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A B S T R A C T

Wang tile based representation of a heterogeneous material facilitates fast synthesis of non-periodic micro-
structure realizations. In this paper, we apply the tiling approach in numerical homogenization to determine the
Representative Volume Element size related to the user-defined significance level and the discrepancy between
bounds on the apparent properties. First, the tiling concept is employed to efficiently generate arbitrarily large,
statistically consistent realizations of investigated microstructures. Second, benefiting from the regular structure
inherent to the tiling concept, the Partition theorem, and statistical sampling, we construct confidence intervals
of the apparent properties related to the size of a microstructure specimen. Based on the interval width and the
upper and lower bounds on the apparent properties, we adaptively generate additional microstructure realiza-
tions in order to arrive at an RVE satisfying the prescribed tolerance. The methodology is illustrated with the
homogenization of thermo-mechanical properties of three two-dimensional microstructure models: a micro-
structure with mono-disperse elliptic inclusions, foam, and sandstone.

1. Introduction

The Representative Volume Element (RVE) is the key concept in
modelling of heterogeneous materials. The original definition by Hill
(1963) requires an RVE to (i) be “structurally entirely typical of the
whole mixture on average” and (ii) “contain a sufficient number of
inclusions for the apparent overall moduli to be effectively independent
of the surface values of traction and displacement, so long as these
values are ‘macroscopically uniform’.” For materials with periodic mi-
crostructure, these requirements are met by any periodic part of the
microstructure under periodic boundary conditions (Ostoja-Starzewski,
2006).

However, the majority of real-world materials display randomness
in their microstructures. Sab (1992) proved that microstructure ergo-
dicity and statistical homogeneity are the essential requirements for the
existence of an RVE. He also showed that the second Hill requirement is
attainable only in the infinite-size limit and, thus, homogenized prop-
erties determined from any finite-size microstructure realization are
biased by the adopted boundary conditions. For this reason, an error
measure and its threshold have to be introduced in order to define an
RVE for random heterogeneous materials (also referred to as a “com-
putational RVE” (Salmi et al., 2012a) or a “numerical RVE” (Moussaddy
et al., 2013)). In practice, the RVE size is also limited from above by the

requirement of separation of scales. When violated, the finite-size
bounds can serve only as an input to stochastic finite element calcula-
tions (Salmi et al., 2012a; Ostoja-Starzewski, 1998) or higher-order
terms have to be introduced in a fully nested numerical homogenization
(Kouznetsova et al., 2002; Geers et al., 2010; Matouš et al., 2017, and
references therein).

The RVE size depends on the type of treated physical phenomena,
microstructure geometry, and contrast in microstructure constituent
properties (Stroeven et al., 2004). In the case of high contrast
(Dirrenberger et al., 2014) or non-linear behaviour (Stroeven et al.,
2004; Gitman et al., 2007; Pelissou et al., 2009) the influence of par-
ticular geometry gets significantly pronounced, leading in turn to much
larger RVE sizes or even to non-existence of an RVE (Gitman et al.,
2007). Therefore, any recommendation on the RVE size, e.g., those for
carbon reinforced polymers made by Trias et al. (2006) or for parti-
culate media (Gitman et al., 2006, and references therein), are always
highly material-specific and cannot be applied to other materials
(Matouš et al., 2017). Consequently, similar procedures have to be
performed for each investigated material, making the RVE determina-
tion still an open topic.

Plenty of works have been devoted to numerical studies of the RVE
size; see Section 3.2 for an overview. The prevalent scheme is to (i)
generate an ensemble of Statistical Volume Elements (SVEs), i.e.,
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stochastic microstructure realizations smaller than an RVE, and (ii)
compute their apparent properties under suitable boundary conditions.
Then, depending on convergence criteria related to distribution of ap-
parent properties within the ensemble, either a new ensemble of larger
SVEs is produced or the generated SVEs are declared RVEs for the given
threshold. The criteria typically involve fluctuations in the apparent
properties (Stroeven et al., 2004; Kanit et al., 2003), their discrepancy
under different boundary conditions (Ostoja-Starzewski, 1998), or a
combination of both (Salmi et al., 2012a; Moussaddy et al., 2013; Trias
et al., 2006). Such an approach is involved because of (i) the need to
generate statistically representative microstructure realizations of in-
creasing size and (ii) the computational cost of calculating the apparent
properties. For the former reason, most works resort to simple micro-
structure models, e.g., particulate media (Stroeven et al., 2004; Gusev,
1997; Segurado and Llorca, 2002; Salmi et al., 2012b; Zohdi et al.,
2001; Zohdi and Wriggers, 2001) or Voronoï tessellations (Kanit et al.,
2003).

In this contribution, we address these drawbacks simultaneously by
exploring the formalism of Wang tiling, recalled in Section 2. Our ap-
proach decouples the microstructure generation into the off-line and
on-line phases. In the off-line phase, the microstructure is compressed
in a set of mutually compatible domains—Wang tiles. During the cal-
culations, microstructure realizations are assembled from the com-
pressed set following a simple on-line stochastic algorithm. As a result,
arbitrarily large yet statistically coherent realizations of the compressed
microstructure can be generated almost instantly.

Additional advantages of the tiling concept follow from the natural
decomposition of the tiling-based microstructure realizations into reg-
ular non-overlapping domains. This allows us to employ the Partition
theorem by Huet (1990), revisited in Section 3.4, to infer confidence
intervals of the homogenized properties by statistical sampling. More-
over, the computational cost of determining apparent properties can be
alleviated by standard domain decomposition techniques (Kruis, 2006).

Taking the aforementioned benefits into account, in Section 4 we
propose a methodology to identify the RVE size for a user-defined ac-
curacy. New microstructure realizations are added on-the-fly to the
sequentially generated ensembles of SVEs of increasing size in order to
achieve a prescribed confidence in apparent properties, computed with
the first-order numerical homogenization recalled in Section 3. The
termination criterion, i.e., whether the RVE size has been reached, is
based on statistical hypothesis testing related to the provided accuracy,
similarly to, e.g., (Salmi et al., 2012b; Saroukhani et al., 2015). In
Section 5, we apply the proposed methodology to the RVE size de-
termination of three microstructure models: a microstructure with
mono-disperse elliptic inclusions, foam, and sandstone.

Scope restrictions. In what follows, we consider only two-

dimensional problems for the sake of clarity, but the extension to three
dimensions in the form of Wang Cubes is straightforward (Kari and
Culik, 1995; Doškář et al., 2014). We take existing tiling-based com-
pressions of material microstructures, obtained with methods described
in our previous publications, e.g., (Doškář et al., 2014; Novák et al.,
2012), as fixed inputs capable of sufficiently accurate representation of
the microstructure, and perform parametric studies on these geome-
tries. We also restrict our attention to linearised elasticity and thermal
conduction, because an RVE for these linear problems is well defined. In
the general case of non-linear models, for instance due to the de-
terministic size effect in the softening regime, an RVE may not exist in
the classical sense (Gitman et al., 2007), and appropriate modification
has to be adopted, e.g., a traction-opening formulation (Verhoosel et al.,
2010) or averaging only over active damaging domain (Phu Nguyen
et al., 2010).

Notation. Throughout the paper, we employ the tensorial notation:
scalars are denoted with plain letters, e.g., a; first- and second-order
tensors are typeset with bold italic letters, either a or A; and fourth-
order tensors are written in regular bold letters, A.

2. Wang tiling for random heterogeneous materials

2.1. Background

The idea of Wang tiling resembles a game of jigsaw puzzle, except
that there is only a small set of distinct jigsaw pieces with an infinite
number of copies. The jigsaw pieces—Wang tiles—have codes attributed
to their edges. The goal is to cover a portion of a plane, denoted as a
tiling, with tile instances from a given tile set, such that the adjacent tiles
share the same code on the corresponding edge, see Fig. 1. The codes
thus play a role of compatibility constraints during an assembly.
Moreover, the tiles can be neither rotated nor reflected during a tiling
procedure.

