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Abstract. Fast novel texture spectral similarity criterion, capable of
assessing spectral modeling resemblance of color and Bidirectional Tex-
ture Functions (BTF) textures, is presented. The criterion reliably com-
pares the multi-spectral pixel values of two textures, and thus it allows to
assist an optimal modeling or acquisition setup development by compar-
ing the original data with its synthetic simulations. The suggested crite-
rion, together with existing alternatives, is extensively tested in a long
series of thousands specially designed monotonically degrading experi-
ments moreover, successfully compared on a wide variety of color and
BTF textures.

1 Introduction

A reliable mathematical criterion which would allow to an automatic assessment
and mutual-similarity evaluation of two or more visual textures is important but
still unsolved difficult image understanding problem. Recent validation of the
state-of-the-art image and texture fidelity criteria [5] on the web-based bench-
mark (http://tfa.utia.cas.cz) has demonstrated that none of published criteria
(CW-SSIM [24], STSIM-1, STSIM-2, STSIM-M) [27], ζ [13]) can be reliably used
for this task at all.

However, the development of visually correct mathematical texture mod-
els and the estimation of their optimal parameters requires a reliable criterion
for comparison of the original texture with a synthesized or reconstructed one.
Such similarity metrics is also needed for spectral content-based image retrieval.
Various textural features developed for texture classification applications such as
Haralick’s features [8], Run-Length features [4], Laws’s filters [14], Gabor features
[15], LBP [17], and so forth are not descriptive (except for Markovian features
[6]), and thus, they can be used for identity but not a degree of similarity deci-
sions. Furthermore, most advanced textural features are limited to mono-spectral
images, which neglects color is arguably the most significant visual feature.

The psychophysical evaluations [7,22], i.e., quality assessments performed
by humans, currently represent the only reliable but awkward option. The psy-
chophysical texture similarity assessment requires strictly controlled laboratory
c© Springer Nature Switzerland AG 2019
G. Bebis et al. (Eds.): ISVC 2019, LNCS 11844, pp. 302–314, 2019.
https://doi.org/10.1007/978-3-030-33720-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33720-9_23&domain=pdf
http://orcid.org/0000-0001-8159-3685
http://tfa.utia.cas.cz
https://doi.org/10.1007/978-3-030-33720-9_23


Mutual Information-Based Texture Spectral Similarity Criterion 303

conditions experiment design setup, representative and sufficient numbers of
testers who are naive concerning the purpose and design of the experiment.
Thus it is extremely impractical, expensive, generally demanding, and hence
nontransferable into daily routine practice.

In this article, the visual textures or general images, we compare as inde-
pendent sets of pixels irrespectively of their location. We will investigate this
restricted problem of texture spectral similarity in the rest of the paper which
is organized as follows: Sect. 2 briefly presents existing possibilities to solve the
problem of image spectral composition comparison, including some criteria based
on modifications of techniques developed for slightly different purposes. Section 3
explains in detail the proposed approach and Sect. 4 describes the performed cri-
teria, validation experiments, and test data. Section 5 shows the achieved results.
The conclusion summarizes the paper with a discussion and compares the pro-
posed criterion with the existing alternatives.

2 Related Criteria

In this section, we briefly survey existing methods capable of comparing image
spectral composition. The symbols ↓, ↑ indicate the increasing similarity direc-
tion for the corresponding criterion. Most methods deal with color images,
i.e., three spectral channels only. The straightforward option is to use a three-
dimensional (3-D) histogram or local histogram [25], which approximates the
image color distribution. Let us denote by a� and b� the �-th bin of the
3-D histogram of the images A and B respectively, where A is the template
image and similarly B is the image to be compared. The range of the histogram
multi-index � = [i, j, k] depends on a color space C in which the image is
represented, e.g., in case of the standard 24-bit RGB color space, the range of
all three components of the multi-index is an integer from 0 to 255.

