4

The finite elements mesh was generated by an external package and
imported into SpinDoctor. The finite elements mesh size is (nnodes ¼
24651;nelem ¼ 91689). We do not refine the FE mesh, rather, we vary the
ODE solve tolerances in the SpinDoctor simulations.

Camino was run with the following 3 sets of simulation parameters:
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Camino Simul 6:2-1: N ¼ 1000; T ¼ 200
Camino Simul 6:2-2: N ¼ 2000; T ¼ 400

Camino Simul 6:2-3: T ¼ 400; T ¼ 800

The reference signal is SpinD Simul 6.2–1, the SpinDoctor signal with
the higher ODE solve tolerances (rtol ¼ 10�3, atol ¼ 10�6).

In Fig. 14 we see the signal difference EðbÞ for the SpinDoctor simu-
lation with the bigger ODE solve tolerances (rtol ¼ 10�2, atol ¼ 10�4) is
less than 0:6% for all b-values. The Camino simulation with (N ¼ 1000,
T ¼ 200) has a maximum signal difference of 6.4%, the Camino simu-
lation with (N ¼ 4000, T ¼ 800) has a maximum signal difference of
1.0%. As the gradient amplitude is increased from 0.03 T/m to 0.37 T/m,
at the larger ODE solve tolerances, the computational time increased



Fig. 8. Geometry: 2 cylinders, no myelin layer, tight wrap ECS, ECS gap¼ 0.3, κ ¼ 0 m=s, σout ¼ σecs ¼ 2� 10�3 mm2=s, PGSE (δ ¼ 2:5ms;Δ ¼ 5ms). Left: canonical
configuration. Middle: bend parameter¼ 0.05. Right: twist parameter¼ 0.30. Top: FE mesh of the ECS (the FE mesh of the axon compartments numbered 1 and 2 not
shown). Bottom: interpolated values of the HADC on the unit sphere, and then the sphere was distorted to reflect the value of the HADC. The color axis also gives the
value of the HADC in the various gradient directions. The black dots indicate the 20 original gradient-directions in which the HADC was simulated. The spherical
harmonics interpolation takes the 20 original directions into 900 directions uniformly distributed on the sphere.

Table 8
Computational times for solving the BTPDE and the HADC. All simulations were
performed on Intel(R) Core(TM) i5-4210U CPU @ 1.70 GHz 2.40 GHz, running
Windows 10 (1809). The geometrical configuration includes 2 axons and a tight
wrap ECS, the simulated sequence is PGSE (δ ¼ 2:5ms;Δ ¼ 5ms).

FE mesh size BTPDE BTPDE HADC

b ¼ 50 s=
mm2

b ¼
1000 s=mm2

Uncoupled: Axons 5865 nodes,
19087 ele

7.89 s 9.07 s 8.80 s

Uncoupled: ECS 6339 nodes,
19618 ele

10.14 s 13.95 s 11.87 s

Coupled: Axons
þ ECS

7344 nodes,
38705 ele

39.14 s 43.24 s N/A
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from 5 s to 17 s. At smaller ODE solve tolerances, the computational time
increased from 7 s to 42 s. Again, this increase is due to the fact that at
higher gradient amplitudes, the magnetization is more oscillatory, so to
achieve a fixed ODE solver tolerance, smaller time steps are needed. In
Table 10 we see for the same level of accuracy (0:6% for SpinDoctor and
and 1% for Camino), SpinDoctor (109 s) is 400 times faster than Camino
15
(43918 s).

6.3. Three dimensional ECS of 200 axons

Due to computational time limitations, we only computed 4 b-values,
b ¼ f0; 100; 500; 1000g s=mm2, for the geometry ECS200axons (see
Fig. 12 for the finite element mesh).

SpinDoctor was run with the following 2 sets of simulation parame-
ters:

SpinD Simul 6:3-1: rtol ¼ 10�3; atol ¼ 10�6; Htetgen ¼ �1
SpinD Simul 6:3-2: rtol ¼ 10�3; atol ¼ 10�6; Htetgen ¼ 0:3

For this geometry, Htetgen ¼ �1 gives finite elements mesh size
(nnodes ¼ 846298; nelem ¼ 2997386). Htetgen ¼ 0:3 gives finite elements
mesh size (nnodes ¼ 1017263;nelem ¼ 3950572).

