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a b s t r a c t 

We present novel rotationally invariant fully multispectral Markovian textural features applied for the 

efficient tree bark recognition. These textural features are derived from the novel descriptive multispec- 

tral spiral wide-sense Markov model. Unlike the alternative bark recognition methods based on various 

gray-scale discriminative textural descriptions, we benefit from fully descriptive color, rotationally invari- 

ant bark texture representation. The proposed methods significantly outperform the state-of-the-art bark 

recognition approaches regarding classification accuracy. Both our classifiers outperform convolutional 

neural network ResNet even on the largest public bark database BarkNet which contains 23 0 0 0 high- 

resolution images from 23 different tree species. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Automatic bark recognition is a challenging but practical plant

taxonomy application which allows fast and non-invasive tree

recognition irrespective of the growing season, i.e., whether a tree

has or has not its leaves, fruit, needles, or seeds or if the tree is

healthy growing or just a dead stump. Automatic bark recognition

makes identification or learning of tree species possible without

any botanical expert knowledge through, e.g., using a dedicated

mobile application. Manual identification of a tree’s species based

on a botanical key of bark images is a tedious task which would

typically consist of scrolling through a book. Since bark cannot be

described as easily as leaves or needles [6,20] , the user has to go

through the whole bark encyclopedia looking for the correspond-

ing bark image. An automatic classifier can even overcome human

experts. The article [6] reports 56.6% and 77.8% classification ac-

curacy on the Austrian Federal Forest (AFF) dataset for two hu-

man experts, while two published automatic classifiers [18] and

[14] reach better results than the top human expert. 

The advantage of bark-based features is their relative stabil-

ity during the corresponding tree’s lifetime. Single shrubs or trees
� Handle by Associate Editor Prof. G. Sanniti di Baja. 
∗ Corresponding author. 
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ave specific bark which can be advantageously used for their

dentification. It enables numerous ecological applications such as

lant resource management or fast identification of invading tree

pecies. Industrial applications can be in sawmills or detection of

ark beetle tree infestation. 

.1. Alternative bark recognition methods 

An SVM type of classifier and gray-scale LBP features are used

n [1] . Their dataset is a collection of 40 images per species, and

here are 23 species, i.e., a total of 920 bark color images of local,

ostly dry subtropical-climate, shrubs, and trees (acacias, agaves,

puntias, palms). The classifier exploited in [10] is a radial ba-

is probabilistic neural network. The method uses Daubechies 3rd

evel wavelet-based features applied to each color band in the

C b C r color space. A similar method [9] with the same classifier

ses Gabor wavelet features. Both approaches use the same test

et which contains 300 color bark images. Gabor banks features

ith a narrow-band signal model in 1-NN classifier were proposed

n [5] . The test set has eight species with twenty-five samples per

ree category. The author also demonstrates a significant, but ex-

ectable, performance improvement when color information was

dded. The 1-NN and 4-NN classifier [21] represent bark textures

y the run length, Haralick’s co-occurrence matrix based, and his-

ogram features. These methods are verified on a limited dataset

f 160 samples from nine species. Authors in [3] propose a rota-

https://doi.org/10.1016/j.patrec.2019.06.027
http://www.ScienceDirect.com
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Fig. 1. The paths of the two “spirals” in an image. Left: octagonal, right: rectangu- 

lar. The numbers designate the order in which the pixels r , i.e., I cs 
r neighborhoods 

are traversed and the red square means the center pixel. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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Fig. 2. The fixed causal functional contextual neighbourhood I cs 
r . Left: rightwards 

direction, right: downwards direction. 
ionally invariant statistical radial binary pattern (SRBP) descriptor

