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Abstract
We present a novel method for enhancing texture irregularities, both lesions and microcalcifications, in digital X-ray mam-
mograms. It can be implemented in computer-aided diagnostic systems to help improve radiologists’ diagnosis precision. The
method provides three different outputs aimed at enhancing three different sizes of mammogram abnormalities. Our approach
uses a two-dimensional adaptive causal autoregressive texture model to represent local texture characteristics. Based on these,
we enhance suspicious breast tissue abnormalities, such as microcalcifications andmasses, to make signs of developing cancer
better visually discernible. We extract over 200 local textural features from different frequency bands, which are then com-
bined into a single multichannel image using the Karhunen–Loeve transform. We propose an extension to existing contrast
measures for the evaluation of contrast around regions of interest. Our method was extensively tested on the INbreast database
and compared both visually and numerically with three state-of-the-art enhancement methods, with favorable results.

Keywords Mammograms · Region of interest enhancement · Computer-aided diagnosis · Texture model · Markov random
field

Mathematics Subject Classification 60J25 · 60G60 · 62M40 · 68U10 · 62P10

1 Introduction

Breast cancer is the most common type of cancer among
middle-aged women in most developed countries [14,22].
Up to 10% of women have breast cancer during their lives.
Developed countries try to fight this increasingly dangerous
trend by encouraging women to attend preventive mam-
mography screenings regularly. Unfortunately, around one
in four radiologically visible cancers is missed during the
screenings [20], resulting in millions of cancer cases being
overlooked. Therefore,many lives could be saved by even the
slightest improvement in the detection methods. However,
radiologists tend to consider current CAD (computer-aided
diagnosis) methods to be misleading since even though there
are only about eight malignant mammograms in 1000 [20],
2–3 regions of interest (ROIs) per mammogram on average
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are pointed out by most CAD systems (e.g., [8,22]). Thus,
CAD results in 250–370 false positives per one true malig-
nant case.

To assist the radiologists with the visual evaluation of
mammograms, automatic enhancement of the mammograms
is a popular alternative to CAD classification. Several mam-
mogram enhancement methods have been published, e.g.,
[1–3,5,11,13,16,17,19,21,23,24]. Dippel et al. [3] compare
the merits of using either Laplacian pyramids or wavelet
analysis for whole-mammogram enhancement, Mencattini
et al. [11] selectively enhance segmented mammogram
regions using wavelet transformation, Sakellaropoulos et al.
[16] design an adaptive wavelet-based method for enhanc-
ing the contrast of entire mammograms, and Salvado and
Roque [17] use wavelet analysis to detect microcalcifica-
tions.

Mammogram texture representation based on a local
statistical Gaussian mixture was used in [5] to evaluate
screening mammograms. This method estimates the multi-
variate probability density of pixel values within a floating
window around the central pixel using the Gaussian mixture
model. The enhancement is then based on the log-likelihoods
computed for each pixel. Since abnormalities have a low
probability of occurrence, they are marked as areas with the
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lowest log-likelihood. Themethod is, however, computation-
ally very demanding.

The novelty of our method lies in selectively highlight-
ing textural abnormalities while lowering the contrast of the
benign rest of the image, and the use of several frequency
bands and different specifically targeted statistics combined
in the multichannel output. The color-coded, additionally
computed image statistics undoubtedly present more infor-
mation than grayscale images. Another novel feature of our
method is the use of multiple frequency bands sensitive to
different sizes of abnormalities.

For modeling breast tissue texture, we use the two-
dimensional adaptive causal autoregressive texture model
(2DCAR) [7,10], which is very fast and efficient to compute.