The difference inthe signals between the two simulations is less than
0:35% (not plotted), meaning the FE meshes are fine enough to produce
accurate signals. In Table 11, we see that using about 846K nodes
required 1.8 h at b ¼ 100 s=mm2, 2.7 h at b ¼ 500 s=mm2, 3.3 h at b ¼
1000 s=mm2. We did not use Camino for ECS200axons due to the
excessive time required by Camino.



Fig. 9. Signal difference between the Matrix Formalism signal (reference) and the SpinDoctor signal. Left: κ ¼ 10�5 m=s. Right: κ ¼ 10�4 m=s. The geometry is
3LayerCylinder. The diffusion coefficient in all compartments is 2� 10�3 mm2=s; the diffusion-encoding sequence is PGSE (δ ¼ 10ms, Δ ¼ 13ms); Simul 1: rtol ¼
10�3, atol ¼ 10�6, Htetgen ¼ � 1; Simul 2: rtol ¼ 10�6, atol ¼ 10�9, Htetgen ¼ � 1; Simul 3: rtol ¼ 10�9, atol ¼ 10�12, Htetgen ¼ � 1; Simul 4: rtol ¼ 10�3, atol ¼
10�6, Htetgen ¼ 1; Simul 5: rtol ¼ 10�6, atol ¼ 10�9, Htetgen ¼ 1; Simul 6: rtol ¼ 10�9, atol ¼ 10�12, Htetgen ¼ 1.

Fig.10:. The geometry is ECS400axons. This finite elements mesh size is (nnodes ¼ 53280; nelem ¼ 125798).
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6.4. SpinDoctor computational time

We collected the computational times of the SpinDoctor simulations
for ECS400axons, DendriteBranch, and ECS200axons, that had the ODE
solve tolerances (rtol ¼ 10�3, atol ¼ 10�6). In addition, for ECS400axons
and DendriteBranch, we performed simulations for another PGSE
sequence (δ ¼ 10ms, Δ ¼ 23ms).

Now we examine the computational time as a function of the finite
element mesh size for those simulations with ODE solve tolerances
(rtol ¼ 10�3, atol ¼ 10�6). There are 3 FE meshes of ECS400axons, 1 FE
mesh of DendriteBranch, and 2 FE meshes of ECS200axons. In Fig. 15 we
plot the computational times to simulate the dMRI signal at two b-values
(b ¼ 100 s=mm2 and b ¼ 1000 s=mm2) as a function of the number of FE
nodes. We see at fewer than 100K finite element nodes, the SpinDoctor
simulation time is less than 1min per b-value. At 1 million FE nodes, the
SpinDoctor simulation time is about 4.7 h for b ¼ 100 s=mm2 and 8.9 h
for b ¼ 1000 s=mm2.
16
7. SpinDoctor permeability and Monte-Carlo transmission
probability

Here we illustrate the link between the membrane permeability of
Spindoctor and the transmission probability of crossing a membrane in
the Camino simulation. The geometry is the following:

� Permeable Sphere involves uniformly placed initial spins inside a
sphere of radius 5μm, subject to permeable interface condition on the
surface of the sphere, with permeability coefficient κ. No spins are
initially placed outside of this sphere. In the SpinDoctor simulation,
this sphere is enclosed inside a sphere of diameter 30μm, subject to
impermeable boundary condition on the outermost interface. In the
Camino simulation, this sphere is enclosed in a box of side length
30μm, subject to periodic boundary conditions. The inner sphere is far
enough from the outer sphere in SpinDoctor and from the outer box in
Camino so that there is no influence of the outer surface during the
simulated diffusion times.



Fig. 11. The geometry is DendriteBranch. This finite elements mesh size is (nnodes ¼ 24651; nelem ¼ 91689).

Fig. 12. The geometry is ECC200axons. This finite elements mesh size is (nnodes ¼ 846298; nelem ¼ 2997386).
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The dMRI experimental parameters are the following:

� the diffusion coefficient in all compartments is 2� 10�3 mm2= s;
� the diffusion-encoding sequence is PGSE (δ ¼ 10ms, Δ ¼ 13ms);
� 8 b-values: b ¼ f0; 100; 500;1000;2000;3000; 6000; 10000g s=mm2;
� 1 gradient direction: ½1;1; 0�.