o characterize a bark texture. Four types of multiscale LBP fea-

ures (Multi-Block LBP (MBLBP) with a mean filter, LBP Filtering

LBPF), Multi-Scale LBP (MSLBP) with a low pass Gaussian filter,

nd Pyramid-based LBP (PLPB) with a pyramid transform) are used

n [2] . Two bark image datasets (AFF [6] , Trunk12 [19] ) were used

o evaluate the multi-scale LBP descriptors based bark recogni-

ion. The authors observed that multi-scale LBP provides more dis-

riminative texture features than basic and uniform LBP and that

BPF gives the best results over all the tested descriptors on both

atasets. The paper [17] proposes a combination of two types of

exture features, the gray-level co-occurrence matrix metrics and

he long connection length emphasis ( [17] ) binary textural fea-

ures. Eighteen tree species in 90 images are classified using the k-

N classifier. The support vector machine classifier and multiscale

otationally invariant LBP features are used in [18] . The multi-class

lassification problem is solved using the one versus all scheme.

he method is verified on two general texture datasets and the AFF

ark dataset [6] . A comparison of the usefulness of the run-length

ethod (5 features), co-occurrence correlation method (100) fea-

ures for the bark k-NN classification into nine categories with 15

amples per category is presented in [21] . The method [6] uses

upport vector machine classifier with radial basis function ker-

el applied with four (contrast, correlation, homogeneity, and en-

rgy) gray-level co-occurrence matrices (GLCM), SIFT based bag-of-

ords, and wavelet features. The bark dataset (AFF bark dataset)

onsists of 1183 images of the eleven most common Austrian trees

 Section 4 ). Color descriptor based on three-dimensional adaptive

um and difference histograms was applied on BarTex textures in

15,16] . 

Authors in [4] collected by far the largest public bark dataset

arkNet 1.0. The BarkNet 1.0 dataset contains more than 23 0 0 0

igh-resolution bark images from 23 different Canadian tree

pecies. The color bark images are classified using the convolu-

ional neural network ResNet pre-trained on ImageNet. 

The majority of the published methods suffer from neglect-

ng spectral information and using discriminative and thus ap-

roximate textural features only. Few attempts to use multispec-

ral information [9,10,12,14,21] independently apply monospectral 

eatures on each spectral band or apply the color LBP features

8,13] or convolutional neural network [4] . Most methods use pri-

ate and very restricted bark databases, thus the published results

re mutually incomparable and of limited information value. 

The rotationally invariant bark recognition method [14] is based

n novel 2D spiral Markovian texture features computed for each

pectral band, then approximated by the multivariate Gaussian

istribution. The 1-NN classifier uses the symmetrized Kullback-

eibler divergence, i.e., Jeffrey’s divergence as the distance mea-

ure. The presented approach generalizes these monospectral 2D

arkovian spiral textural features into fully multispectral 3D spi-

al textural features. In the 2DSCAR model article [14] we already

ntroduced matrix notation which can be adapted with tiny modi-

cations also for the presented 3DSCAR model-based textural fea-

ures. 

. Spiral Markovian texture representation 

The adaptive spiral 3D causal auto-regressive random (3DSCAR)

eld model is a generalization of the 3DCAR model [7] . The

odel’s functional contextual neighbor index shift set is denoted

 

cs 
r . The model can be defined in the following matrix equation: 

 r = γ Z r + e r , (1)

here γ = [ A 1 , . . . , A η] is the parameter matrix, η =
ardinality (I cs 

r ) , r = [ r 1 , r 2 ] is spatial index denoting history of

ovements on the lattice I , e r denotes the driving white Gaus-
ian noise vector with zero mean and a constant but unknown

ovariance matrix �, and Z r is a neighborhood support vector of

ultispectral pixels Y r−s where s ∈ I cs 
r . 