2 Material andmethods

2.1 Predictive textural model

The mammography tissue textures in the form of mono-
spectral images are locally modeled by their dedicated direc-
tional Gaussian noise-driven autoregressive random-field
two-dimensionalmodel, because thismodel has goodmodel-
ing performance; i.e., it can even be used for mammographic
tissue texture synthesis. At the same time, this model is high
speed and allows for analytical treatment of all relevant statis-
tics [6,7]. 2DCAR is a random field of the Markovian type.
It has the joint conditional probability density on the set of
all possible realizations Y of the M × N lattice I

p(Y | γφ, σ−2
φ ) = (2πσ 2
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Here, r = [r1, r2, φ] is a spatial multi-index denoting history
of movements on the rectangular lattice I , where r1, r2 are
row and column indices, and

φ ∈ {
0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦} (3)

is the direction of the model development. The 2DCAR
model can be expressed as a stationary causal uncorrelated
noise-driven 2D autoregressive process:

Yr = γφXr + er , (4)

where γφ is the 1 × η parameter vector and η is the car-
dinality of the causal (or alternatively unilateral) contextual
neighborhood I cr (i.e., all the support pixels were previously
visited, and thus their values are known). Furthermore, er
denotes white Gaussian noise with zero mean and a constant
but unknown variance σ 2, and Xr is a support vector of Yr−s

where s ∈ I cr . The method uses a locally adaptive version
of this 2DCAR model [7], where its recursive statistics are
modified by an exponential forgetting factor, i.e., a constant
smaller than one which is used to weight the older data.

Parameter estimation

Parameter estimation of the 2DCAR model using the max-
imum likelihood, least-square or Bayesian methods can be
resolved analytically. The Bayesian parameter estimates in
the 2DCARmodel using the normal-gamma parameter prior
are:

γ̂ T
r−1 = V−1

x(r−1)Vxy(r−1), (5)

σ̂ 2
r−1 = λ(r−1)

β(r)
, (6)

where
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−1
x(r−1)Vxy(r−1), (7)

V(r−1) = Ṽ(r−1) + V(0), (8)

β(r) = β(0) + r − 1, (9)

β(0) is an initialization constant, and submatrices in V(0)

come from the parameter’s prior distribution. For our pur-
poses, we set β(0) = η − 1 and V(0) (8) to the unit matrix.
Parameter estimates (5) and (6) can also be evaluated recur-
sively [7]. The posterior probability density [7] of the model
is:
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The conditional mean value predictor of the one-step-
aheadpredictive posterior density (10) for the normal-gamma
parameter prior is

E
{
Yr | Y (r−1)

}
= γ̂r−1Xr . (11)
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Fig. 1 Enhancement method’s flowchart

2.2 Proposed pseudocolor enhancement

The mammogram enhancement is based on the efficient
computation of several hundred textural statistics, their
subsequent decorrelation and visualization of a weighted
combination of the three most informative transformed fea-
tures and the original X-raymammogram. Figure 1 shows the
flowchart of the method, which is described in more detail in
the following text.

To compute the mammogram enhancement features, the
following statistics are evaluated for each pixel in the orig-
inal mammogram measurements for all directions, as well
as in the smoothed variants obtained by median filters with
window sizes 2, 3, 5, 8 and 10:

2.2.1 Prediction error

The prediction error, based on Eq. (11), can be computed as

Errrpred = E
{
Yr | Y (r−1)

}
− Yr . (12)

This statistic is sensitive to smaller- to medium-sized texture
abnormalities, such as lymph nodes.

2.2.2 Absolute value of the prediction error

The absolute value of the previously defined (12) prediction
error is

|Errrpred| =
∣∣∣E {

Yr | Y (r−1)
}

− Yr
∣∣∣ . (13)

This statistic is sensitive to small texture abnormalities such
as lymph nodes, necrotic calcification and larger benign cal-
cifications.

2.2.3 Innovation error

The innovation error is based on Eq. (11), and this statistic
combines the prediction error with the gradient:

Errrin = E
{
Yr−1 | Y (r−2)

}
− Yr . (14)

The innovation error highlights very small texture abnormal-
ities with sharp edges.

2.2.4 Absolute value of the innovation error

The absolute value of the innovation error is

|Errrin| =
∣∣∣E {

Yr−1 | Y (r−2)
}

− Yr
∣∣∣ . (15)

This statistic is sensitive to very small texture abnormalities,
such as microcalcifications.

2.2.5 Prediction probability

The prediction probability is Eq. (10). This statistic is sensi-
tive to medium-sized and larger texture abnormalities, such
as lesions and larger lymph nodes.

This waywe get new images corresponding to the original
mammogram but emphasizing its different texture features.
Because the 2DCAR model is directionally dependent, each
analysis is also performed separately for each of the eight
different basic directions φ (3).