The particular set needs to be accompanied by an assembly algo-
rithm capable of producing valid tilings. In our applications, we prefer
the stochastic assembly algorithm introduced by Cohen et al. (2003)
over deterministic automata, e.g., (Grünbaum and Shephard, 1987,
Chapters 10 and 11), because the former allows for larger variability in
design of the tile set. The stochastic assembly algorithm depicted in
Fig. 1 works as follows: an empty grid is sequentially filled with tile
instances in the row-by-row order, the so called scanline algorithm
(Lagae and Dutré, 2006). At each step, a tile to-place (denoted with “?”
in Fig. 1) is randomly chosen from a subset containing only admissible
tiles with respect to the codes of the previously places ones. In Fig. 1 the
candidate tiles are 2 and 7 as they have red code on the right-hand edge
and blue code at the bottom. Randomness of the whole procedure is

Fig. 1. Illustration of (a) the abstract definition of a Wang tile, (b) a compressed microstructure within a tile set with highlighted tile indices (note that tiles 4, 5, and 7 are self-compatible
and, thus, each can stand as a Statistically Equivalent Periodic Unit Cell), and (c) a partially reconstructed microstructure and the underlying tiling, where a step in the stochastic assembly
algorithm is depicted. Based on the codes of previously placed tiles 8 and 6, at this step, either tile 2 or 7 will be placed at the position marked with “?” and the algorithm will continue
with the remaining empty position.
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ensured with presence of at least two tiles for each combination of
codes on horizontal and vertical edges (Cohen et al., 2003). Examples of
the tile sets and generated tilings are provided in Section 5, Figs. 4, 9
and 14.

2.2. History and relevant applications

The abstract concept of Wang tiling was originally proposed by the
mathematician Hao Wang as a semi-decision procedure for proving
logical statements of the AEA1 class (Wang, 1961). His conjecture that
an infinite plane can be tiled only periodically was subsequently dis-
proved by Berger (1966), who constructed the first aperiodic set of
20,426 tiles and proposed the corresponding assembly algorithm. Over
the years, this number has been reduced (Grünbaum and Shephard,
1987) down to the currently smallest set of 11 tiles by Jeandel and Rao
(2015), who also conjectured this set to be the smallest possible.

Outside discrete mathematics, Wang tiling has found its use in
Computer Graphics for an efficient real-time synthesis of a blue noise,
which is an essential point distribution for anti-aliasing and dithering,
e.g., (Kopf et al., 2006, and references therein). In addition, Cohen et al.
(2003) demonstrated that Wang tiles deliver excellent performance in
generating naturally looking textures. This development directly mo-
tivated our application of Wang tiles in microstructure modelling as
discussed next.

2.3. Tiling in modelling of heterogeneous materials

In what follows, a computer model of a material microstructure is
understood as a process of generating individual realizations with
spatial statistics corresponding to the investigated material (Liu and
Shapiro, 2015). Pioneered by Povirk (1995), most representations are
generated with optimization algorithms that minimize discrepancy in
statistical characterization of the reference and the generated micro-
structure. Due to the multi-modal nature of the optimization problem,
the simulated annealing, e.g., (Yeong and Torquato, 1998; Kumar et al.,
2006; Zeman and Šejnoha, 2007), holds a prominent place among the
algorithms; however, other methods such as gradient algorithms
(Povirk, 1995; Fullwood et al., 2008a), genetic algorithms (Zeman and
Šejnoha, 2007; Lee et al., 2009), or phase-recovery (Fullwood et al.,
2008b) have been successfully applied. The microstructural mor-
phology is usually characterised by means of either Minkowski func-
tionals (Scheunemann et al., 2015) or set of n-point correlation func-
tions (Torquato, 2002). In the latter, the two-point probability function
(Jiao et al., 2007; Zeman and Šejnoha, 2001; Rozman and Utz, 2001)
supplemented either with the two-point cluster (Jiao et al., 2009) or the
lineal path (Kumar et al., 2006; Zeman and Šejnoha, 2007; Lu and
Torquato, 1992; Havelka et al., 2016) functions proved to be sufficient
to capture major geometrical features at acceptable computational
costs.

Recently, new approaches to microstructure models have emerged,
inspired by texture synthesis in Computer Graphics (Wei and Levoy,
2000), that make use of samples of the reference microstructure. In-
dividual realizations are sequentially generated as a Markovian process
with voxels (Liu and Shapiro, 2015; Bostanabad et al., 2016) or whole
patches (Tahmasebi and Sahimi, 2013) from the reference sample. The
suitable voxel/patch values are either chosen according to the statis-
tical proximity of their surrounding in the reference sample to the
previously generated portion of the new microstructure realization (Liu
and Shapiro, 2015; Tahmasebi and Sahimi, 2013), or generated by a
supervised learning model based on classification trees (Bostanabad
et al., 2016).

The common feature of these approaches is that they deliver a
statistically similar realization under periodic boundary conditions,

which is referred to as a Statistically Optimal Representative Unit Cell
(Lee et al., 2009), a Statistically Similar Representative Volume Ele-
ment (Balzani et al., 2014), or a Statistically Equivalent Periodic Unit
Cell (SEPUC) (Zeman and Šejnoha, 2007). Consequently, each new
microstructure realization requires a new, often computationally in-
tensive run of the generating procedure. An alternative is to tile peri-
odically a larger domain with a previously generated cell; however, this
introduces long-range periodic artefacts.

From this viewpoint, the stochastic Wang tiling concept presents a
compromise between the two aforementioned approaches. The tile set
generalizes the notion of SEPUC; instead of being attributed to a single
cell, the microstructural information is compressed in a handful of tiles
with defined mutual compatibility. While the short-range features of a
microstructure are present predominantly in the tile interiors, the long-
range characteristics are captured through the particular distribution of
the tile edge codes, governing the compatibility requirements. Once the
microstructure is compressed in the off-line phase, its realizations of
any size are generated almost instantly by the assembly algorithm in-
troduced in Section 2.1 (and illustrated with Fig. 1). In contrast to the
above-mentioned periodic extension, the assembled realization-
s—tilings—are stochastic and exhibit suppressed periodicity artefacts;
see (Novák et al., 2012; Doškář et al., 2014). These features make the
microstructure representation based on the Wang tile formalism ap-
pealing in applications where multiple (possibly large) microstructure
realizations are required.

2.4. Microstructure compression

Microstructure compression amounts to designing a tile set (i.e., its
cardinality and distribution of the tile edge codes) and morphologies of
tiles within the tile set such that (i) the microstructure remains con-
tinuous across the congruent edges and (ii) assembled realizations
match the reference microstructure, usually in terms of target spatial
statistics. Note that spatial statistics of an individual tile differ from that
of the compressed microstructure in general and the proximity of the
spatial statistics is required only for assembled tilings.

Because the Wang tile based representation generalizes the SEPUC
approach, methods developed for SEPUC can be extended to the gen-
eralized periodic boundary conditions appearing in the Wang tiling
concept. We have already reported approaches based on optimization
algorithms with objective function taking into account the discrepancy
in the two-point probability functions (Novák et al., 2012) or inter-tile
traction jumps (Novák et al., 2013). In order to circumvent the com-
putational complexity of the optimization approach, we have also
adopted the Computer Graphics approach of Cohen et al. (2003), which
generates the tile morphology from provided samples of a texture, and
we enhanced it with spatial statistics, namely, the two-point probability
and cluster functions in (Doškář et al., 2014). This procedure was used
to design the tile set in Fig. 14.

The methodology developed in the following sections holds for ar-
bitrary tile sets, irrespectively of the specific tile design algorithm,
providing that the microstructure is accurately captured in the tile set;
see (Doškář et al., 2014; Novák et al., 2012; Doškář and Novák, 2016),
for additional details.