SpinDoctor was run with the following 3 sets of simulation parame-
ters:

SpinD Simul 7-1: rtol ¼ 10�3; atol ¼ 10�6; Htetgen ¼ 0:5
SpinD Simul 7-2: rtol ¼ 10�3; atol ¼ 10�6; Htetgen ¼ 1
SpinD Simul 7-3: rtol ¼ 10�3; atol ¼ 10�6; Htetgen ¼ �1

For this geometry, Htetgen ¼ �1 gives finite elements mesh size
(nnodes ¼ 46384;nelem ¼ 196920). Htetgen ¼ 1 gives finite elements mesh
size (nnodes ¼ 49618;nelem ¼ 218007). Htetgen ¼ 0:5 gives finite elements
mesh size (nnodes ¼ 52803;nelem ¼ 237613).
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Camino was run with the following 2 sets of simulation parameters:

Camino Simul 7-1: N ¼ 4000; T ¼ 800
Camino Simul 7-2: N ¼ 8000; T ¼ 3200

The reference signal is SpinD Simul 7–1, the SpinDoctor signal on the
finest FE mesh.

In (Fieremans and Lee, 2018), there is a discussion about the trans-
mission probability of random walkers as they encounter a permeable
membrane with permeability κ. The formula found in that paper is (for
three dimensions)

PEX ¼Cdim
κ

σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 dim σ δt

p
; Cdim ¼ 2

3
; dim ¼ 3; (18)

σ being the intrinsic diffusion coefficient, δt is the time step.
In Fig. 16 we show the three SpinDoctor simulations at κ ¼ 10�5 m=s

and the two Camino simulations using the above formula for PEX . We
considered the SpinDoctor signal computed on the finest FE mesh as the



Fig. 13. The geometry is ECS400axons. Top:
SpinD Simul 1 is the reference signal,
compared to two Camino simulations. Bot-
tom left: the signal difference between the
reference simulation and two SpinDoctor
simulations and two Camino simulations.
Bottom right: the computational times of
SpinDoctor simulations as a function of the
gradient amplitude. The diffusion coefficient
is 2� 10�3 mm2=s; The diffusion-encoding
sequence is PGSE (δ ¼ 10ms, Δ ¼ 13ms);
The gradient direction is ½1;1; 0�. SpinD
Simul 1: rtol ¼ 10�3, atol ¼ 10�6, Htetgen ¼
0:5; SpinD Simul 2: rtol ¼ 10�3, atol ¼ 10�6,
Htetgen ¼ 1; SpinD Simul 3: rtol ¼ 10�3,
atol ¼ 10�6, Htetgen ¼ � 1; Camino Simul 1:
N ¼ 1000, T ¼ 200; Camino Simul 2: N ¼
4000, T ¼ 800.

Table 9
The geometry is ECS400axons. The total computational times (in seconds) to
simulate the dMRI signal at 8 b-values using SpinDoctor and Camino. The
initialization time is the time for Camino to place initial spins inside the geometry
described by the PLY file. The b-values simulated are b ¼
f0;100;500;1000; 2000; 3000;6000;10000g s=mm2. The maximum signal dif-
ferences are given for b-values up to 2000 s=mm2 because Camino is not
convergent for b-values greater than 3000 s=mm2. The diffusion coefficient is 2�
10�3 mm2=s; The diffusion-encoding sequence is PGSE (δ ¼ 10ms, Δ ¼ 13ms);
The gradient direction is ½1;1;0�.
ECS400axons SpinDoctor Camino

Htet¼�1 Htet¼ 0.5 T ¼
200

T ¼
800

Degrees 53280 nodes 70047 nodes 1000
spins

4000
spins

of freedom 125798
elements

177259
elements

Max signal difference (b �
2000 s=mm2)

0.4% Ref signal 1.9% 0.7%

Initialization time (sec) 69 305
Solve time (sec), 8 bvalues 438 667 3949 58842
Total time (sec) 438 667 4018 59147