The resulting model statistics (10) and (12) through (15)
are stored in 240 planes (five different statistics (10), (12),
(13), (14) and (15) computed on the original and five median
filtered images for eight directions φ (3)) with the same
dimensions as the original image. These 240 computed fea-
tures have various spatially dependent mutual correlations.
The Karhunen–Loeve transform is then performed on these
planes in order to obtain the most informatively transformed
three components (99% of the overall eigenvalues), which
are then assigned, respectively, to the red, green and blue
color channels of the resulting enhanced image. The latter
thus consists of the original X-ray measurement and a lin-
ear combination of the computed textural statistics. Different
partial results are susceptible to different-sized abnormali-
ties; in particular, the prediction error components are better
for enhancement of smaller findings, such as microcalcifica-
tions. The analysis based on prediction probability is, on the
other hand, more susceptible to more substantial abnormali-
ties, such as lesions and masses.

Our method produces three different outputs (enhanced
pseudocolor images) targeted to three distinct mammogram
abnormalities (larger spots, microcalcifications and com-
bined but with slightly compromised contrast):

1. Based purely on prediction probability (Sect. 2.2.5) (16):
These results tend to be smoother and work very well on
larger areas, e.g., in Fig. 3—top row, second image.

2. Based purely on prediction errors (Sects. 2.2.1, 2.2.2)
(17): good enhancement of smaller abnormalities such as
microcalcifications, e.g., in Fig. 5—top row, third image.
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788 M. Haindl, V. Remeš

3. All aspects combined (Sects.2.2.1, 2.2.2, 2.2.3, 2.2.4 and
2.2.5) (18): joins the advantages of both of the previous
methods, but does not have such good contrast, e.g., in
Fig. 4—top row, fourth image.

Y
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)T
, (16)
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where T are 3 × {48, 192, 240} transformation matrices.
Matrix rows are eigenvectors corresponding to the three
largest eigenvalues from the actual data spaces.

Finally, the enhanced mammograms are optionally com-
bined with the original image to enable the radiologist to
perceive both the enhancement and the original structure of
the breast and customize the ratio:

Y
enh
r = (1 − c) Yr

⎛
⎝1
1
1

⎞
⎠ + cYr , (19)

where parameter c depends on the radiologist’s personal pref-
erence:

c =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.15 light

0.3 medium

0.6 heavy

1.0 full.

(20)

We experimentally set the c parameter (20) values from our
visual evaluation experiments.

3 Comparedmethods

For comparison, we have implemented four state-of-the-art
methods for mammogram image enhancement [1,13,19,23].
These methods enhance mammograms in the grayscale
format.We are not aware of any othermammogram enhance-
ment method producing results in color.

3.1 Matting-based enhancement

This enhancement method by Wang et al. [23] is based on
image matting. The method sees the mammographic images
(Y ) as a superposition of adipose tissue (B), which forms
most in the background of the image, and the mammary

glands and other breast structures that the radiologists need
to focus on, denoted by (G):

Y = Gc + B(1 − c). (21)

The method thus obtains the enhanced image by subtracting
the tissue-based background from the original, superposed
image. To do this, the background (B) has first to be estimated
for each pixel, along with the opacity alpha value indicating
the factor of a linear combination with the rest of the image
(c). The background is constant across the image chosen so
that approximately 85% of pixels in the breast area of the
image have lower gray-level value.

3.2 Nonlinear unsharpmasking

Panetta et al. [13] introduced a method for mammogram
enhancement based on combining nonlinear unsharp mask-
ing (NLUM) with nonlinear filtering. Several distinct filters
are used in this method. The overall nonlinear filtering oper-
ator fuses both the original and the enhanced mammogram
data within a 3 × 3 window. High frequencies of the signal
are emphasized by either subtracting a low-pass-filtered sig-
nal from its original or adding a scaled high-frequency factor
to the measured original. The method’s eight parameters are
optimized with a proposed second-derivative-like measure
of enhancement (SDME) [13].