3. RVE and numerical homogenization

In this work, we assume the simplest linear constitutive laws at both
the micro and the macro scales. Consequently, knowledge of micro-
structure compositions can be readily propagated to the upper scale by
homogenized parameters of an effective constitutive model. The first-
order numerical homogenization is summarized in Subsection 3.1,
providing us with boundary-condition biased apparent properties. Next,

1 A statement containing two universal and one existential quantifiers.
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the notion of RVE is introduced in Subsection 3.2. Finally, Subsections
3.3 and 3.4 recall the hierarchy of bounds and the Partition theorem,
respectively, relating the apparent properties of a domain and its sub-
domains.

3.1. First-order numerical homogenization

3.1.1. Linear elasticity
Assume the first-order decomposition of a displacement field u͠ in

the form;

U�= ⋅ + ∀ ∈ ∈u x E x u x x u( ) ( ) Ω , ,͠ ͠ ͠s s
* * (1)

where E is the (prescribed) macroscopic strain tensor, �⊂Ωs
d denotes

the d-dimensional finite-size domain of a microstructure sample of
characteristic size s, and U�

s defines a set of admissible displacement
fluctuation fields u͠ *.

For a given Ωs and U�

s , we define the apparent stiffness tensor �Ds
with the variational equality

U

�

�
= + ∇ + ∇

∈
E E E u x x E u xD D: : inf ( ( )) : ( ) : ( ( )) ,͠ ͠

u
s

s * s *
Ω

͠ s
s* (2)

where xD( ) is a local stiffness tensor, ∇s stands for the symmetric part
of the gradient, and • Ωs denotes spatial averaging defined as

∫=x x x•( ) 1
Ω

•( )d .
s

Ω Ωs
s (3)

The actual strain ε and stress σ fields then follow from the minimizer2

u* of Eq. (2) through the standard expressions

= + ∇ =ε x E u x σ x x ε xD( ) ( ) and ( ) ( ): ( ),s * (4)

where we have used the generalized Hooke's law.
Allowing onlyU�

s such that ε and σ satisfy the energy consistency,
also known as Hill's condition (Hill, 1963),

=σ x ε x σ x ε x( ) : ( ) ( ) : ( ) ,Ω Ω Ωs s s (5)

allows us to directly relate �Ds to the average stress,

�= =σ x x ε x ED D( ) ( ) : ( ) : ,sΩ Ωs s (6)

which will be later used for computing the apparent properties.
Posing Eq. (2) as a Boundary Value Problem, Hill's criterion is sa-

tisfied by adopting U�

s from the family of Mixed Uniform Boundary
Conditions (Hazanov and Huet, 1994),

U U U�⊆ ⊆ ,s s s
K S (7)

where Us
K and Us

S represent the sets of admissible fields u͠ * compliant
with the Kinematic and Static Uniform Boundary Conditions.3 The
particular forms are specified as follows:
Kinematic Uniform Boundary Conditions (KUBC) impose a prescribed
displacement at the domain boundary ∂Ωs in the form,

= ⋅ ∀ ∈ ∂∼u x E x x( ) Ω ,s (8)

resulting in vanishing fluctuation displacements at ∂Ωs. This corre-
sponds to setting

U �= → =∂{ }u u 0: Ω ; .͠ ͠s s
K * d *

Ωs (9)

Static Uniform Boundary Conditions (SUBC) are traditionally defined
with affine traction vectors at ∂Ωs, leading to a stress-controlled pro-
blem. However, Miehe (2003) proved that SUBC correspond to the so-
called minimal Kinematic Boundary Conditions, used in e.g. (Doškář
and Novák, 2016; Mesarovic and Padbidri, 2005; Glüge, 2013), that

require

= ∇ ∼E u x( ) .s
Ωs (10)

Similarly to Eq. (9), this provides the specific form ofU�

s as

U � ∫= → ⊗ = =
∂{ }u n u u x0 0: Ω ; dΓ , ( ) .͠ ͠ ͠s s

S * d
Ω

* *
Ω

s s (11)

Note that the boundary integral contains also non-symmetric part of the
gradient, which along with the last condition in Eq. (11) prevents rigid
body modes.

3.1.2. Thermal conduction
For thermal conduction, we can proceed analogously to linear

elasticity with only minor modifications: Generalized Hooke's law is
replaced with Fourier's law, = − ⋅q x K x g x( ) ( ) ( ), which governs the
relation between a heat flux q and a temperature gradient = ∇g θ͠ via a
thermal conductivity tensor K . The first order decomposition of an
admissible temperature field xθ ( )͠ reads

T�= ⋅ + ∀ ∈ ∈x G x x xθ θ θ( ) ( ) Ω , ,͠ ͠ ͠s s
* *

(12)

with G denoting the prescribed macroscopic temperature gradient and
T�

s being, again, the set of admissible temperature fluctuation fields
compliant with Hill's condition

⋅ = ⋅q x g x q x g x( ) ( ) ( ) ( ) .Ω Ω Ωs s s (13)

Consequently, the variational definition of the apparent con-
ductivity tensor �Ks ,

T

�

�

⋅ ⋅ = + ∇ ⋅ ⋅ + ∇
∈

G K G G x K x G xθ θinf ( ( )) ( ) ( ( )) ,͠ ͠
s

θ

* *
Ω͠ s

s* (14)

is equivalent to the volume averaging of the heat flux obtained from the
minimizer xθ ( ) of Eq. (14)

�= − ⋅∇ = − ⋅q x K x x K Gθ( ) ( ) ( ) .sΩ Ωs s (15)

As in the previous section, Eq. (13) can be ensured with a proper
choice of T�

s that falls within the following two limit cases:
Uniform Temperature Gradient Boundary Conditions prescribing values at
the boundary in the form

= ⋅ ∀ ∈ ∂x G x xθ ( ) Ω ,s (16)

which translates to

T �= → =∂{ }θ θ: Ω ; 0 ,͠ ͠
s s
G * *

Ωs (17)

and
Uniform Heat Flux Density Boundary Conditions defined analogously to
Eq. (10) and represented by

T � ∫= → = =
∂{ }n xθ θ θ0: Ω ; dΓ , ( ) 0 .͠ ͠ ͠

s s
F *

Ω

* *
Ω

s s (18)

3.2. Notion of RVE
The apparent properties introduced above are in general boundary

condition biased and individual realizations of the microstructure yield
different tensors, which contradicts the original requirement of Hill
(1963). However, Sab (1992) proved that boundary-biased apparent
properties converge to the homogenized ones with increasing size s,
thus

� �⎯ →⎯⎯⎯⎯ ⎯ →⎯⎯⎯⎯
→∞ →∞

K KD D and ,s
s

s
shom hom (19)

see also Bourgeat and Piatnitski (2004).
As discussed in Introduction, the theoretical RVE is conventionally

2 For the sake of conciseness, we do not state the explicit dependence =u u E( )* * .
3 Although the Periodic Boundary Conditions usually provide reasonable estimates of

the homogenized properties even in the case of a non-periodic microstructure (Kanit
et al., 2003; Michel et al., 1999; Sab and Nedjar, 2005), our RVE criterion is based on the
discrepancy between the bounds on the apparent properties. Therefore, we omit discus-
sion on Periodic Boundary Conditions onwards.

M. Doškář et al. European Journal of Mechanics / A Solids 70 (2018) 280–295

283



replaced with a finite size numerical counterpart (Moussaddy et al.,
2013). The common approach to the determination of the numerical
RVE size rests on generating ensembles containing sequentially larger
SVEs until statistics of the obtained data comply with a user-defined
threshold. The investigated data ranges from classical overall stiffness
parameters (Salmi et al., 2012a; Trias et al., 2006; Terada et al., 2000;
Shan and Gokhale, 2002) and elastic strain energy density (Saroukhani
et al., 2015), to mean values or concentrations in microstructural stress
and strain fields (Stroeven et al., 2004; Gitman et al., 2006, 2007; Trias
et al., 2006; Shan and Gokhale, 2002), to deviations from assumed
macroscopic isotropy (Moussaddy et al., 2013; Salmi et al., 2012b).
Statistical control usually includes output variance for different reali-
zations of the same size and convergence of the mean value from one
SVE size to another. Relying on a single criterion, especially when
combined only with one type of boundary conditions (e.g., Periodic
Boundary Conditions), can lead to pre-mature convergence (Moussaddy
et al., 2013); therefore, more recent works combine both characteristics
(Salmi et al., 2012a; Moussaddy et al., 2013; Trias et al., 2006;
Saroukhani et al., 2015).