All 3DSCAR model statistics can be efficiently estimated ana-

ytically [7] . The Bayesian parameter estimation (conditional mean

alue) ˆ γ can be accomplished using fast, numerically robust and

ecursive statistics [7] , given the known 3DSCAR process history

 

(t−1) = { Y t−1 , Y t−2 , . . . , Y 1 , Z t , Z t−1 , . . . , Z 1 } : 
ˆ T t−1 = V 

−1 
zz(t−1) 

V zy (t−1) , (2) 

 t−1 = 

˜ V t−1 + V 0 , (3) 

˜ 
 t−1 = 

( ∑ t−1 
u =1 Y u Y 

T 
u 

∑ t−1 
u =1 Y u Z 

T 
u ∑ t−1 

u =1 Z u Y 
T 

u 

∑ t−1 
u =1 Z u Z 

T 
u 

) 

= 

(
˜ V yy (t−1) 

˜ V 

T 
zy (t−1) 

˜ V zy (t−1) 
˜ V zz(t−1) 

)
, (4) 

here V 0 is a positive definite initialization matrix (see [7] ). To

implify notation, we introduce a new traversing order multi-index

 of the sequence of multi-indices r which is based on the selected

odel movement in the lattice I (e.g., t 16 = { t 16 + (1 ; −1) , t 16 +
(2 ; −1) , . . . , t 16 + (−1 ; 1) } for Fig. 1 -left). The optimal causal func-

ional contextual neighbourhood I cs 
r can be solved analytically by

 straightforward generalization of the Bayesian estimate in [7] . To

implify our experiments we did not optimize the neighbourhood

 

cs 
r but used its fixed form Fig. 2 . The model can be easily applied

lso to numerous synthesis applications. The 3DSCAR model pixel-

ise synthesis is simple direct application of (1) for any 3DSCAR

odel. 

.1. Spiral models 

The 3DSCAR model’s movement r on the lattice I takes the form

f circular or spiral-like paths as seen in Fig. 1 . The causal neigh-

orhood I c r has to be transformed to be consistent for each direc-

ion in the traversed path to. The paths used can be arbitrary as
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Fig. 3. Flowchart of our classification approach. 
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long as they keep transforming the causal neighborhood into I cs 
r in

such a way that all neighbors of a control pixel r have been visited

by the model in the previous steps. We shall call all these paths

as spirals further on. We present two types of paths - octagonal

( Fig. 1 on the left) and a rectangular spiral ( Fig. 1 - right). During

our experiments, they exhibited comparable results with the oc-

tagonal path being faster thanks to its consisting of fewer pixels

for the same radius. 

After the whole path is traversed, the parameters for the center

pixel (shown as red square in Fig. 1 ) of the spiral are estimated.

Contrary to the standard CAR model [7] , since this model’s equa-

tions do not need the whole history of movement through the

image but only the given one spiral, the 3DSCAR models can be

easily parallelized. If the spiral paths used have a circular shape,

the 3DSCAR models exhibit rotational invariant properties thanks

to the CAR model’s memory of all the visited pixels. The spiral

neighborhood I cs 
r ( Fig. 1 -right) is rotationally invariant only approx-

imately. Additional contextual information can be easily incorpo-

rated if every initialization matrix V 0 = V t−1 , i.e., if this matrix is

initialized from the previous data gathering matrix. 

2.2. Rotationally invariant multispectral features 

For feature extraction, we analyzed the 3DSCAR model around

pixels with the vertical and horizontal stride of 2 to speed up the

computation. The following illumination invariant features initially

derived for the 3DCAR model [7] were adapted for the 3DSCAR: 

α1 = 1 + Z T r V 

−1 
zz Z r , (5)

α2 = 

√ ∑ 

r 

(
Y r − ˆ γ Z r 

)T 
λ−1 

r 

(
Y r − ˆ γ Z r 

)
, (6)

α3 = 

√ ∑ 

r 

( Y r − μ) 
T λ−1 

r ( Y r − μ) , (7)

where μ is the mean value of vector Y r and 

λt−1 = V yy (t−1) − V 

T 
zy (t−1) V 

−1 
zz(t−1) 

. (8)

The inversion matrix V −1 
zz(t−1) 

is updated in its Cholesky factor to

guarantee numerical stability of all computed model statistics [7] .