3.3 Direct contrast enhancement

Tang et al. [19] developed an enhancement method based
on wavelet transformation. It transforms the mammogram
image into a multi-level 2D wavelet space. Directional con-
trast at each level of the wavelet transformation is estimated;
namely, the three high-pass components are divided, each
by its low-pass part. The contrast estimate is then multiplied
by a constant contrast enhancement factor λ. The enhanced
image is acquired by running the inverse wavelet transform
one level at a time. To make up for the contrast enhancement
changes, the high-pass components are re-multiplied by the
newly computed low-pass component in each iteration until
the whole inverse is achieved. This also allows the method to
enhance the image’s contrast without introducing excessive
additional noise.

3.4 Nonlinear polynomial filters

Bhateja et al. [1] have published a method based on the non-
linear polynomial filtering framework based on quadratic
Volterra filters for contrast and edge enhancement of mam-
mographic images. The method performs both low-pass and
high-pass filtering of the image and combines the output in
one contrast- and edge-enhanced result.
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4 Results

Our method was tested on mammograms from the INbreast
database [12] and mammograms acquired by the digital
mammograph Senographe 2000 D. The Senographe 2000 D
produces high-resolution (100 microns) 1920×2300 images
with 14-bit pixel quantization.

The INbreast database is a database of digital mammo-
graphic images acquired at a breast center of the Hospital de
São João, Breast Centre University Hospital, Porto, Portu-
gal. INbreast contains 115 cases (410 images), out of which
90 examples are from women with both breasts (four images
per case) and 25 cases are from mastectomy patients (two
images per case). It includes various types of lesions (masses,
calcifications, asymmetries and distortions). There are 67
images containing no suspicious regions. The database con-
tains ground-truth contours made by specialists.

4.1 Contrast measures

We have implemented three different contrast measures to
evaluate our results. The local contrast is computed using a
slightlymodified second-derivative-likemeasure of enhance-
ment (SDME) proposed by Panetta [13], Border contrast
by Erdem et al. [4] and the weighted-level framework with
retinal-like subsampling contrast (Wlf(Rsc)) proposed by
Simone et al. [18]. A detailed survey of 11 local image con-
trast measures is presented in [15] where they are mutually
compared, and their robustness to different types of image
degradation is analyzed.

4.1.1 Modifying contrast measures for regions of interest

Measuring the contrast for local abnormality enhancement is
somewhat dubious since ideally, we want to lower the con-
trast of healthy tissue as much as possible and only raise the
contrast of the abnormalities. Denoting A as an abnormality
and B as breast, we propose the following modification to
contrast measures to make them suitable for measuring the
contrast of the regions of interest:

Contrast Factor = Contrast(A)

Contrast(B\A)
(22)

This way we can compute the factor by which the con-
trast at the abnormality is higher (or lower) than the contrast
in the rest of the breast image. The same equation can be
directly applied to global contrast measures like the SDME.
For local contrast measures, which give a local contrast value
for each pixel (denoted L(r1, r2), where r1, r2 are spatial
indices), such as the Wlf(Rsc), we sum the values for each
pixel beforehand and take their mean value:

Contrast Factor = |B\A|
|A|

∑
r1,r2∈A L(r1, r2)∑

r1,r2∈(B\A) L(r1, r2)
(23)

4.1.2 Second-derivative-like measure of enhancement

The contrast measure computes the mean contrast of the
image divided into k1 × k2 windows:

SDME

= − 1

k1k2

k1∑
k=1

k2∑
l=1

20ln

∣∣∣∣Ymax,k,l − 2Ycenter,k,l + Ymin,k,l

Ymax,k,l + 2Ycenter,k,l + Ymin,k,l

∣∣∣∣ ,
(24)

where Ymax,k,l denotes the maximum value in window k, l,
while Ymin,k,l denotes the minimum value in window k, l and
Ycenter,k,l denotes the center pixel value in window k, l. We
set k1 and k2 in our experiments so that the windows are of
the size 5 × 5 px.

4.1.3 Border contrast

The contrast measure computes the mean difference of pixel
values along the border of a region of interest. For each region
of interest Ri and each border pixel b(Ri ), it computes the
mean pixel values μin j and μout j of small windows next to
the border inside and outside of the desired region of interest,
normalized by the image’s maximum pixel value Ymax. The
value of ns is a normalization factor denoting the number of
spectral bands of the image so that grayscale images can be
compared with multispectral ones.

Border = 100

Ymax
√
ns

∑
i

|b(Ri )|
∑
i

∑
j∈b(Ri )

||μin j − μout j ||.