In order to alleviate the computational cost related to the above
mentioned approach, Kanit et al. in their seminal work (Kanit et al.,
2003) adopted the notion of the integral range allowing them to es-
tablish a power-law relation among an SVE size, cardinality of an en-
semble, and the variation of apparent properties. Parameters of the
relation are calibrated with only a handful of computations and the RVE
size is then derived with respect to a user-defined statistical variation
threshold. Moreover, the expression also allows to substitute a single
RVE with a set of smaller SVEs. Pelissou et al. (2009) enhanced the
original approach by introducing uncertainty to both the mean value
and the variance, using the bootstrapping method, and applied it to
non-linear problems. Recently, Dirrenberger et al. (2014) extended
Kanit et al.’s approach to an artificial microstructure with infinite in-
tegral range demonstrating that the approach is applicable even for
highly complex materials. The method of Kanit et al. (2003) has
also been successfully applied to the real world tasks arising, for in-
stance, in the food industry (Kanit et al., 2006, 2011). However, the
variance based criterion of Kanit et al. relies on an implicit assumption
that the mean value is not significantly biased by the prescribed
boundary conditions. This assumption is usually valid for large SVEs
under Periodic Boundary Conditions (Michel et al., 1999; Sab and
Nedjar, 2005), but the assumption becomes questionable for complex
microstructures with high contrast in phase properties (Dirrenberger
et al., 2014).

A different approach to an RVE definition was proposed by Drugan
and Willis (1996). Estimating the effect of strain average fluctuations in
a non-local constitutive equation allowed them to derive the RVE size of
two particle diameters for a microstructure composed of non-over-
lapping spheres. Their analytical findings were later corroborated in
numerical studies of Gusev (1997) and Segurado and Llorca (2002).
Another alternative definition of an RVE has been recently proposed by
Hoang et al. (2016), who combined incremental analytical and nu-
merical homogenizations. Their RVE criterion rests on the convergence
of parameters in the analytical homogenization identified to follow
results of the numerical homogenization.

Some authors, e.g., (Trias et al., 2006; Shan and Gokhale, 2002;
Niezgoda et al., 2010), also incorporated additional statistics into their
definition of the RVE. Following Kanit et al.’s idea of replacing a single
RVE with a set of smaller ones, Niezgoda et al. (2010) introduced the
notion of RVE Set composed of optimally chosen SVEs from an en-
semble whose convex combination best matches the ensemble average
of given microstructural statistics, namely, the two-point correlation
function. The optimal convex combination is then used for computing

all macroscopic properties.

3.3. Bounds on the apparent properties
For the sake of conciseness, we recall the hierarchy of bounds for

linear elasticity only; however, the exposition can be straightforwardly
applied also to the problem of thermal conduction.

In linear elasticity, KUBC and SUBC hold a prominent place as they
provide bounds on the apparent property (Hill, 1963; Huet, 1990)

�≼ ≼D D D ,s s s
S K (20)

with the ordering relation ≼ defined for fourth-order tensors A and B in
the sense

�≼ ⇔ − ≥ ∀ ∈ ×a a aA B B A: ( ): 0 .d d (21)

This classical ordering directly follows from the principle of
minimum potential energy, Eq. (2), and the definition of the kinema-
tically admissible spaces, Eq. (7).

Beside the realization-to-realization convergence of the apparent
properties to the homogenized ones, Sab (1992) also proved that the
homogenized properties can be bounded by ensemble averages. In
particular, it holds

� �⎜ ⎟
⎛
⎝

⎞
⎠

= =
−

C D Dsup ( ) inf ( ),
s

s
s

s
S

1
hom K

(22)

where � (•) denotes the expected value of an ensemble average over all
microstructure realizations of the same size and = −C D( )s s

S S 1.

3.4. Partition theorem
In the case of a finite-size domain, a hierarchy of bounds similar to

Eqs. (20) and (22) can be established for the apparent properties of the
domain and its subdomains. This was first recognized by Huet (1990)
under the name Partition theorem with implications for physical testing
of materials whose representative volumes are unattainable for prac-
tical experiments. Later, the same hierarchy appeared in (Sab, 1992) as
the sub-additivity property of apparent tensors, and in (Zohdi and
Wriggers, 1999, and subsequent works) as a consequence of error
bounds in the substructuring method (Zohdi et al., 2001).

Assume partitioning of the domain Ωs into n equi-sized non-over-
lapping subdomains = …i nΩ , 1 ,r

i( ) of the characteristic size <r s.
By solving the variational problem (2) independently for each sub-
domain under KUBC, we obtain the collection of solutions

∈u x x{ ( ), Ω }i
r
i( ) ( ) . Clearly, a displacement field u defined for the whole

domain Ωs as

�= → =u x u x u u( ) { ( ): Ω ; }s
id

Ω

( )

r
i( ) (23)

is an admissible field satisfying Eq. (8). Hence, plugging u in Eq. (2)
leads to

�

≤ ∇ ∇

= ∑ ∇ ∇

= ∑ ∀ ∈ ×

E E u x x u x

u x x u x

E E E

D D

D

D

: : ( ): ( ): ( )

( ): ( ): ( )

: : , ,

s

i
n i i

n i
n

r
i

K s s
Ω

Ω
Ω

s ( ) s ( )
Ω

1 K,( )
sym
d d

s

r
i

s r
i

( )
( )

(24)

which provides us with the relation

∑≼ =
n

D D D1 .s
i

n

r
i

r
K K,( ) K

(25)

From the Principle of minimum complementary energy, an analogous
result for SUBC follows in the form
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∑≼ =
n

C C C1 .s
i

n

r
i

r
S S,( ) S

(26)

By recursive partitioning of subdomains and making use of Eq. (20) and
the convergence property Eq. (19), the final hierarchy of bounds can be
established

≼⋯≼ ≼ ≼⋯≼

≼⋯≼ ≼ ≼⋯≼

− −
+

−

+

( ) ( ) ( )C C C

D D D D ,
sk sk

s s s

0
S 1 S 1

1
S 1

hom K K K
k k1 0 (27)

where = +s sk q k
1

1 with �∈q ; see Fig. 2 for an illustration with =q 2.

Note that the outermost bounds D0
K and

−( )C0
S 1

, obtained as the limit
states for →s 0, are the classical Voigt and Reuss bounds which are
derived under the assumption of homogeneous strain and stress field
within the sample.

4. RVE size determination

Equipped with a procedure for computing apparent properties and
with a realistic microstructure generation that also provides parti-
tioning in the spirit of Huet (1990), we formulate a two-level method
for identification of the RVE size for a user-defined tolerance and
confidence level.

Similar ideas have been presented in several works; here, we at-
tempt to encompass the best of these in a comprehensive yet straight-
forward framework. We build on two assumptions:

• statistical homogeneity and ergodicity of the microstructure itself to
ensure existence of an RVE (Sab, 1992);

• sufficiently accurate compression of the microstructural information
in the form of a Wang tile set. We assume that all essential features
of the investigated microstructure are present in reconstructed
samples4 and hence the RVE size identified for the tile-based com-
pression corresponds to the RVE size of the microstructure.

Note that the latter assumption is inherently present in any micro-
structure compression technique, including the SEPUC approach
(Zeman and Šejnoha, 2007; Niezgoda et al., 2010).

Our approach resembles the work of Saroukhani et al. (2015),
especially in deriving bounds on the homogenized properties with
methods of statistical sampling. General bounds on statistical moments
were also presented in (Zohdi, 2005; Zohdi and Wriggers, 2008).
Contrary to the aforementioned works, which does not provide any
quantitative definition of the RVE, we introduce an RVE criterion that is
based on hypothesis testing similar to, e.g., (Trias et al., 2006; Gitman
et al., 2006). Unlike the latter works, the number of microstructure

realizations is not defined a priori in our approach, as we control their
number on-the-fly in order to meet a prescribed confidence in bounds
on the apparent properties.