As the texture features, we also used the estimated trace of γ pa-

rameters, the posterior probability density [7] 

p(Y r | Y (r−1) , ˆ γr−1 ) = 

�( β(r) −η+3 
2 

) 

�( β(r) −η+2 
2 

) π
1 
2 (1 + X 

T 
r V 

−1 
x (r−1) 

X r ) 
1 
2 | λ(r−1) | 12

×
( 

1 + 

(Y r − ˆ γr−1 X r ) 
T λ−1 

(r−1) 
(Y r − ˆ γr−1 X r ) 

1 + X 

T 
r V 

−1 
x (r−1) 

X r 

) − β(r) −η+3 
2 

, (9)

β(r) = r + η − 2 , and the absolute error of the one-step-ahead pre-

diction 

Abs (GE) = 

∣∣E {Y r | Y (r−1) 
}

− Y r 
∣∣ = | Y r − ˆ γr−1 X r | . (10)

3. Bark classifier 

We first subsample the images to the height of 300px (if the

image is larger), keeping aspect ratio to speed up the feature

extraction part. This subsampling ratio depends on an applica-

tion data, i.e., a compromise between the algorithm efficiency and

its recognition rate. The features are extracted as described in

Section 2 . The feature space is assumed to be approximated by

the multivariate Gaussian distribution, the parameters of which are

then stored for each training sample image. 

N (θ | μ, �) = 

1 √ 

(2 π) N | �| e 
( − 1 

2 (θ−μ) T �−1 (θ−μ) ) . (11)
During the classification stage, the parameters of the Gaussian

istribution are estimated for the classified image as in the training

tep (the flowchart of our approach can be seen in Fig. 3 ). They are

hen compared with all the distributions of the training samples

sing the Kullback-Leibler (KL) divergence. The KL divergence is a

easure of how much one probability distribution diverges from

nother. It is defined as: 

 ( f (x ) || g(x )) 
de f = 

∫ 
f (x ) log 

f (x ) 

g(x ) 
dx . (12)

For the Gaussian distribution data model, the KL divergence can

e solved analytically: 

 ( f (x ) || g(x )) = 

1 

2 

(
log 

| �g | 
| � f | + tr(�−1 

g � f ) − d 

)

+ 

1 

2 

(
μ f − μg ) 

T �−1 
g (μ f − μg 

)
. (13)

We use the symmetrized variant of the Kullback-Leibler diver-

ence known as the Jeffreys divergence 

 s ( f (x ) || g(x )) = 

D ( f (x ) || g(x )) + D (g(x ) || f (x )) 

2 

. (14)

The class of the training sample with the lowest divergence

rom the image being recognized is then selected as the final re-

ult. The advantage of our approach is that the training database

s heavily compressed through the Gaussian distribution parame-

ers (as we extract only about 40 features, depending on the cho-

en neighborhood, we just need to store 40 numbers for the mean

nd 40 × 40 numbers for the covariance matrix) and the compar-

son with the training database is extremely fast, enabling us to

ompare hundreds of thousands of image feature distributions per

econd on an ordinary computer. 

. Experimental data 

The proposed method is verified on four publicly available bark

atabases. Examples of images of the datasets can be seen in Fig. 4 .

e have used the leave-one-out approach for the classification rate

stimation. Thus the number of training images varies between 6

or AFF to 2723 for the largest BarkNet class Quercus rubra. V 0 is

nitialized to be the identity matrix. All bark images in our experi-

ents were extremely resized to our disadvantage to have a com-

arable amount of information with the [4] method which uses

24 × 224 textures only. 