(25)

Here, we have selected a window of size 3 × 3 px, with
the window’s center 5 px distant from the border.

4.1.4 Weighted-level framework

Theweighted-level frameworkwith retinal-like subsampling
contrast (Wlf(Rsc)) method works in the CIELAB color
space averaging the values of the actual bands. This method
is based on the idea of the difference of Gaussians combined
with a Gaussian pyramid.

Wl fRsc = 1

Nl

Nl∑
l=1

λl c̄l

c̄l =
∑
r1

∑
r2

cr1,r2
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cr1,r2 =
3ρc∑

i=3ρc

3ρc∑
j=3ρc

Cen(i, j) Yr1+i,r2+ j

−
3ρs∑

i=3ρs

3ρs∑
j=3ρs

Sur(i, j) Yr1+i,r2+ j
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j
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)2
]
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(
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)2

exp

[
−

(
i

ρs

)2

−
(

j

ρs

)2
]

(26)

where Nl is the number of levels in the Gaussian pyramid,
c̄l is the mean contrast at the subsampled level l, i is the
index of the color channel, λl is the weight of level l, ρc
(or ρs) denotes the radius for the centered (or surrounding)
Gaussian, respectively, and r1, r2 are spatial indices.

For the purpose of evaluation, we choose the values of free
parameters according to [18], namely ρc = 1, ρs = 2 and
λl , as the variance of pixel values in each channel at level l.

4.2 Numerical contrast results

We present the mean results of the individual contrast mea-
sures applied to all the images in the INbreast database in
Table 1. The contrast measures were computed on images
subsampled to 1024 px height, keeping aspect ratio, and with
the region of interest overlapping at 20 px to cover the con-
text of the computed ROI. The SDME contrast measure is
computed on grayscale images, whereas the border contrast
andWlf(Rsc) are computed in the CIELAB color space. Fur-
thermore, we distinguish between the contrasts computed for
different types of ROIs: masses, calcifications and all ROIs
together. The best results for each set are printed in boldface
and the presented method’s outputs in italics.

5 Discussion

5.1 Numerical evaluation

The three contrast measures exhibit different sensitivities,
depending on the types of information measured. The most
consistent results can be seen in theWlf(Rsc) contrast, which
confirms our assumption that the prediction probability-
based enhancement is more suitable for enhancing masses
while the prediction error and combined methods are more
suitable for calcifications. The combinedmethod ismore sen-
sitive to lesions than the prediction error-basedmethod. Since
calcifications cover most of the ROIs taken from the INbreast
database, the overall results (bottom part of Table 1) aremore
biased toward the calcification-focused approaches.

Table 1 Contrast comparison

Method Wlf (Rsc) SDME Border

Masses

Bhateja [1] 0.96 0.99 2.84

Combined (18) 1.02 1.00 7.96

Original 0.94 0.99 1.29

Panetta [13] 0.94 0.95 1.89

Pred. errors (17) 0.88 1.01 7.53

Pred. probabs. (16) 1.65 0.98 10.8

Tang [19] 0.76 1.00 2.35

Wang [23] 1.02 0.82 6.26

Calcifications

Bhateja 0.98 0.98 2.90

Combined 1.79 1.00 7.76

Original 0.97 0.99 1.35

Panetta 0.98 0.97 2.20

Pred. errors 1.72 1.00 7.49

Pred. probabs. 1.05 0.99 10.8

Tang 0.82 0.99 2.16

Wang 1.03 0.90 6.39

All ROIs together

Bhateja 0.97 0.99 2.87

Combined 1.78 1.00 7.78

Original 0.97 0.99 1.33

Panetta 0.97 0.96 2.13

Pred. errors 1.64 1.00 7.42

Pred. probabs. 1.27 0.99 10.7

Tang 0.81 0.99 2.15

Wang 1.02 0.88 6.26

The contrast criteria suggest that our method significantly
outperforms the compared alternatives even in grayscale
images. The alternative methods may occasionally exhibit
contrast values even lower than those encountered in the orig-
inal images.