The histogram based criteria often use the Minkowski distance:

↓ ΔpH(A,B) =

⎛
⎝∑

�∈C

|a� − b�|p
⎞
⎠

1/p

≥ 0. (1)

either in the most intuitive the 3-D histograms difference version p = 1 (ΔH also
known as the block or Manhattan distance), or the Euclidean distance p = 2,
a fractional dissimilarity p = 1

2 , alternatively, the maximum distance also called
Chebyshev distance and known as chessboard distance (p = ∞):

↓ Δ∞H(A,B) =
∑
�∈C

max {|ai − bi|, |aj − bj |, |ak − bk|} ≥ 0, (2)

where ai, aj , ak represents 1st, 2nd and 3rd components of vector a� and
similarly for bi, bj , bk. Let us mention that for 0 < p < 1 so-called fractional
dissimilarity, the Minkowski distance is not a metric because it violates the
triangle inequality [10].
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Several other possibilities for 3-D histogram comparison have been suggested,
such as the histogram intersection [21]:

↓ ∩H(A,B) = 1 −
∑

�∈C min {a�, b�}∑
�∈C b�

≥ 0, (3)

the squared chord [12]:

↓ dsc(A,B) =
∑
�∈C

(√
a� − √

b�

)2

≥ 0, (4)

the Canberra metric [12]:

↓ dcan =
∑
C0

|a� − b�|
a� + b�

≥ 0, (5)

where C0 = {� : a� + b� �= 0} ⊂ C.
The information theoretic measures can also be considered for evaluating the

histogram difference. One possible option is the Kullback-Leibler divergence:

↓ KL(A,B) =
∑
C0

a� log
a�

b�
, (6)

where C0 = {� : a�b� �= 0} ⊂ C and log denotes common logarithm. Another
possible option is the symmetric modification of the Kullback-Leibler divergence
– a variant of the empirical Jeffrey divergence:

↓ J(A,B) =
∑
C0

a� log
2a�

a� + b�
+ b� log

2b�

a� + b�
≥ 0. (7)

The Jeffrey divergence is numerically stable, symmetric and robust concerning
noise and the size of histogram bins [18]. Another measure, based on χ2 statistic
was suggested in [26]:

↓ χ2(A,B) =
∑
C0

2
(
a� − a�+b�

2

)2

a� + b�
≥ 0. (8)

The Earth Mover’s Distance (EMD) or Wasserstein [19] is a method to eval-
uate dissimilarity between two multidimensional distributions in some feature
space. It is based on the minimal cost that must be paid to transform one distri-
bution into another where the cost for moving a single feature unit in the feature
space is defined by the Euclidean distance, and the total cost is the sum of such
single feature moving costs. The measure in its smoothed dual solution [1] is too
time-consuming for any practical application (see Table 2).

The generalized color moments (GCM) [16] suits well to the image spectral
composition comparison problem. The GCM of the (p + q)-th order and the
(α + β + γ)-th degree is defined as [16]:
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↓ ΔGCMαβγ
pq (A,B) =

∣∣∣∣∣
∫ ∫

〈A〉
rp
1r

q
2 [Y A

r1,r2,1]
α [Y A

r1,r2,2]
β [Y A

r1,r2,3]
γ dr1dr2

−
∫ ∫

〈B〉
rp
1r

q
2 [Y B

r1,r2,1]
α [Y B

r1,r2,2]
β [Y B

r1,r2,3]
γ dr1dr2

∣∣∣∣∣ , (9)

where [r1, r2] ∈ 〈A〉 represents planar coordinates of the image pixel Y A
r ,

Y A
r1,r2,i denotes a pixel intensity in the i-th spectral plane of the image A ,

similarly Y B
r1,r2,r3=i where [r1, r2] ∈ 〈B〉. In the case of using GCM for spectral

composition comparison, neither of the terms rp
1 and rq

2 is useful and therefore
both might be put equal to one, using those GCMs for which p = q = 0 holds.
Moreover, it has been observed that the best results are achieved if α = β = γ,
specifically using GCMs for α = β = γ < 4. Thus, GCM directly compares
image pixels not using their 3-D histograms like methods (1), (3)–(8), similar
to the cosine-function-based dissimilarity, which computes an angle between two
vectors. Both images A,B must have an identical number of pixels which is a
significant drawback of this criterion. This criterion is the only one mentioned
in this article suffering from this. All values of corresponding image spectral
channels are arranged into vectors VA and VB and the difference is computed
as [26]:

↑ dcos(A,B) =
V T

A . VB

‖VA‖ ‖VB‖ ∈ 〈0; 1〉, (10)

where ‖ ‖ denotes the vector magnitude.
Various set-theoretic measures can serve as criteria as well. Let sets SA

and SB denote the sets of unique multi-dimensional vectors representing pixels
occurring in the images A and B, respectively. Spectral composition comparison
criteria can be based on methods developed for comparing the similarity and
diversity of the sample sets, such as the Jaccard index [11]:

↑ JI(A,B) =
|SA ∩ SB|
|SA ∪ SB| ∈ 〈0; 1〉, (11)

or the Sørensen-Dice index [3]:

↑ SDI(A,B) =
2 |SA ∩ SB |
|SA| + |SB | ∈ 〈0; 1〉, (12)

where || denotes the cardinality of the set. Since SDI does not satisfy the triangle
inequality, it can be considered a semi-metric version of JI.

Another alternative may be a modified criterion developed for texture com-
parison as the texture spectral composition comparison might be considered a
very special case of this task. It is possible to modify the structural similarity
metric (SSIM) [23] for example. SSIM compares local statistics in corresponding
sliding windows in two images in either the spatial or wavelet domain. Its form
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consists of three terms that reflect luminance, contrast, and structure of the tex-
tures. In the case of the spectral composition comparison the structure term is
irrelevant so that we define a reduced SSIM:

↓ rSSIM(A,B) =
1

	{r3}
∑
∀r3

2μA,r3μB,r3

μ2
A,r3

+ μ2
B,r3

2σA,r3σB,r3

σ2
A,r3

+ σ2
B,r3

, (13)

where 	{r3} is the spectral index cardinality, i.e., the number of spectral chan-
nels, μA,r3 is the mean of r3 -th spectral plane of A and σA,r3 is the
standard deviation of r3 -th spectral plane of A; similarly for μB,r3 and σB,r3 .
rSSIM(A,B) = 1 for spectrally equal textures.

A MEMD criterion was proposed in [9]

↓ ζ(A,B) =
1
M

∑
(r1,r2)∈〈A〉

min
(s1,s2)∈U

{
ρ

(
Y A

r1,r2,•, Y
B
s1,s2,•

)} ≥ 0, (14)

where Y A
r1,r2,• represents the pixel at location (r1, r2) in the image A, • denotes

all the corresponding spectral indices, and similarly for Y B
s1,s2,•. Further, ρ is

an arbitrary vector metric.

3 Proposed Criterion

The proposed texture spectral similarity criterion is based on the mutual infor-
mation:

↑ ε(A,B) = log2 n − 1
n

nA∑
i=1

Ani log2
Ani − 1

n

nB∑
j=1

Bnj log2
Bnj

+
1
n

nA,nB∑
i=1,j=1

ni,j log2 ni,j ≥ 0, (15)

n =
nA,nB∑

i=1,j=1

ni,j ,

where Ani is the number of color xi appearances in A, Bnj is the number
of color yj appearances in B, nij is the number of pixels with identical color
xi = yj , and nA, nB are the number of the corresponding color histogram
cells. ε(A,B) = 0 if both textures have independent colors. The criterion is
non-negative and symmetric ε(A,B) = ε(B,A).