.1. AFF dataset 

The AFF bark dataset provided by Österreichische Bundesforste,

ustrian Federal Forests (AFF) [6] , is a collection of the most

ommon Austrian trees. The dataset contains 1182 bark samples

960 × 1325) belonging to 11 classes, the size of each class varying

etween 7 and 213 images. AFF samples are captured at different

cales, and under different illumination conditions. 
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Fig. 4. Examples of images from the individual datasets. Top to bottom (rightwards): AFF (ash, black pine, fir, hornbeam, larch, mountain oak, Scots pine, spruce, Swiss stone 

pine, sycamore maple, beech), BarkTex (betula pendula, fagus silvatica,picea abies, pinus silvestris, quercus robur, robinia pseudacacia), Trunk12 (alder, beech, birch, ginkgo 

biloba, hornbeam, horse chestnut, chestnut, linden, oak, oriental plane, pine, spruce), BarkNet (Betula alleghaniensis, Betula papyrifera, Quercus rubra, Picea glauca, Picea 

mariana, Picea abies, Picea rubens, Acer platanoides, Acer rubrum, Acer saccharum, Fraxinus americana, Fagus grandifolia, Larix laricina, Ulmus americana, Ostrya virginiana, 

Populus grandidentata, Populus tremuloides, Pinus strobus, Pinus rigida, Pinus resinosa, Tsuga canadensis, Abies balsamea, Thuja occidentalis). 
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.2. Trunk12 dataset 

The Trunk12 dataset (30 0 0 × 40 0 0, [19] , http://www.vicos.si/

ownloads/TRUNK12 ) contains 393 images of tree barks belonging

o 12 different trees that are found in Slovenia. The number of im-

ges per class varies between 30 and 45 images. Bark images are

aptured under controlled scale, illumination and pose conditions.

he classes are more homogeneous than those of AFF regarding

maging conditions. 

.3. BarkTex dataset 

The BarkTex dataset [11] contains 408 samples from 6 bark

lasses, i.e., 68 images per class. The images have small (256 × 384)

esolution and they have unequal natural illumination and scale. 

.4. BarkNet 1.0 dataset 

The BarkNet 1.0 dataset [4] contains 23 bark classes (Betula al-

eghaniensis, Betula papyrifera, Quercus rubra, Picea glauca, Picea

ariana, Picea abies, Picea rubens, Acer platanoides, Acer rubrum,

cer saccharum, Fraxinus americana, Fagus grandifolia, Larix lar-

cina, Ulmus americana, Ostrya virginiana, Populus grandidentata,

opulus tremuloides, Pinus strobus, Pinus rigida, Pinus resinosa,

suga canadensis, Abies balsamea, Thuja occidentalis) recorder by

hree cellphones Nexus 5, Samsung Galaxy S5, Samsung Galaxy S7

nd camera Panasonic Lumix DMC-TS5 in the vicinity of Quebec,

anada. This dataset contains over 23,0 0 0 variable high-resolution

ark images each one together with the tree diameter at breast

eight information. Images were captured from variable distances

etween 20–60 cm away from the trunk without perspective dis-

ortion and under alternating weather conditions which ranged

rom sunny to light rain. The number of images per class differs

rom 64 (Populus grandidentata) to 2724 (Quercus rubra). 
. Results 

.1. 2DSCAR results 

We have improved (83.6% [14] ) the accuracy to 89.1% on the

FF dataset ( Table 1 ), and achieved 91.7% on the BarkTex database

nd 92.9% on the Trunk12 dataset ( Table 3 ). In all the three ta-

les, the name of the row indicates the actual tree type whereas

he column indicates the predicted class. The comparison with

ther methods is presented in Table 4 . We can see that our ap-

roach vastly outperforms all compared methods on the BarkTex

nd Trunk12 datasets and has the second best results on the AFF

ataset. However, the result of the method [18] on the AFF dataset

as achieved on quadruple textures. Thus this comparison is bi-

sed and comparable results would be probably worse for their

ethod. The BarkNet 1.0 dataset accuracy result is 90.4% on all 23

lasses. The sensitivity for all classes is between 84 − 99 [%] with

edian value 90% and precision 77 − 100 [%] with median value

0%, which are better results than the ResNet classifier achieve-

ent. 