Table 10
The geometry is DendriteBranch. The total computational times in seconds to
simulate the dMRI signal at 8 b-values using SpinDoctor and Camino. The
initialization time is the time for Camino to place initial spins inside the geometry
described by the PLY file. The b-values simulated are b ¼
f0;100;500;1000;2000; 3000; 6000;10000g s=mm2. The diffusion coefficient
is 2� 10�3 mm2=s; The diffusion-encoding sequence is PGSE (δ ¼ 10ms, Δ ¼
13ms); The gradient direction is ½1;1;0�.
Dendrite Branch SpinDoctor Camino

rtol ¼
10�2

rtol ¼
10�3

T ¼
200

T ¼ 400 T ¼ 800

Degrees 24651 nodes 1000
spins

2000
spins

4000
spins

of freedom 91689 elements
Max signal
difference

0.6% Ref
signal

6.4% 2.2% 1.0%

Initialization time
(sec)

5897 11739 23702

Solve time (sec), 8
bvalues

109 207 1336 5138 20216

Total time (sec) 109 207 7233 16877 43918
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reference signal and we computed the signal differences between the
reference signal and the other two SpinDoctor signals and the Camino
signals. We see that the Camino signals approach the reference signal as
the number of spins and times steps in Camino are increased, the
maximum difference decreasing from 3.8% to 2.4%. The SpinDoctor
signals have signal differences of less than 0.5% and 0.1%, respectively.

8. Extensions of SpinDoctor

Here we mention two extensions in the functionalities of SpinDoctor
that are planned for a future release.
18
8.1. Non-standard diffusion-encoding sequences

Given the interest in nonstandard diffusion sequences beyond PGSE
and OGSE, such as double diffusion encoding (see (Shemesh et al., 2016;
Dhital et al., 2019; Novikov et al., 2019; Henriques et al., 2019)) and
multidimensional diffusion encoding (see (Topgaard, 2017)), it is natural
that SpinDoctor should easily support arbitrary diffusion-encoding se-
quences. Besides the PGSE and the sine and cosine OGSE sequences that
are provided in the SpinDoctor package, new sequences can be
straightforwardly implemented by changing three files in the SpinDoctor
package.



Table 11
The geometry is ECS200axons. The computational times in seconds to simulate
the dMRI signal at 3 b-values b ¼ f100;500;1000g s=mm2 using SpinDoctor. The
times are listed separately for each b-value. The diffusion coefficient is 2�
10�3 mm2=s; The diffusion-encoding sequence is PGSE (δ ¼ 10ms, Δ ¼ 13ms);
The gradient direction is.½1; 1;0�
ECS200 axons SpinDoctor

Htet¼�1 Htet¼ 0.3

Mesh 846298 nodes 1017263 nodes
2997386
elements

3950572 elements

Max signal difference 0.35% Ref signal
Solve time (sec), b ¼ 100;500;1000 s=
mm2

(6611, 9620,
12107)

(16978, 23988,
32044)
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� SRC/DMRqbvaI/seqprofile.m defines f ðtÞ
� SRC/DMRI/seqintprofile.m defines the integral FðtÞ ¼ R t

0 f ðsÞds
� SRC/DMRI/seluenoq.m defines the associated b� value.

In the example below, we simulate the double-PGSE (Eq. (19))
sequence:

f ðtÞ¼

8>>>>>><
>>>>>>:

1; 0 � t � δ;
�1; Δ < t � Δþ δ;
1; τ � t � δþ τ;
�1; Δþ τ < t � Δþ δþ τ;
0; otherwise:

(19)

here δ is the duration of the diffusion-encoding gradient pulse, Δ is the
time delay between the start of the two pulses, and τ is the distance be-
tween the two pairs of pulses (τ � δþ Δ). The geometry is made of cy-
lindrical cells, the myelin layer, and the ECS (see Fig. 7). In Fig. 17 we
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show the dMRI signals for the PGSE (δ ¼ 10ms;Δ ¼ 13ms) and dPGSE
sequences (δ ¼ 10ms;Δ ¼ 13ms; τ ¼ δþ Δ), the diffusion-encoding di-
rection is ug ¼ ½1;1; 1�.