3.1 Evaluation Meta-Criterion

The tested criteria are applied to quantify spectral composition differences
between the template image, i.e., the first member of the degradation sequence
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and the remaining members. As all those sequences are created to guarantee a
monotonic degradation of the original image, i.e., the similarity of the members
of the sequence and the original image is decreasing with the order. A good
criterion should preserve this monotonicity.

The meta-criterion is the number of monotonicity violations of the criterion
τ in the experiment X:

ΞX,τ =
l∑

i=1

[
1 − δ

(
oX

i − oX,τ
i

)]
, (16)

where τ is a tested criterion, oX
i is the rank of a degraded image and oX,τ

i

its corresponding correct ordering of the τ -criterion-based ranking, and δ is the
Kronecker delta function.

4 Criteria Evaluation

We proposed the set of six controllable degradation experiments described in
detail below with the aim to investigate how the individual previously published
(1)–(14) criteria as well as the novel proposed criterion are affected by the spec-
tral composition changes comparing the image with its modified versions. In the
following sections, we describe the performed experiments as well as used test
data.

4.1 Controlled Degradation of the Test Data

A sequence of gradually degraded textural images is generated from the original
test one. The original image serves as the first member of the sequence, i.e.,
AX

1 = A and each member, except for the first one, is generated from its pre-
decessor in the sequence as: AX

t = fX

(
AX

t−1

)
, t = 1, . . . , l, where l equals the

length of the sequence and X is the label identifying the experiment (individ-
ual experiments described below). Further Y A

r,t denotes the multi-spectral pixel
from the experimental image AX

t at r = [r1, r2, r3] which is a multi-index
with image row, column, and spectral components, respectively. X is the cor-
responding label of one of following six degradation experiments we established
for validation tests:

A Replacing spectral intensity values of pixels with the maximal or minimal
value in the used color space with the probability p = 1

l :

Y A
r,t

p= 1
l←→

{
[255, 255, 255]T : with p = 0.5
[0, 0, 0]T : otherwise

B Adding a constant c = 255
l to spectral intensities of the pixels:

Y B
r,t

p↔Y B
r,t−1 + [c, c, c]T



308 M. Haindl and M. Havĺıček

C Replacing spectral intensity values of pixels with the minimal value in the
used color space ([0, 0, 0]T ) with randomly driven propagating with 50%
probability with 8-connected pixels from I

(8)
r :

1. Y C
r,t

p↔[0, 0, 0]T

2. Y C
s,t

0.5= Y C
r,t, ∀s ∈ I

(8)
r

D,E Randomly driven propagating with 50% probability with 8-connected
(D) or 4-connected (E) pixels from I

(8)
r :

Y D
s,t

0.5= Y D
r,t, ∀s ∈ I

(8)
r /I

(4)
r

F Adding a constant c = 255
l to the spectral intensities of the pixel and ran-

domly driven propagating with 50% probability with 8-connected pixels from
I
(8)
r :

1. Y F
r,t

p↔Y F
r,t−1 + [c, c, c]T

2. Y F
s,t

0.5= Y F
r,t, ∀s ∈ I

(8)
r

Several selected members of the degradation sequences generated during the
experiments are shown in Fig. 1.

4.2 Test Data

The proposed criterion was validated and compared with the alternative criteria
on two types of visual data - color textures and BTF textures.

Color Textures. The tested criteria were validated using 250 color textures
of 64 × 64 pixels saved as 24-bit RGB PNG files (Fig. 2). The textures were
selected from a large collection of both natural and man-made materials. Each
material category was represented by several examples. All used textures were
downloaded from free internet texture databases1,2. The obtained results are
summarized in Table 1-left.