5.2 Visual evaluation

Figure 2 shows an example of a mediolateral oblique (MLO)
mammogram with a low-contrast lesion and a big calcifica-
tion. The lesion is better visible in the prediction probability-
based imageYb (16),which on the other hand almost does not
show the calcification, whereas the calcification is brightly
highlighted in the prediction error-based imageYs (17). The
combined image Ym (18) shows both abnormalities accept-
ably. Figure 3 shows another MLO mammogram with an
elliptical lesion near its edge. The lesion is visible with
equal ease in all three enhanced images. In Fig. 4, there is a
very small malignancy in a craniocaudal (CC) mammogram.
Because of its size and relatively low contrast in compari-
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Pseudocolor enhancement of mammogram texture abnormalities 791

Fig. 2 Enhanced example with a lesion and a big calcification. Top row
from left to right: original with ground truth, enhancement based on
prediction probabilities, enhancement based on prediction errors and
combined enhancement. Bottom row from left to right: comparison
methods by [13], [23], [19] and [1]

Fig. 3 Examples of enhancement. Top row from left to right: origi-
nal with ground truth, enhancement based on prediction probabilities,
enhancement based on prediction errors and combined enhancement.
Bottom row from left to right: comparison methods by [13], [23], [19]
and [1]

son with its surroundings, it is not very visible in either the
prediction probability-based enhancement (Ys ) or the predic-
tion error-based one (Ys). The combined viewY

m , however,
shows it as a bright red circle.

There are several microcalcifications in the CC mammo-
gram in Fig. 5. They are marked as thick blue dots in the
prediction error-based image Ys and as rather bluish dots in

Fig. 4 Enhanced examplewith a dimly visible cancer. Top row from left
to right: original with ground truth, enhancement based on prediction
probabilities, enhancement based on prediction errors and combined
enhancement. Bottom row from left to right: comparison methods by
[13], [23], [19] and [1]

Fig. 5 Enhanced example with several microcalcifications. Top row
from left to right: original with ground truth, enhancement based on
prediction probabilities, enhancement based on prediction errors and
combined enhancement. Bottom row from left to right: comparison
methods by [13], [23], [19] and [1]

the combined view Y
m . Because of their size and character,

they are omitted by the prediction probability-based image
Y
b .
In the bottom rows of Figs. 2, 3, 4, 5 and 6, we can see

a comparison with methods by Panetta et al., Wang et al.,
Tang et al. and Bhateja et al. The advantage of our method
is in making clearly visible contours around texture abnor-
malities, microcalcifications and malignant findings while
keeping non-suspicious mammograms (Fig. 6) fairly homo-
geneous in comparison with these alternative methods.
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Fig. 6 Enhanced benign example. Top row from left to right: original
image, enhancement based on prediction probabilities, enhancement
based on prediction errors and combined enhancement. Bottom row
from left to right: comparison methods by [13], [23], [19] and [1]

Fig. 7 Example of the presented method compared with our previous
result. Left to right: original with ground truth, enhancement by our
previous method [9], enhancement based on prediction probabilities,
enhancement based on prediction errors and combined enhancement

Figure 7 shows an example of enhancement in one of
the digital mammograph Senographe 2000 D mammograms
using the single-directional rightward 2DCAR model using
our previously published method [9] compared with our new
method. It is visible that the lesion and the lymph nodes are
better visible in the colored images. The lesion is better visi-
ble in the prediction probability-based enhancement Yb and
in the combined enhancement Ym (which is not too differ-
ent from the probability-based one due to lower quality of
input data), and the nodes are better visible in the prediction
error-based image Ys .

The use of targeted frequency bands makes the algorithm
more susceptible to abnormalities of different sizes, rang-
ing from microcalcifications (Fig. 5) to medium-size lesions
(Fig. 2) and lymph nodes. Larger lesions are enhanced with
somewhat lower contrast, but since they can easily be seen
with the naked eye even by untrained people, we do not see
this limitation as a serious drawback.

Fig. 8 Screenshots of the radiologist validation program—test B

5.3 Radiologists verification

The presented method was consulted with five senior expert
radiologists who focus solely on mammography. The radiol-
ogists underwent a test using a perceptual validation program
working with the INbreast database images.

This program generates two types of tests: either the per-
ceptual validation test on the original X-ray mammograms
(blind test A) or the test where each window contains the
X-ray measurements on the left half of the screen and its
enhanced version using the presented method on the right
half (enhanced test B, Fig. 8).