8.2. T2 relaxation

When T2 � relaxation is considered, the Bloch-Torrey PDE (Eq. (1))
takes the following form

∂
∂tM

in
i ðx; tÞ¼ � Iγf ðtÞg � x Min

i ðx; tÞ �
Min

Tin
2
þr��σinrMin

i ðx; tÞ
�
; x 2 Ωin

i ;

(20)

∂
∂tM

out
i ðx; tÞ¼ � Iγf ðtÞg � x Mout

i ðx; tÞ �Mout

Tout
2

þr ��σoutrMout
i ðx; tÞ�; x

2 Ωout
i ; (21)

∂
∂tM

eðx; tÞ¼ � Iγf ðtÞg � x Meðx; tÞ �Me

Te
2
þr�ðσerMeðx; tÞÞ; x 2 Ωe; (22)

We plan to incorporate T2 relaxation effects in the next official release
of SpinDoctor. In the meantime, this additional functionality can be
found in a development branch of SpinDoctor available on GitHub. The
source code in this development branch allows the ability to add relax-
ation, with different relaxivities in the different compartments (Veraart
et al., 2018; Lampinen et al., 2019).

T2relaxation is incorporated using the format T2 ¼ ½Tin
2 ;T

out
2 ;Te

2�
where Tin

2 ;T
out
2 ;Te

2 are the T2 values for the three compartments,
respectively. To verify the correctness of our implementation, we check
the following. Let SNo�T2ðbÞ be the signal without T2 effects. If there is no
exchange between compartments, then the T2 effects can be cancelled
from the signals in the three compartments that include T2 effects in the
following way:
Fig. 14. The geometry is DendriteBranch.
Top: SpinD Simul 1 is the reference signal,
compared to three Camino simulations. Bot-
tom left: the signal difference between the
reference simulation and a SpinDoctor
simulation and three Camino simulations.
Bottom right: the computational times of
SpinDoctor simulations as a function of the
gradient amplitudes. The diffusion coeffi-
cient is 2� 10�3 mm2=s; The diffusion-
encoding sequence is PGSE (δ ¼ 10ms, Δ ¼
13ms); The gradient direction is ½1;1; 0�.
SpinD Simul 1: rtol ¼ 10�3, atol ¼ 10�6;
SpinD Simul 2: rtol ¼ 10�2, atol ¼ 10�4;
Camino Simul 1: N ¼ 1000, T ¼ 200;
Camino Simul 2: N ¼ 2000, T ¼ 400;
Camino Simul 3: N ¼ 4000.T ¼ 800



Fig. 15. Computational times of SpinDoctor to simulate one b-value (either b ¼
100 s=mm2 or b ¼ 1000 s=mm2). The x-axis gives log 10 of the number of finite
elements nodes. The data include 3 FE meshes of ECS400axons, 1 FE mesh of
DendriteBranch, and 2 FE meshes of ECS200axons. The y-axis gives the log 10 of
the comptational time in minutes. Below y ¼ 0 are computational times that are
less than 1min. The two sequences simulated are PGSE sequence (δ ¼ 10ms,
Δ ¼ 13ms) and PGSE sequence (δ ¼ 10ms, Δ ¼ 23ms). The diffusion coefficient
is 2� 10�3 mm2=s; The gradient direction is ½1;1; 0�.

Fig. 17. DMRI signals of the PGSE and the double PGSE diffusion-encoding
sequences. The geometry is made of cylindrical cells, the myelin layer, and
the ECS (see Fig. 7). The diffusion coefficient in all compartments is 2�
10�3 mm2=s and the compartments do not experience spin exchange, with all
permeability coefficients set to zero. The diffusion-encoding sequeces are PGSE
(δ ¼ 10ms;Δ ¼ 13ms) and dPGSE sequences (δ ¼ 10ms;Δ ¼ 13ms;τ ¼ δþ Δ),
the diffusion-encoding direction is ug ¼ ½1; 1;1�.
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ScancelðbÞ¼ SinðbÞ
�TE
Tin

þ SoutðbÞ
� TE
Tout

þ SeðbÞ
�TE

Te
: (23)
e 2 e 2 e 2

In Fig. 18, we compare SNo�T2ðbÞ with SðbÞ where T2 ¼ ½50ms;20ms;
100ms�, for the PGSE sequences (δ ¼ 10ms; Δ ¼ 13ms) and ug ¼
½1;1;1�. We also compute ScancelðbÞ, using Eq. (23). The geometry (see
Fig. 7) is made of cylindrical cells, the myelin layer, and the ECS. The T2

effects on the signal SðbÞ are clearly seen. The T2 effects are completely
canceled out using Eq. (23).