The key idea is to relate the theoretical RVE to an infinite tiling. Any
finite-size tiling can thus be considered as a subdomain of the RVE. The
bounds in Eq. (27) then implicitly contain infinite sums. Therefore, at
the first level of our methodology, we identify the minimal number of
microstructure realizations that delivers the bounds with a user-defined
uncertainty. At the second level, we assess the discrepancy between the
bounds and, based on statistical hypothesis testing, we decide whether
the actual size of microstructure is the RVE size for the defined toler-
ance.

4.1. Level I: bounds for apparent properties

To keep the exposition concise, we adopt a certain abuse of notation
in the sequel: L stands for apparent tensors rendered by prescribing the
zero fluctuation unknowns point-wise at the boundary (i.e., =L DK in
the case of linear elasticity and =L K G for the thermal conduction),
whilst M denotes the complementary quantity obtained by enforcing
the zero fluctuations in the weak, boundary-integral sense ( = −M D( )S 1

or = −M K( )F 1). Analogously to the linear elasticity problem, the su-
perscripts •G and •F denote the apparent conductivity tensors obtained
under Uniform Gradient Boundary Conditions and Uniform Flux
Boundary Conditions, respectively, recall Section 3.1.2.

For each realization Ωs
i( ) of a ×s s tiling5 we define two scalar values

L Ml = m =and ,s
i

s
i

s
i

s
i( ) ( ) ( ) ( ) (28)

that are used to quantify variability of a s-size SVE ensemble. The
particular type of the norm in Eq. (28) is a modelling choice to be made
by a user. We assume the obtained data to be in the form

l = l + δ + e = l + e
m = m + δ + e = m + e

,
,

s
i hom

s
l

s
l, i

s s
l, i

s
i hom

s
m

s
m, i

s s
m, i

( ) ( ) ( )

( ) ( ) ( ) (29)

where lhom and mhom correspond to the norms of the sought homo-
genized tensors Lhom and = −M L( )hom hom 1, δ l

s and δ m
s denote the sys-

tematic bias caused by specific boundary conditions and the finite size
of the domain, and es

l, i( ) and es
m, i( ) are random, normally distributed

errors from N ς(0, ( ) )l
s

2 and N ς(0, ( ) )m
s

2 related to the stochastic nature
of the microstructure. Recall that the systematic errors and the var-
iances ς( )s

• 2 of the random errors vanish as → ∞s , Eq. (19).
In Eq. (29) and in the sequel, the bar-denoted quantities •s represent

the theoretical mean value, obtained by averaging the quantity over all
possible realizations. Due to the assumed infinite size of the theoretical
RVE, these values are unattainable and must be replaced with con-
fidence intervals. To this purpose, for both quantities l and m of ns
realizations of ×s s tiling, we compute the sample mean values

∑=
=n

•̂ 1 •s
s i

n

s
i

1

( )
s

(30)

and the unbiased sample standard deviations

∑=
−

−
=

ς
n

ˆ 1
1

(• •̂ ) ,s
s i

n

s
i

s
•

1

( ) 2
s

(31)

with • denoting either l or m. From the Central Limit Theorem, the
deterministic value •s falls with − ×∼P(1 ) 100%ϵ probability within the
confidence interval

∈ − +α α• [•̂ ; •̂ ],s s s s s
• • (32)

with the width of the interval given by

Fig. 2. Illustration of the Partition theorem: The apparent properties and of

the rightmost, yellow-bordered tiling are consecutively bounded by the hierarchies

and

of ensemble averages of consecutively smaller subdomains of side length sk . (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the Web version
of this article.)

4 Albeit reduced compared to the periodic extension of a SEPUC, reconstructed reali-
zations exhibit secondary peaks in spatial correlation functions (Doškář et al., 2014;
Novák et al., 2012; Novák et al., 2013). These peaks are further reduced in solutions to
homogenization-related Boundary Value Problems and averaged; therefore, the influence
of the secondary peaks on the apparent properties and the RVE size is marginal. 5 Size of a realization is always an integer multiple of the tile size.
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= − ∼
−

−α t P
ς
n

(1 /2)
ˆ

,s n ϵ
s

s

•
1

1
•

s (33)

where −t P( )n
1 denotes the inverse cumulative distribution function of

Student's t-distribution and ∼Pϵ is a significance level provided by the
user for Level I.

The ratio

=ϵ
α
•̂s

s

s

•
•

(34)

provides a natural uncertainty measure in the bounds. Note that, due to
the presence of − ∼

−
−t P(1 /2)n ϵ1

1
s in Eq. (33), the ratio does not correspond

to the (biased) estimation of the coefficient of variation (CoV) used in,
e.g., (Salmi et al., 2012a; Trias et al., 2006). This complies with our
intention to assess the uncertainty of ensemble mean value determi-
nation rather than the variation inherent to the limited realization size
and the imposed BC.

Microstructure realizations are being added on-the-fly to the en-
semble of size s samples until the uncertainty in both upper and lower
bounds drops below a given threshold, i.e., <ϵ ϵs

• usr, which translates to
asserting that the actual mean value •s falls outside the interval

− +ϵ ϵ[(1 )•̂ , (1 )•̂ ]s s
usr usr with less than probability ∼Pϵ . Once this condition

is satisfied, we assume that the ensemble contains sufficient number of
realization to provide the desired accuracy for the RVE size criterion,
controlled next.

4.2. Level II: RVE size criterion

Proximity of each realization to the RVE size is assessed using a
discrepancy between Ls

i( ) and −M( )s
i( ) 1. Recall that Ls

i( ) and Ms
i( ) are re-

ciprocal in the RVE case, see Eq. (22). For each realization, we define
the proximity error as

= ⋅ −L M Iξ ,s
i

s
i

s
i( ) ( ) ( ) (35)

where ⋅ denotes the corresponding tensorial contraction6 and I is the
corresponding unit tensor (with the pertinent symmetries). Again, the
particular type of the norm is a modelling choice; for instance, Sab
(1992) used the infinity norm.

Finally, the RVE size criterion is based on testing the hypothesis

≥ <ξ ξ ξ ξH : against H : ,s s0
usr

1
usr

where ξ usr is a given threshold discrepancy defining the computational
RVE. This results in the one-tailed hypothesis test

+ − = ≤∼
−

−ξ t P
ς
n

ξ ξˆ (1 )
ˆ

.s n ξ
s
ξ

s
s1

1 test usr
s (36)

If condition (36) is satisfied for user-defined ∼Pξ and ξ usr, the current
tiling size s is declared to be the computational RVE size; otherwise, we
proceed with an ensemble of larger tilings.

The proposed methodology is summarized in Algorithm 1. For
practical purposes, size and number of realizations are limited with
smax and nmax, respectively. Moreover, the first nmin realizations of each
size are generated and their apparent properties Ls

i( ) and Ms
i( ) com-

puted without comparing ϵs
• to the threshold value, in order to acquire

reliable data statistics for the RVE size criterion. Characteristics of
×1 1 tilings are computed independently beforehand, because they

correspond to the properties of individual tiles weighted by the
probability of occurrence of each tile in an infinite tiling, which fol-
lows directly form the definition of the tile set, cf. the idea of RVE Sets
(Niezgoda et al., 2010).

Algorithm 1. Identification of the numerical RVE size.

