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Abstract This paper is the second altempr to introduce the composition operarotalready known from probability, possibiliiy, *la"r"" 
""i'r"fuarion_based sysremstheories' also for credal sers. we try to avoid the discon,inurl *r,i"r, *u, present in theoriginar definition, bur simulhneously to keep all the f."p"ii., 

""uurirg 
us to designcompositional models in a way analogous tothose rn thJ auove-mendoned theories.These compositionar models are aimid to be un arte-atiu" to Graphical MarkovModels. Theoretical resulrs achieved ln *ris paper are iiirrr.,"o by an example.

I Introduction

In the second half of 1990s a
mensionar probab, iry aistrru;,l"x lxx."iff :",T":f;1"J,;:ffi ililHl#i::.;Graphical. Markov Modeling. This approach i, Uur"a on u Ji.ple idea: a multidi_mensional distribution is conryosed fiom a system of row-dimensional distributionsby repetitive apprication of a speciar composition op".u,of*i,"r, is also the reasonwhy such models are called compositional models.

Later, these compositional models were introduced also in possibility theory [7,8l (here the models are parameterized by a continuou;r_;;; and almosr ten yearsago also in evidence rheory [3, 4]. In ali these frameworkitre o.iginat idea is kept,but rhere exist some slight differences among these frameworks.

" f1 [9J we inroauced a composition_o-p..atJr fo. .."dJr"tJ, ir, au. to ,t e problemofdiscontinuity ir needed a revision. After a thorougr, .."""r"ia"".u,io, we decided topresent a new proposal avoiding this discontinuity. The goal of rhis paper is to showthat the revised composition operator.keeps th" nuri" p.o!"ni", ofirs counterparts inother frameworks, and therefore it will enable us ,o ln,.oir"" *.positional modelsfor m ultidimensional credal sers.
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This contribution is organized as follows. In sect.2 we summarise the basic con_
cepts and notation. The new definition ofthe operator ofcompositlon is presented inSect.3, which is devored also ro irs basic propinies -a "n 

itirr,.ur,u" 
"'^*pt".

In this section we will briefly recall basic corcepts and notation necessary for under_
standing the contriburion.

2 Basic Concepts and Notation

2.1 Variables and Distibutions

For an index sety'y' = {1, 2
its values in a flnite set X,
of these sets.

. . ._,2) let [X; ]1.7y be a sysrem ofvariables, each Xl having
and Xp : Xq x X2 x . .. x X, be the Caresian produci

In this paper we will dea.l wift groups of variables on its subspaces. Ler us note that
Xa will denote a group of variables {X;}1.a with values in Xa : X 1.sX; throughout
the paper.

Any group of variables Xr can be descibedby a probability distribution (some_
times a.lso called pra babitity function)

p : X5 ___+ [0, l],

such that
\-/ P(xx) = 1.

,xaxx

Having two probability distdbutions p 1 and. p2 of X7 we say that p1 is absolutely
continuous with respect b p2 (and denote p1 (( p) if for any ra e X6

P2(rr) :0:+ h@i = 0.

This concept plays an imponant role io the defrnition of the composition operator.

2.2 Credal Sets

A credal set M(Xx) describing a group ofvariables X6 is usually defined as a closed

convex set of probability -"uirtIr aJ."iuing ,lr" "i*r 
.i ,r,ir variable. In order

to simplify tf," .^p..rrion of op"r"tlon, *1,f, credal sets, it is often considered [5]

that a creial t", ir ,r,. r.i oi p-iJ"itiiiy a,r*ir"-r 
"lt."i"r"a 

to the probabilio
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ffiiffiilfir,Jfi'.'r'i,lj;",llil!Til;Tr1,iiT,"r 
set can be expressed 

^, ^ ".,::

",.:;:Jff ;;: yxi[i;;;;;;' : :: 
" 

na c reda t"t LI(XD is

fr',i;;: ff: itr; !, ; ::;:' ;: ::;:,, _" always projecdve, 
as

A4WD=Cfl1ptL.o_

r{f',yiiffiH;i'*[ffi 
,,,i, jff#

i:,,"ff # 
j,ifl*.:i#:fl,:#ppd;:;uml?";:;,ilfi 

,Tn

2.3 Stronglndependence

*dt#il"::ff ::::11,.:a,,.1,uffi 
i::r#.H3;t1:Jffi 

;il:.Tn:l.'Y;#!"'Y:::::!:!::;,?d'r*;;;,r,?;;:r,ffi 

;;;*,

-ffi
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- il::i,',i':il:,:,"T[:"j''ril:i or stochasric condi,ionar i ndependence; ir
er",",;-"J,r," jJ;ffiH::# lfX;:;tr:#ll;"j1ff ::lilfl?f [:a;;:

3 Composition Operator

In this secdon we will introduce a r

'-o'rh'"on"p'orji.ffi ffil:tri:il.T:i,{'li:I}HH:;i.",l.ffi ff '#rramework, as ir seems to be useful for beuer undersran;irrl".jri..iir""..r,

3.1 Composition Operator of probability Distributions

Noq lel us recall the definition of c,
Consider two index ;;;,';? ; ::f 

posirion of two probabilitv disrributions l2J.
.uv u. urt n."ul,-oti.-aiiiri l;1l.to 

not pur anv restrictions on ,( and L; $ey
u. i*o p,ou"urriry J,;;;ilil#,Jff#"-, ffi:i[']T:ledoflL3t Pr and p,

M(Xxuuu)

= CH((Pr .P)/Pf : p1 e M(Xxvu), pz e M(Xuil, plM 
= plM).

(Pt > P)(Xxv) : Pt(Xr).Pz (Xt)
(2)Pz(Xx"

whenerer Pl.(&-t) (( p2 (X*n ;,o,],..*ise, it remains undefined.It ts specific property of comnro,r,.,,.,ii,e,,hJo;,.,io; ;l;I;jffiTjii]li r,, r-o,u','rv disri burions-in

3.2 Definition and Example

Let 
^4t 

and,{,,f2 be credal sets des
dehne a new credal ser, o.no,.o nut"l,o'n'L" 

and x1, respectively. our goal is to
*iltconrain air of tJ;;#;;;"r:,"1.r > '442, which will be desciibing x6,1 and

n. ..qui,.a p-[;;#:';:;'rllT* in 
'441 and' as much as possible, in y'42.

extriuirs a Lna oia];;;;ffi;ffi" Definition i in lgj r Howevei' that definition
to p.opor" rhe foilo;;i[." aru was thoroughly reconsidered. Here we decided

llet.us note $at the defnition is based
reraxlng convexity. on Moral's concepl of conditiooal independence with
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?;y;::'-ix;H#;'.1 ;::r : ? l.y'descn b i n g X3 a nd x L. the if c o m p o s i -

r,*:m#rffi nldi,{:fi 
:l,,i#lff,,ii::ffi

[a) it PIK1L 4 ptxot

P - 
P''P'
p{KnL '

Ib] otherwise

p e extlpfrurl.

Function d used in the defi
Leibler divergenc", ,o,, u*u,lll11 

is a suitable distance fun-cdon (e.g. Kullback-
r-"t u' no,!' mri ;ilffi::: or some other f-diversence [6])'

o.isi,ut.;;i;i;;;;r;:i:::l or composition op€rator does not differ rrom rhe

#i:#*1fuii:I*il:::i?';f.i'i*ry;ffi Hi."#'=*i,'"'..."*;:
;, 

"u* t"ii, u" lffi;;""'cases Let us illusnate the application of ,i" "p;;;;.
Example t Let

Mr(XtX) = CH{t0.2, 0.8, 0, 01, [0.1, 0.4, 0.r, 0.4],
[0.25, o.25, o.2s. o.2s], t0, 0, 0.s, 0.51],

and

M2(x2&): cH{t0, 0.3, 0, 0.71, t0.2, 0.1,0.4, 0.31,
[0.5, 0, 0.s, 0], t0.2, 0.3, 0.2, 0.31,,

be two credal sets describins ni-nrry 
"T:bf", X1X2 andX2X3, respectively. Thesetwo credal seb are not proiicriue, as:V,(&r: 6;if0;1t]rf , f o.r,0.5l), whirera2\x) = cH{t0.3,0.71, ro.s. o.sl}. Ttererore i)tI)Z ji,qr). 

Definition IIn thrs case leads (using total valrlatlon) (o

(/v,t r > h,t)(XrXzXz)
= CH{Io, 0.3, 0, 0.7, 0, 0, 0, 01, i0.2, 0.1, 0.4, 0.3, O, 0, 0, 01,

[0, 0. r, 0, 0.3, 0, 0.2, 0, 0.4]. t0.07, r.*, 0., r, o. ri, o. 13, 0.07, 0.23, o. t7).[0.2s,0,0.2s,0, 0.2s, o, 0.2s, 0], t0.1, 0.15, 0.,, ,. ii, o. ,, 0. rs, 0. r, 0.lsl,[0, 0, 0, 0, 0.5, 0, 0.5, 0], t0, 0, 0, 0, 0.2, 0.3, 0.2,0.31 
. -

[0,0.2,0,0.8,0,0, 0,0], t0.13,0.07,0.4U, o.ro, o, o, o. rr,[0,0.1,0,0.4,0,0.1,0,0.4], to.o7,o.o3,o.rr,o.rr,''.ii.0.03,0.23,0.17r].
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On the other hand