9. Discussion

Built upon MATLAB, SpinDoctor is a software package that seeks to
reduce the work required to perform numerical simulations for dMRI for
prototyping purposes. There have been software packages for dMRI
simulation that implements the random walkers approach. A detailed
20
comparison of the Monte-Carlo/random walkers approach with the FEM
approach is beyond the scope of this paper. SpinDoctor offers an alter-
native, solving the same physics problem using PDEs.

After surveying other works on dMRI simulations, we saw a need to
have a simulation toolbox that provides a way to easily define geomet-
rical configurations. In SpinDoctor we have tried to offer useful config-
urations, without being overly general. Allowing too much generality in
the geometrical configurations would have made code robustness very
difficult to achieve due to the difficulties related to problems in
computational geometry (high quality surface triangulation, robust FE
mesh generation). The geometrical configuration routines provided by
SpinDoctor are a helpful front end, to enable dMRI researchers to get
started quickly to perform numerical simulations. Those users who
already have a high quality surface triangulation can use the other parts
of SpinDoctor without passing through this front end.

The bulk of SpinDoctor is the numerical solutions of two PDEs. When
one is only interested in the ADC, then computing the HADCmodel is the
Fig. 16. The Permeable Sphere example in-
volves uniformly placed initial spins inside a
sphere of radius 5μm, subject to permeable
interface condition on the surface of the
sphere, with permeability coefficient κ ¼
10�5 m=s. Left: the SpinDoctor simulation on
the finest mesh as the reference signal and
two Camino signals. Right: the signal differ-
ence between the reference signal and two
SpinDoctor simulations and two Camino
simulations. SpinD Simul 1: rtol ¼ 10�3,
atol ¼ 10�6, Htetgen ¼ 0:5; SpinD Simul 2:
rtol ¼ 10�3, atol ¼ 10�6, Htetgen ¼ 1; SpinD
Simul 3: rtol ¼ 10�3, atol ¼ 10�6, Htetgen ¼
� 1; Camino Simul 1: N ¼ 4000, T ¼ 800;
Camino Simul 2: N ¼ 8000, T ¼ 3200; The
diffusion coefficient in all compartments is
2� 10�3 mm2=s; The diffusion-encoding
sequence is PGSE (δ ¼ 10ms, Δ ¼ 13ms);
The gradient direction is ½1; 1;0�.



Fig. 18. DMRI signal including T2 ¼ ½50ms; 20ms;100ms� relaxation is lower
than the signal without relaxation effects (”no T200). The T2 effects are
completely canceled out using Eq. (23) so that the curve ”cancel T200 coincides
with the no relaxation signal. The geometry is made of cylindrical cells, the
myelin layer, and the ECS (see Fig. 7). The diffusion coefficient in all com-
partments is 2� 10�3 mm2=s and the compartments do not experience spin
exchange, with all permeability coefficients set to zero. The diffusion-encoding
sequece is PGSE (δ ¼ 10ms;Δ ¼ 13ms), the diffusion-encoding direction is ug ¼
½1;1;1�.
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good option. When one is interested in higher order behavior in the dMRI
signal, then the BTPDE model is a good option for accessing high b-value
behavior.

Because time stepping methods for semi-discretized linear systems
arising from finite element discretization is a well-studied subject in the
mathematical literature, the ODE solvers implemented in MATLAB
already optimize for such linear systems. For example, the mass matrix is
passed into the ODE solver as an optional parameter so as to avoid
explicit matrix inversion. In addition, the ODE solution is guaranteed to
stay within a user-requested residual tolerance. We believe this type of
optimization and error control is clearly advantageous over simulation
codes that do not have it.

To mimic the phenomenon where the water molecules can enter and
exit the computational domain, the pseudo-periodic boundary conditions
were implemented in (Xu et al., 1737; Li et al., 2014; Nguyen et al.,
2014a). At this stage, we have chosen not to implement this in Spin-
Doctor, instead, spins are not allowed to leave the computational domain.
Implementing pseudo-periodic boundary conditions would make the
code more complicated, and it remains to be seen if it is a desired feature
among potential users. If it is, then it could be part of a future
development.