4.3. Alleviating computational cost

High computational cost is a common sore of procedures aimed at
identifying the RVE size. We exploit the repeating occurrence of in-
dividual tiles in the microstructure realizations to accelerate solution of
the Boundary Value Problems (BVP). Namely, we consider each tile to
be a macro-element whose stiffness matrix is obtained using static
condensation of internal unknowns of the finite-element (FE) stiffness
matrix of the tile. Thus, the tile stiffness matrix is factorized only once
at the beginning of the RVE size analysis. In the spirit of the Schur
complement method, BVP of each microstructure realization then cor-
responds to a coarse grid problem composed of the macro-elements
(Kruis, 2006), resulting in significantly less unknowns. In particular, the
number of unknowns was reduced from 46 millions to 250 thousands
for the largest investigated system in Section 5. Macro-elements also
improve spectral properties of the final algebraic system, which is
especially significant when investigating composites with high contrast
in material properties of individual components. As a result, iterative
solvers—such as the preconditioned conjugate gradient method used in
this work—for the coarse grid problem require less iterations to achieve

Table 1
Single tile resolution and characteristics of the compressed microstructure systems.
Standard deviation of the volume fraction ϕ computed over the tile set is reported in
parentheses.

ellipse foam sandstone

resolution 100×100 px 402×402 px 354×354 px
χ 0.157 0.047 0.051
ϕ 0.359 (0.023) 0.742 (0.008) 0.169 (0.013)

6 A single contraction for conductivity and a double contraction for the elasticity
problem.
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desired accuracy.
Moreover, components of the apparent tensors are obtained as

averaged dual quantities after solving BVP with a prescribed macro-
scopic tensor E or G, respectively, keeping one component equal to
unity while the others remaining zero, recall Eq. (6). We also accelerate
the averaging by constructing matrices that relate tile boundary degrees
of freedom to the sought averages in the off-line phase.

5. Numerical tests

Performance of the proposed methodology and the sensitivity of the
RVE size with respect to an investigated physical phenomenon, mor-
phology of the microstructure, and contrast in constituent properties
are illustrated with three distinct two-phase microstructures: a sus-
pension of non-penetrable elliptic inclusions, Fig. 4; a foam-like mi-
crostructure, Fig. 9; and sandstone, Fig. 14.

In order to circumvent the need for meshing complex geometries
while maintaining the mesh compatibility across the relevant tile edges,
we resorted to regular pixel-like grids. Each pixel represented a quad-
rilateral FE element with bilinear Lagrange basis functions. Following a
sensitivity analysis of the tile apparent properties with respect to the
mesh density, the resolution of each tile was determined as a compro-
mise between accuracy and computational cost, see Table 1 for the
chosen values. Because the first-order apparent properties are length-
scale free, we set the pixel size to be the reciprocal value of a tile re-
solution, resulting in a unitary tile size.

In order to relate the tile and RVE sizes to an intrinsic scale of a
material, the characteristic length

T
∫=

−
−x xχ

ϕ ϕ
S ϕ1 ( ) d ,2 2

2

(37)

was identified for each microstructure, similarly to (Kanit et al., 2006).
In Eq. (37), ϕ denotes the volume fraction of the inclusion phase7 and

xS ( )2 stands for the two-point probability function (Torquato, 2002),
which gives the probability of finding two points separated by x in the
same constituent—the inclusion phase in our case. The integral in Eq.
(37) is computed over T = ×[0,0.5] [0,0.5] in order to mitigate the ef-
fect of assembly-induced artefacts, see (Doškář et al., 2014) for further
details. The characteristic lengths of the investigated microstructures,
averaged from 10 realizations of ×40 40 tilings, are plotted in Fig. 3
and summarized in Table 1.

Within our numerical tests, microstructure constituents were as-
sumed isotropic. For the thermal conduction problem, the conductivity
tensor K of the i-th constituent then takes the form

=K Iλ ,i i (38)

with λi being the conductivity of the i-th phase and I standing for the
second order unit tensor. In the case of linear elasticity, the material
stiffness tensor D is given as

= ⊗ +I Iλ μD I2 ,i i i
s (39)

where λi and μi are the first and second Lamé coefficients of the ith
phase, respectively, and Is denotes the fourth order unit tensor with
major and minor symmetries. We further assumed plane strain condi-
tions.

For each type of microstructure and each phenomenon, we in-
vestigated four material property contrasts κ defined as

=κ λ
λ

.2

1 (40)

The material parameters of the matrix-like phase (denoted with index 1

Fig. 3. Sections of the inclusion two-point probability function S2 along x1 and x2 axes and the highlighted characteristic length χ of: (a) the microstructure with mono-disperse elliptic
inclusions, (b) foam, and (c) sandstone. In legends, ϕ denotes the volume fraction of the inclusions. Data was obtained by averaging S2 statistics computed for 10 realizations of ×40 40
tilings.

Fig. 4. A microstructure with impenetrable mono-disperse elliptic inclusions compressed
in a tiles set composed of 8 Wang tiles, (a), and a tiling sample with partially highlighted
edge codes, (b).

Table 2
Combination of material parameters for individual contrasts.

κ thermal conductivity linear elasticity

λ1 λ2 λ1 μ1 λ2 μ2

1:100 1 0.01 1 0.5 0.01 0.005
1:50 1 0.02 1 0.5 0.02 0.010
50:1 1 50 1 0.5 50 25
100:1 1 100 1 0.5 100 50

7 We consistently refer to the continuous phase as a matrix and to the discontinuous
phase as inclusions. Consequently, the volume fraction reported here for the foam mi-
crostructure is complementary to the standard notion of foam volume fraction.
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and depicted in dark gray colour in Figs. 4, 9 and 14) were kept fixed at
unity while the parameters of the second inclusion-like phase (indexed
with 2 and shown in light gray colour) were proportionally scaled by
the factors 0.01, 0.1, 10, and 100; see Table 2.

Finally, for scalar characterization of an apparent tensor, recall Eq.
(28), we used the operator norm of the corresponding matrix re-
presentation, employing the Mandel notation in the case of linear
elasticity. The proximity error ξ was calculated using the Frobenius
norm in Eq. (35). Both significance levels ∼Pϵ and ∼Pξ were set to 0.01 and
the related limit errors were defined as =ϵ 0.01usr and = Iξ 0.05usr

Fro,
respectively, where the norm of a unitary tensor was used to cover
consistently both thermal conductivity and linear elasticity. In all cases,
we set =n 5min ; the upper limit was =n 30max for the first and third
microstructure and =n 25max for the foam microstructure. Data re-
ported in this Section follows from a single run of the proposed meth-
odology. However, results of multiple runs with different random rea-
lizations (not reported here) show that the identified RVE size is
consistent throughout different runs, albeit the number of realizations
of intermediate SVE sizes may vary to accommodate the required ac-
curacy ϵusr. Especially for small SVEs, the scatter in the number of
realization can be significant due to the random sampling.

5.1. Impenetrable elliptic inclusions

First, we analysed a microstructure comprising impenetrable, mono-
disperse elliptic inclusions of 0.75 aspect ratio. The inclusion phase
constituted 35.9 % of the microstructure. Microstructural information
was compressed in the set depicted in Fig. 4, containing eight tiles with
two edge codes on horizontal and vertical edges, respectively.

Recall that the identified RVE size is always a multiple of the tile
size, which defines the smallest attainable RVE size in turn. Thus, the
tile-based approach is appealing particularly for problems with a high
contrast κ resulting in large RVEs. Here, the ratio 0.157 between the
characteristic length and the tile size, see Table 1, allow us to in-
vestigate also 1:10 and 10:1 contrasts, which are neglected for the re-
maining two microstructures because these contrasts result in small
RVE sizes of one or two tiles, dominated by the tile size rather than the
RVE criterion.

The distribution of scalar quantities ls
i( ) and ms

i( ), characterizing the
apparent properties of individual tiling realizations, are depicted using
a box-and-whisker plot in Fig. 5 for the problem of thermal conductivity
and in Fig. 6 for linear elasticity. Box boundaries and a mid-band de-
note the first and third quartile Q1 and Q3, and median Q2, respectively;
whisker ends mark an interval defined as ± −Q Q Q1.5( )2 3 1 ; and the
crosses indicate potential data outliers. Dotted lines connect data
averages.