(Mz> Mr)(XfizXt)
= cH{t0, 0.3, o, 0.7, o. 0, 0, 01, t0.2, 0.1, 0.4, 0.3' 0, 0' 0' 0l'

t0. o.l, o, 0.3, o, 0.2, o, 0.41, to.o?, 0.03, 0.17, 0 13, 0.13, 0.0'7 ,0.21, O't7l'

t0.25, 0. 0.25, O, 0.25, 0, 0.25, 01, [0. ], 0.15, 0.1' 0.15, 0.1' 0 15, 0 l ' 0 ls]'

t0, o, o, o, 0.5, o, 0.5, 01, [0, 0, 0, 0, 0.2, 0.3' 0.2,0.31].

which differs from (Mt > Mz\(XrXzXz). o

This difference deserves an explanation Mz, Mt is smaller (more precise) tian

Mt, Mz, which corresponds to the idea that we want Mzo Mt to keep all the

information contained in M2. Therefore, we do not consider those distributions from

Mt not corresPonding to any from Mz, although these distributions are taken into

account when comPosing,Mr > M2.
This is an example of a typical Property of the operator of composition-it is not

commutative. The next subsection is devoted to other basic propenies'

3.3 Basic ProPerties

In the following lenma we prove that this composition operator possesses basic

properties requted above.

Lemma 1 For two credal sets M| and M2 describing Xv and X1' resPectively' the

following properties hold true:

l. Mt > Mz is a credal set descibing Xru1
2. (Mr> M)(Xx) = Mt6x).
3. Mt> Mz : Mz> Mt ttMt(Xx"d = Mz(Xxo'

Proof l. To prove that Mt, Mz is a credal set describing Xlgt it is enough to

Lke into consideration thar it is the convex hull of probability dist budons on

X5u1, which is obvious from both [a] and [b] of Definition 1'

z. eiir'arginal-ization of a credal set is element-wise, it is enough to prove that for
- ;rt t ; (Mr > M)(xro)' PlK : Pr e Mr(xi holds' But it immediatelv

follows incase [a] fiom the results obtained forprecise probabilities (see e g [2])'

in 
""re 

tUl ltls oUulous, as any Pbelongs to avacuous eitensi onof P1 e Mt(Xr)
to X6e1.

3. Ftst, let us assume that

(Mt> M)(Xru): (Mz> Mt)(Xru)'

-/

L.



as dested. 
D

fie following rheorem. proven in [9], expresses.the relationship betweel strongindependence and the operaror of composition. It is, together with Lemma l, themost impon.nt assertion enabling us to introau." n,ui ioi."n.ionJ'.1i"r..
Theorrm I l-et M be a credal set describing XK\)1 with narginuls .M(Xr) andM(Xr\. Then
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Then also its marginals must b€ idendcal, panicularly

(Mt > M)(XxnD = (Mz> M)(Xxrv).

Taking into account 2. of this lemma we have

( h4, > M ) (X x oD 
__ [:x,, : l:; ;i]): 

y r *

= (,tv,t1(X{){xaL : Mr(Xxnr)

and similarly
(Mz> Mi(Xxni = jrlz(Xxot),

from which the desied equality immediately follows.

[,et, on the other han d, M:(XK^D = Mz(Xxqt).lntJris case only [a] of Defini-tion I is applied and for any disribM(x;dp2ar,6;ffi #il"i$:!!,r#;1;P'li';:il";i-*'.
But simultaneously (dle to projectivity) p = e; p2)7ffr 

, wfriJis an ete-ment of (Mz > Mt)(Xaul). Hence

(JAt > M)(Xxu = (Mz> Mi(XxvL\,

M(Xxu) = (JrllK o M!L)(Xxu)

(r \ z) .]l (z \ ()l(1( n z).

,f

This theoremremains valid also for this, revised definition, as,.{,1 (X and M(XL)are marginals of M(XKU), and therefore orry tut fro, p.o]"",]r"'aiia]bu,iorO ,,applicable.
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4 Conclusions

We presented revised version of composition operator for credal sets This definition

,""*, ,o be satisfactory from the theoretical point of view; it satisfies the basic

."q"i."J p.op"nles and, in contrary to the original one'-it avoids discontinuity'--ii-r"",,,. 
to be a reasonable tool for construction of compositional multidimen-

sional models. Nevertheless, many problems should be solved in the near future'

i-. ,fr" ,f,""*,icai point of view it is the relationship to probabilistic and evidential

"o.porltion, 
operal;rs. From the practical view-point it is the problem of effective

nJi'rg of ,h" n".est probability distributions (if there is no projective)'
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