The radiologists were asked to click on all suspicious-
looking spots in the mammogram. They could choose from
the three different types (Yb,YsandYm) of enhancement
combined with one of the four enhancement levels (light,
medium, heavy and full) (20). All tests were performed with
only a two-minute introduction without any previous school-
ing or trials.

Single test screens for both test types were randomly
chosen from the combined INbreast database and the corre-
sponding enhanced mammograms. The success rate of every
radiologist was evaluated together with the time spent on
evaluation of each spot, screen and left or right image (for
test B).

Each standard test (both A and B) contains 20 different
screens, i.e., 40 screens total with images of both benign
and malignant instances. However, due to time constraints
of the participants, test A is missing, and test B contains
just 10 and 16 cases, respectively, for radiologist numbers 2
and 3. Although any more definite conclusion would need a
much larger study, we believe that these results indicate the
positive trend of our method. Average time per case for test
B is about three times longer than for test A, which is not
surprising due to the novelty of the presented method and
12 different configurations of the enhancement settings. We
expect comparable times in routine usage.

The results, shown in Table 2, were comparable. At first
glance, the results of test B might look a bit worse, which
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Table 2 Tests A and B

Radiologist #ROIs #CS #TS TPC (s)

Test A

1 5 5 26 28

2 – – – –

3 – – – –

4 5 5 9 11

5 8 7 22 16

Test B

1 11 11 29 63

2 5 4 9 27

3 5 5 14 138

4 4(3) 3 17 36

5 7 6 14 42

Radiologists 2 and 3 did not take test A, CS correctly selected, TS total
selected, TPC time per case

Table 3 Summary

Test TP (%) FP (%) FN (%) Time (s)

Summary

A 94 70 5 18

B 90 65 9 62

B∗ 96 65 4 62

TP true positives, FP false positives, FN false negatives
B∗ means B after discussion

would speak against the proposed enhancement method,
since while the radiologists missed only one abnormality in
test A, they missed two abnormalities in test B. However, the
abnormality missed by radiologist No. 5 in test A was classi-
fied as BI-RADS 4c, which means higher than intermediate
suspicion of malignancy, whereas the abnormalities omit-
ted in test B were BI-RADS 2 and 3, which means benign
(BI-RADS 2) and probably benign (BI-RADS 3) findings.
Moreover, when we discussed the missed abnormalities with
the experts after the test, we found out that radiologist No. 4
did not highlight the BI-RADS 2 finding deliberately as she
found it to be a non-suspicious texture summation. Consider-
ing this, we added a third row to the summary Tab. 3 to show
the corrected results. Our radiologist consultants expressed
keen interest in the method and appreciated its outputs.

6 Conclusions

We have proposed a novel fast method with three comple-
mentary targeted outputs for completely automatic mammo-
gram enhancement. Our method is based on the underlying
two-dimensional adaptive texture model which automati-
cally adapts to the analyzed X-ray, thus being universal

for any input without the need for further manual tun-
ing of specific parameters. Although the algorithm uses a
random-field-type model, this model is very fast thanks to
efficient recursive and numerically robust model estimation,
and therefore, it is much faster than the usual alternative
Markov random-field models, which require an approach
based on the Markov chain Monte Carlo estimation.

Ourmethod’s outputs highlight regions of interest detected
as textural abnormalities. Cancerous areas typically manifest
themselves in X-ray images such as textural defects. Thus,
the enhancedmammograms can help radiologists to decrease
their false negative evaluation rate. It has been shown that the
algorithm works well both for small findings, such as micro-
calcifications, and for bigger lesions. In the examples, it can
be seen that even barely visible abnormalities, with the same
average gray level as their surroundings, are highlighted very
well using our methods, and this could be of great benefit in
breast cancer detection. A radiologist can choose to view
either one targeted enhanced X-ray or all three enhanced
alternatives.

We have compared our method with four state-of-the-art
methods and visually and numerically evaluated the results.
Ourmethod showsbetter sensitivity for enhancingboth larger
and smaller abnormalities. These observations are confirmed
by numerical state-of-the-art contrast criteria and also by our
radiologist consultants.
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