Fig. 5. Box-and-whisker plots of the norms ls i( ) and ms
i( ) for thermal conductivity of the

microstructure with elliptic inclusions and contrasts in material properties: (a) 1:100, (b)
1:50, (c) 1:10, (d) 10:1, (e) 50:1, and (f) 100:1.

Fig. 6. Box-and-whisker plots of the norms ls i( ) and ms
i( ) for linear elasticity of the mi-

crostructure with elliptic inclusions and contrasts in material properties: (a) 1:0.01, (b)
1:0.05, (c) 1:0.1, (d) 10:1, (e) 50:1, and (f) 100:1.
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The number of realizations of each SVE size required to meet the ϵusr

criterion is given in Fig. 7; cases when the number of realizations was
restricted by the upper limit nmax are denoted with empty triangle
markers. Note that due to the combinatorial nature of the SVE synth-
esis, the number of unique SVE realizations of given size s is limited.
However, the number grows exponentially8 and therefore poses no
practical restriction for larger SVEs. The number of ×1 1 realizations
was limited by the number of individual tiles and the results are shown
only for completeness. Finally, Fig. 8 shows the convergence of the
proximity error ξ to its limit value ξ usr.

As expected, higher contrast in constituent properties led to increase
in the RVE size, which ranged from four times the tile edge length for
1:10 and 10:1 contrasts up to 36 in the case of linear elasticity and
contrast 100:1. The maximum number of realizations was set to 30 for
this microstructure, which did not influence identification of the RVE
size, see Fig. 7.

In the particular problem of thermal conductivity, values ls
(i) and

ms
i( ) have direct physical interpretation as the largest and the inverse of

the least principal conductivity. Comparing the values obtained for the
RVE size indicates anisotropy in the homogenized material behaviour,
which can be anticipated considering different x1 and x2 cross-sections
of the two-point probability functions shown in Fig. 3a.

5.2. Foam

Motivated by our earlier study on elastic properties of aluminium
foams (Doškář and Novák, 2016), the second investigated micro-
structure was chosen to represent a two-dimensional sample of a closed
cell foam. The system was compressed into the same tile set, in terms of
tile code definition, as the previous microstructure. The internal geo-
metry of tiles was artificially designed with a modified version of the
level-set based approach developed by Sonon et al. (2015). The com-
pressed geometry, displayed in Fig. 9, features large irregular inclusions

separated with thin ligaments that form 25.8 % of the microstructure
volume.

With infinite contrast, foams are typical representatives of complex
materials with pronounced influence of actual microstructure compo-
sition on their overall response. Our previous work (Doškář and Novák,
2016) corroborated this claim in two-dimensional setting, reporting the
RVE size approximately in the order of magnitude of thousands of in-
clusion (voids) diameters. Even thought we do not assume the extreme
case of voids, large RVE sizes are expected for higher contrasts as well.

Statistics of ls
i( ) and ms

i( ) for increasing tiling sizes are plotted in
Figs. 10 and 11 for thermal conductivity and linear elasticity, respec-
tively. Number of realizations for each tiling size is shown in Fig. 12
and the convergence towards the prescribed proximity limit ξ usr is de-
picted in Fig. 13. The identified RVE sizes ranged from three to 12 times

Fig. 8. Convergence of the proximity error ξ with increasing tiling sizes for the micro-
structure with elliptic inclusions: (a) thermal conductivity, (b) linear elasticity.

Fig. 9. A foam-like microstructure compressed in a tiles set composed of 8 Wang tiles, (a),
and a tiling sample with partially highlighted edge codes, (b).

Fig. 10. Box-and-whisker plots of the norms ls i( ) and ms
i( ) for thermal conductivity of the

foam-like microstructure and contrasts in material properties: (a) 1:100, (b) 1:50, (c)
50:1, and (d) 100:1.

Fig. 7. Number of SVE realizations for the microstructure with elliptic inclusions: (a)
thermal conductivity, (b) linear elasticity.

8 By construction, the tile sets in Figs. 4a and 9a allow for at least two distinct tiles for
each position in a tiling; thus the number of unique SVEs is bounded from below by 2s2.
For sandstone compression, see Fig. 14a, the lower bound is 4s2.
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the tile size in all analyses, the number of equi-sized realizations was
limited to 25, see Fig. 12. Compared to the microstructure with elliptic
inclusions, the nominal RVE sizes are smaller, however, the tile size is a
characteristics of microstructure representation not its geometry. RVE
sizes of different microstructures have to be compared to their char-
acteristic length, see Fig. 19, which supports the assumption of larger
RVE than in the case of the microstructure with inclusions; see also
additional discussion in Section 5.4. Finally, the converged values of ls

i( )

and ms
i( ) in Fig. 10 imply isotropy of the microstructure, observable also

in Fig. 3b.

5.3. Sandstone

The last investigated microstructure is a two-dimensional re-
presentation of the Gosford sandstone studied in (Sufian and Russell,
2013). The microstructure was compressed using the sample-based
quilting algorithm (Doškář et al., 2014). Two distinct codes were as-
sumed at horizontal and vertical edges. Based on our previous study
(Doškář et al., 2014) and to emphasize that the tile set can be arbitrarily
large, we used a richer tile set that contained all possible combinations
of the codes. Similarly to the previous section, the second phase (dis-
played in light gray in Fig. 14) was originally void; in our parametric

Fig. 12. Number of SVE realizations for the foam-like microstructure: (a) thermal con-
ductivity, (b) linear elasticity.

Fig. 13. Convergence of the proximity error ξ with increasing tiling sizes for the foam-like
microstructure: (a) thermal conductivity, (b) linear elasticity.

Fig. 14. A microstructure of Gosford sandstone (Sufian and Russell, 2013) compressed
within a set of 16 tiles, (a), and a tiling sample with partially highlighted edge codes, (b).

Fig. 15. Box-and-whisker plots of the norms ls i( ) and ms
i( ) for thermal conductivity of the

sandstone microstructure and contrasts in material properties: (a) 1:100, (b) 1:50, (c)
50:1, and (d) 100:1.

Fig. 11. Box-and-whisker plots of the norms ls i( ) and ms
i( ) for linear elasticity of the foam-

like microstructure and contrasts in material properties: (a) 1:100, (b) 1:50, (c) 50:1, and
(d) 100:1.
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analysis, we reused only the geometry and assumed a solid second
phase with parameters from Table 2.

Again, scalar characterization of particular contrast settings and
physical phenomena is summarized in Figs. 15 and 16; the number of
realizations generated for each tiling size is shown in Fig. 17; and
Fig. 18 depicts convergence of the RVE criterion. Low volume fraction
of the second phase along with a large tile size to characteristic length
ratio are likely the cause of small nominal RVE sizes, which were
identified as seven times the tile size for contrasts 1:100 and 100:1 for
thermal conductivity and twelve times the tile size in the case of linear
elasticity and 1:100 contrast. On the other hand, more tiles in the
compressed set and higher variability of the microstructure itself re-
sulted in larger scatter of individual results, compare number of reali-
zations in Figs. 17 and 12 and note that the characteristic length of the
sandstone microstructure was similar to the foam-like microstructure.
The converged values in Fig. 15 indicate slight anisotropy, which is
emphasized when the inclusions are more conductive/stiffer than the
matrix.

5.4. Discussion

As stated above, the nominal sizes of RVE identified in terms of tile

multiples have to be scaled with the corresponding characteristic length
χ of the microstructure to allow mutual comparison. The scaled RVE
sizes ϱ are plotted against the contrast κ of constituent properties in
Fig. 20. Similarly, Fig. 19 shows the ξ convergence lines from Figs. 8, 13
and 18 as functions of the scaled size of Ω.

Data in Fig. 19 confirms that the RVE size is indeed problem de-
pendent and there are no universal scaling parameters common to both
thermal conductivity and linear elasticity. For thermal conductivity, the
inverse contrasts, i.e., 1:n and n:1, resulted in nearly identical RVE
sizes. On the other hand, for linear elasticity, cases with matrix stiffer
than inclusions required approximately twice the RVE size, compared
to the RVE size of the inverse contrast, to satisfy ξ usr, compare Fig. 19a
and Fig. 19b or note the inclination of dash-dotted lines in Fig. 20.
Asymmetry was observed in a whole range of κ and for all investigated
microstructures.