The twising and bending of the canonical configuration is something
unique to SpinDoctor. It removes many computational geometry diffi-
culties by meshing first the canonical configuration before deforming the
FE mesh via an analytical coordinate transformation. This is a way to
simulate fibers that are not parallel, that bend, for example. For fibers
that disperse, perhaps more complicated analytical coordinate trans-
formations can be performed on the canonical configuration to mimic
that situation. This is a possible future direction to explore.

SpinDoctor depends on MATLAB for the ODE solve routines as well as
for the computational geometry routines to produce the tight wrap ECS.
To implement SpinDoctor outside of MATLAB would require replacing
these two sets of MATLAB routines. Other routines of SpinDoctor can be
easily implemented in another programming language.

SpinDoctor can be downloaded at https://github.com/jingreb
eccali/SpinDoctor.
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In summary, we have validated SpinDoctor simulations using refer-
ence signals from the Matrix Formalism method, in particular in the case
of permeable membranes. We then compared SpinDoctor with the
Monte-Carlo simulations produced by the publicly available software
package Camino Diffusion MRI Toolkit (Hall and Alexander, 2009). We
showed that the membrane permeability of SpinDoctor can be straight-
forwardly linked to the transmission probability in Monte-Carlo simu-
lations. For numerous examples, it was seen that the SpinDoctor and the
Camino simulations can be made close to each other if one increases the
degrees of freedom (the finite element mesh size for SpinDoctor and the
number of spins for Camino) and increase the accuracy of the time
stepping (by tightening the ODE solve tolerances in SpinDoctor and by
increasing the number of time steps in Camino).

At high gradient amplitudes, the ocsillatory nature of the magneti-
zation requires the use of smaller time steps to maintain accuracy. For
this reason, the computational time to simulate the dMRI signal at high
gradient amplitudes must be longer than at low gradient amplitudes. This
adaptivity in the time stepping as a function of gradient amplitude is
done automatically in SpinDoctor.

We have computed the dMRI signals on several complicated geome-
tries on a stand-alone computer. For these examples, we have shown that
SpinDoctor can be more than 100 times faster than Camino. Of course, in
simple configurations such as straight, parallel cylinders, it is much more
efficient to use an analytical representation of the diffusion environment
rather than a triangulated mesh in Camino. In addition, some recent
implementations of random walk simulations (Ginsburger et al., 2019;
Rensonnet et al., 2019) should be faster than Camino.

With a finite element mesh of 100K nodes, SpinDoctor takes less than
1min per b-value. At 1 million finite element nodes, limited computer
memory resulted in a computational time 4.7 h for b ¼ 100 s=mm2 and
8.9 h for b ¼ 1000 s=mm2. This issue will be taken into account in the
future with high performance computing techniques in MATLAB and on
other platforms. One of our recent works (Nguyen et al., 1016b) is
promising for this purpose.

We also illustrated several extensions of SpinDoctor functionalities,
including the incorporation of T2 relaxation, the simulation of non-
standard diffusion-encoding sequences. We note the dendrite branch
example illustrates SpinDoctor's ability to import and use externally
generated meshes provided by the user. This capability will be very
useful given the most recent developments in simulating ultra-realistic
virtual tissues (Palombo et al., 2019; Ginsburger et al., 2019).

10. Conclusion

This paper describes a publicly available MATLAB toolbox called
SpinDoctor that can be used to solve the BTPDE to obtain the dMRI signal
and to solve the diffusion equation of the HADCmodel to obtain the ADC.
SpinDoctor is a software package that seeks to reduce the work required
to perform numerical simulations for dMRI for prototyping purposes.

SpinDoctor provides built-in options of including spherical cells with
a nucleus, cylindrical cells with a myelin layer, an extra-cellular space
enclosed either in a box or in a tight wrapping around the cells. The
deformation of canonical cells by bending and twisting is implemented
via an analytical coordinate transformation of the FE mesh. Permeable
membranes for the BTPDE is implemented using double nodes on the
compartment interfaces. Built-in diffusion-encoding pulse sequences
include the Pulsed Gradient Spin Echo and the Ocsillating Gradient Spin
Echo. Error control in the time stepping is done using built-in MATLAB
ODE solver routines.

User feedback to improve SpinDoctor is welcomed.
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