.2. 3DSCAR results 

The 3DSCAR model was applied to the BarkNet 1.0 dataset and

ompared with results obtained using convolutional neural net-

ork ResNet pre-trained on ImageNet [4] . The neural net requires

uge training set, contrary to our 3DSCAR model, which can be re-

iably learned on a single image. Thus the ResNet did not classify

hree classes with the smallest number of images (Populus gran-

identata - 64, Acer platanoides - 70, Pinus rigida - 123). This is

ot a problem for our method as can be seen in Table 5 . The sen-

itivity for all 23 classes is between 72 − 96 [%] with median value

6% and precision 68 − 97 [%] with median value 85%. The ResNet

lassifier is highly dependent on the number of training images.

f the number of training images is in the range 〈 476; 2179 〉 per

lass they reach the accuracy 85% but for smaller training set ( 〈 52;

42 〉 ) the accuracy significantly decreases to 64%. The accuracy re-

http://www.vicos.si/Downloads/TRUNK12
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Table 1 

AFF bark dataset results of the 2DSCAR method (MO - Mountain oak, SP - Scots pine, SSP - Swiss stone pine, SM - Sycamore 

maple). 

Ash Beech Black Fir Horn- Larch MO SP Spruce SSP SM Sensitivity 

pine beam % 

Ash 23 0 0 0 0 0 0 0 0 0 0 95,8 

Beech 0 6 0 0 0 0 0 0 0 0 0 85,7 

B. pine 0 0 149 1 0 8 0 8 0 1 0 94,9 

Fir 0 0 0 101 0 1 0 0 4 0 0 85,6 

Horn. 0 0 0 0 32 0 0 0 0 0 1 97,0 

Larch 0 0 4 10 0 163 0 30 2 0 0 85,3 

MO 0 0 0 0 0 0 65 0 0 4 3 95,6 

SP 0 0 4 3 0 19 0 143 3 0 0 79,0 

Spruce 0 0 0 3 0 0 1 0 195 0 0 95,6 

SSP 1 0 0 0 0 0 2 0 0 82 3 94,3 

SM 0 1 0 0 1 0 0 0 0 0 5 41,7 

Precision Accuracy 

% 100 100 89,2 95,3 97 78 90,3 83,1 98 93,2 71,4 89,1 

Table 2 

BarkTex dataset results of the 3DSCAR method (BP - Betula pendula, FS - Fagus silvatica, 

PA - Picea abies, PS - Pinus silvestris, QR - Quercus robur, RP - Robinia pseudacacia). 

BP FS PA PS QR RP Sensitivity 

% 

Betula pendula 55 1 4 1 4 0 80,9 

Fagus silvatica 2 67 0 0 0 0 98,5 

Picea abies 6 0 60 0 4 0 88,2 

Pinus silvestris 1 0 0 64 8 2 94,1 

Quercus robur 4 0 4 2 50 3 73,5 

Robinia pseudacacia 0 0 0 1 2 63 92,7 

Precision Accuracy 

% 84,6 97,1 85,7 85,3 79,4 95,5 88,0 

Table 3 

Trunk12 dataset results of the 2DSCAR method (A - Alder, Be - Beech, Bi - Birch, Ch - Chestnut, GB - Ginkgo biloba, H - Hornbeam, 

HC - Horse chestnut, L - Linden, OP - Oriental plane, S - Spruce). 

A Be Bi Ch GB H HC L Oak OP Pine S Sensitivity 

% 

Alder 33 0 1 0 0 0 0 0 0 0 0 0 97,1 

Beech 0 29 0 0 0 1 0 0 0 0 0 0 96,7 

Birch 0 0 36 1 0 0 0 0 0 0 0 0 97,3 

Chestnut 2 0 0 24 0 0 0 0 4 0 2 0 75,0 

Ginkgo biloba 0 0 0 0 30 0 0 0 0 0 0 0 100 

Hornbeam 0 2 0 0 0 28 0 0 0 0 0 0 93,3 

Horse chestnut 0 0 1 0 0 1 27 3 0 0 1 0 81,8 

Linden 0 0 0 1 0 0 4 25 0 0 0 0 83,3 

Oak 1 0 0 0 0 0 0 0 29 0 0 0 96,7 

Oriental plane 0 0 0 1 0 0 1 0 0 30 0 0 93,8 

Pine 0 0 0 0 0 0 0 0 0 0 30 0 100 

Spruce 1 0 0 0 0 0 0 0 0 0 0 44 97,8 

Precision Accuracy 

% 89,2 93,5 94,7 88,9 100 93,3 84,4 89,3 87,9 100 90,9 100 92,9 

Table 4 

Accuracy comparison with the state-of-the-art. ’-’ denotes lack of results in the particular article on the given dataset. 