Plotting data from Fig. 20 in a log-log graph Fig. 21 and modifying

Fig. 17. Number of SVE realizations for the sandstone microstructure: (a) thermal con-
ductivity, (b) linear elasticity.

Fig. 18. Convergence of the proximity error ξ with increasing tiling sizes for the sand-
stone microstructure: (a) thermal conductivity and (b) linear elasticity.

Fig. 19. Comparison of ξ convergence with increasing SVE sizes normalized against the
characteristic length χ for all investigated microstructures: (a) thermal conductivity, (b)
linear elasticity.

Fig. 16. Box-and-whisker plots of the norms ls i( ) and ms
i( ) for linear elasticity of the

sandstone microstructure and contrasts in material properties: (a) 1:100, (b) 1:50, (c)
50:1, and (d) 100:1.
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the horizontal axis such that the contrasts 1:n and n:1 coincide reveal a
power-law relation in the form

=ϱ a κ( ) ,b (41)

with fitting parameters a and b. The observed symmetry of the RVE size
for thermal conductivity allows for replacing κ with 10 κlog10 in Eq. (41)
and consequently fitting only one set of parameters for the whole
contrast range; linear elasticity problem requires separate handling of

<κ 1 and >κ 1.
Parameters reported in Table 3 were obtained with a linear least

square regression, taking into account also unreported results obtained
for contrast 1:20 for all six combinations and 1:75, 1:25, 25:1, and 75:1
for the problem of thermal conductivity of the microstructure with el-
liptic inclusions. For the sake of brevity, the predicted fits are plotted in
Fig. 21 only for the thermal conductivity problem. While the para-
meters a and b for thermal problems were obtained from ten and five
data points, respectively, in certain cases fits for linear elasticity were
based only on two data points and, thus, the identified values are in-
conclusive.

For a given contrast κ, the corresponding RVE size ϱ is smallest for
the sandstone microstructure, followed by the microstructure with el-
liptic inclusions and the foam-like microstructure. The ordering closely
follows the volume fraction of the second phase; observe that the RVE
sizes of the sandstone microstructure and the microstructure with el-
liptic inclusions are always closer together, compared to the foam-like
microstructure. On the other hand, the influence of particular micro-
structure composition varies depending on a problem and chosen κ.

For the extreme contrasts and thermal conductivity, ϱ seems to be
governed primarily by the volume fraction, due to the large difference
between individual microstructures, and insensitivity to swapping
material properties of the phases, see Fig. 19a. On the contrary, in
linear elasticity, complexity and the actual microstructure composition
have a pronounced effect especially when the inclusions are stiffer;
instances in which the matrix phase is stiffer seem to be dominated
mainly by the contrast itself.

Influence of the inclusion parameters on the converged values lhom

and mhom, respectively, is shown in a log-log graph in Fig. 22. Unlike the
RVE-size dependence, curves in Fig. 22 indicate that no power law in
the form of a monomial can be established except for the linear elas-
ticity of the foam-like microstructure with <κ 1. In all other cases, the
overall scalar characteristics plateau soon and further increase of

κlog ( )10 does not lead to their significant change.
Also note in the box-and-whisker plots that the RVE size criterion ξ

is driven by ls for >κ 1; and vice versa, the initial and final values of ms
differ more for <κ 1.

Finally, the last observation regards the necessary number of rea-
lizations, shown in Figs. 7, 12 and 17. Within a chosen microstructure,
problems with similar final RVE sizes required approximately the same
number of realizations at intermediate sizes. Moreover, as the SVE size
approached the RVE one, the minimal number of realizations sufficed to
meet ϵusr limit for all microstructures, except for sandstone.

Thus, the RVE size, at least in the context of our methodology,
seems to be driven mainly by the ensemble average and not its varia-
tion, which corroborates conclusions of Moussaddy et al. (2013), who
warned against using the variance of apparent properties as the only
RVE criterion.

6. Summary

We demonstrated that the compressed representation of materials
with random microstructure by means of Wang tiles is an appealing
framework for numerical homogenization and problems of RVE size
determination, in particular. Upon an off-line phase of compressing the
microstructural information into a set of tiles, the framework facilitates
instant on-line random generation of statistically coherent realizations
of compressed microstructures. Moreover, adopting elemental ideas of
domain decomposition and considering each tile as a macro-element
reduce significantly the number of degrees of freedom and improve the
condition number of the resulting algebraic system, a desirable feature
especially when dealing with highly contrasted problems.

With the emphasis on obtaining bounds on the effective property,
we established a methodology that identifies the RVE size for a user-
defined accuracy. The methodology benefits from a regular partitioning
inherent to the tiling concept and directly utilizes the Partition theorem
and statistical sampling to construct confidence intervals of the

Table 3
Values of Linear Least Square fit parameters from Eq. (41).

Ellipse Foam Sandstone

TC LE ( <κ 1) LE ( >κ 1) TC LE ( <κ 1) LE ( >κ 1) TC LE ( <κ 1) LE ( >κ 1)

a 3.944 8.874 5.995 4.465 4.867 15.928 3.7457 11.910 3.292
b 0.812 −0.711 0.628 0.872 −0.865 0.485 0.781 −0.628 0.737
# data 11 4 3 5 3 2 5 3 2

Fig. 20. Lin-log plot of dependence of the scaled RVE-size ϱ on the contrast κ of con-
stituent properties for thermal conductivity (TC) and linear elasticity (LE).

Fig. 21. Log-log plot of the RVE-size dependence on the absolute contrast of constituent
properties, defined as 10 κlog10 . The fit (solid lines) of the power-law relation (41) is shown
only for the thermal conductivity problem.
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apparent properties. The proposed methodology works at two levels:

1. For a fixed domain size, new microstructure realizations are gen-
erated on-the-fly and their apparent properties are computed until
the confidence intervals narrow below a user-defined threshold;

2. The convergence criterion is checked and the algorithm either
moves to larger domains or terminates identifying the sought RVE
size. The methodology takes into account both the statistical de-
viation of apparent properties and the discrepancy between their
mean values. This makes it robust against premature convergence.

The efficiency of the Wang tiling concept allowed us to illustrate the
methodology with a large set of problems. We performed the RVE size
identification for three materials from a class of microstructures with
clearly identifiable matrix- and inclusion-like phases, yet of different
volume fraction and complexity of internal composition. For each ma-
terial, we investigated two homogenization problems—linear heat
conductivity and elasticity. Unlike the majority of similar studies, we
kept the volume fraction of inclusions fixed and scaled the ratio be-
tween the matrix and inclusion material parameters. Without claiming
observations to be general rules, for our particular setting, the RVE size
seems to be driven mainly by the mean values of the apparent prop-
erties, which corroborates conclusions of (Moussaddy et al., 2013). The
effect of the actual microstructure composition and the role of matrix or
inclusion material is significantly pronounced in the case of linear
elasticity, while swapping the constituents has negligible effect on the
RVE size for heat conductivity. Data also indicates a power-law relation
between the RVE size expressed in terms of the microstructure char-
acteristic length χ and the contrast κ of constituent properties. How-
ever, note that the power-law relation common to both the thermal and

linear elasticity problems may stem from the adopted simultaneous
scaling of Lamé coefficients in Table 2, which resembles the scaling of
the conductivity coefficient. Conversely, a scaling in the form of a
simple monomial cannot be established for the converged scalar char-
acteristics of the overall material behaviour but for the compliance of
the foam-like microstructure with <κ 1.

The present approach directly extends to linear three-dimensional
problems, in which the acceleration through pre-computed factoriza-
tion of each tile will be even more pronounced. However, robust
methods for compressing three-dimensional microstructures, com-
plemented with a tool for generating topologically and geometrically
consistent discretization of Wang cubes, are yet unavailable and con-
stitute our current work.
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