Dataset % 2DSCAR [14] 3DSCAR [3] [6] [18] [8] [12] [13] [16] [15] [4] 

AFF 89.1 88.0 60.5 69.7 96.5 - - - - - - 

BarkTex 91.7 88.0 84.6 - - 81.4 84.7 81.4 82.1 89.6 - 

Trunk12 92.9 81.9 62.8 - - - - - - - - 

BarkNet 90.4 85.0 - - - - - - - - (64) 85 
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d  

s  
sult for the AFF dataset is 88%, BarkTex database ( Table 2 ) is 88%,

and the Trunk12 dataset is 81.9%, respectively. As expected, the

3DSCAR feature results are worse than their 2DSCAR alternative,

due to not robust estimation of the spectral correlation because

the learning resized images are purposely too small. Nevertheless,

even this insufficient learning data allow to achieve better accu-

racy ( Table 4 – 85%) than the convolutional neural network ResNet

(64%). 
The computational load of the alternative methods in

able 4 cannot be easily compared due to missing informa-

ion in the corresponding papers. We can guess at this point that

he learning step of the methods based on neural nets [4,10] is

ignificantly more demanding than ours, while the classification

tage will be comparable. Our unoptimized implementation is

ivided into three steps - feature extraction and their subsequent

torage for every image, parametric Gaussian model estimation,
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Table 5 

Presented method (3DSCAR) classification results for three bark species 

which have too limited training sets in BarkNet for the alternative ResNet 

classifier. 

tree precision [%] sensitivity [%] 

2DSCAR 3DSCAR 2DSCAR 3DSCAR 

Populus grandidentata 92 87 94 91 

Acer platanoides 100 96 83 76 

Pinus rigida 77 68 83 76 
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nd classification. The first step is the most computationally

emanding taking seconds per image due to the unneeded storage

f many large parametric files instead of directly computing the

aussian models; the two subsequent steps are negligible in

omparison with the feature extraction step. 

. Conclusion 

We present novel rotationally invariant fully multispectral

arkovian textural features and apply them to the tree bark recog-

ition. These statistical features are analytically derived from the

nderlying descriptive textural model and can be efficiently, re-

ursively, and adaptively learned. The classifiers based on these

eatures outperform the state-of-the-art alternative methods on

our public bark databases. The 2DSCAR model-based classifier is

robably the second best on the AFF database even in its com-

ined monospectral form, which neglects mutual spectral correla-

ions between spectral bands. Our classifiers outperform convolu-

ional neural networks ResNet even on the by far largest public

ark database BarkNet which contains 23 0 0 0 high-resolution im-

ges from 23 different tree species. Our 2DSCAR/3DSCAR methods

re rotationally invariant, benefit from information from all spec-

ral bands and can be easily parallelized or made fully illumina-

ion invariant. Both our classifiers are fully analytical and much

aster than the convolutional neural net alternative, especially in

heir learning stage. They do not need large learning data, and

hey outperform the convolutional neural nets even if these learn-

ng data are restricted. The choice between 2DSCAR and 3DSCAR

ased features depends on the number of available learning data.

DSCAR features will benefit from larger learning set, while for

imited learning data available, the 2DSCAR features computed sep-

rably from each spectral band is the recommendable option. We

ave also executed our method without any modification on the

FF dataset’s images of needles and leaves, with results exceeding

4% accuracy. This will be a subject of our further research. 
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