Bidirectional Texture Functions. Simple color textures cannot represent
physically correct visual appearance of the corresponding surface materials under
variable observation conditions. Recent most advanced visual representation
of such surfaces, Bidirectional Texture Function (BTF) [2], which is a seven-
dimensional function describing surface appearance variations due to varying
spatial position and illumination and viewing angles are the state-of-the-art
replacement of static color textures. A static BTF texture representation requires
complex seven-dimensional models, which have not yet been developed [7]. Thus,

1 http://texturer.com/.
2 http://www.mayang.com/textures/.

http://texturer.com/
http://www.mayang.com/textures/
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their measurement or mathematical modeling use a BTF space factorization into
a large set of less dimensional factors. The measured BTF data usually consist of
several thousand color images per material which are analyzed for their intrinsic
dimensionality [7] and then subsequently approximated by a smaller number of
BTF subspaces. It is not possible to run all experiments for all infinite num-
ber images, i.e., for any combination of the continuous spherical illumination
and viewing angles, of synthetic BTF space texture components. Tested BTF
measurements are represented by 20 subspace clusters, which subsequently can
serve for building the BTF mathematical model. Subspace cluster were images
of 32 × 32 pixels saved as 24-bit RGB PNG files. We used ten BTF data sets
(one example of subspace is shown in Fig. 3) and therefore 200 textures obtained
from the University of Bonn database3 [20]. The achieved results are presented
in Table 1-right.

5 Results

In this section, we present and summarize all achieved results during the experi-
ments described in Sect. 4.1 performed on color and BTF textures and compared
and comment on the performance of the criteria.

5.1 Color Textures

Achieved results of experiments with color textures in the RGB space (Fig. 2)
are summarized in Table 1-left. The criterion ζ achieves the best results on
average without any monotonicity violation and Δ2H (1) achieves the second
best results, although the difference between the best criterion and the second
best criterion is only 4% in average. The proposed criterion ε (15) is he third
best with only 5% monotonicity violation in average. Δ2H is ≤ 2% more correct
than ε in cases A–E but 4% less correct in case of F. rSSIM (13) is the second
most correct criterion in case of B and C and its average error is 6% but worsen
it performance in cases D and E. Other criteria fail on average more than 15%
and cannot be considered reliable, although in some cases they work well, e.g.,
ΔGCM111

00 in case of F, ΔH, Δ1/2H, ∩H, dsc, dcan, χ2 in case of A. The
criteria were on average the most successful in case of A with average failure
only 4% and the least successful in case of F with average failure 53%.

5.2 Bidirectional Texture Functions

The achieved results are summarized in the right part of Table 1. Both criteria
ε and ζ are the only criteria that reached zero average error in all experiments.
The second most successful criterion Δ2H achieved 1% worse result in average.
The ε, ζ can be considered as absolutely reliable for BTF textures. rSSIM
achieved 5% average error and it is quite successful in most experiments but

3 http://cg.cs.uni-bonn.de/en/projects/btfdbb/download/ubo2003/.

http://cg.cs.uni-bonn.de/en/projects/btfdbb/download/ubo2003/
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1 25 50 75 100

A

B

C

D

E

F

Fig. 1. The figure illustrates selected members of the degradation sequence generated
during the experiments, A-F top-down. The leftmost column represents the original
image, and the degradation intensifies in the rightward direction, where the column
number indicates the order of the image in the sequence.

Fig. 2. Selected examples of the color textures used in our experiments.
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Fig. 3. Textures representing BTF subspace clusters approximating original BTF data
acquired by measuring the wood material. Original data were taken from BTF database
of the University of Bonn [20]. BTF subspace textures were used in our experiments.

Table 1. The average strict monotonicity violation (in percent) for 250 test color
texture sequences (left) 200 test BTF data sequences (right) per experiment performed
in the RGB color space, average over all experiments and the rank for the tested criteria.

Color textures BTF textures

A B C D E F � Rank A B C D E F � Rank

ΔH 0 14 14 35 22 86 29 9 0 3 3 0 1 67 12 5

Δ2H 0 7 7 2 2 7 4 2 0 1 1 0 0 3 1 2

Δ∞H 5 12 12 97 97 98 54 14 1 4 4 96 96 98 50 10

Δ1/2H 0 31 31 49 48 9 28 8 0 18 18 73 70 6 31 9

∩H 0 14 14 35 22 86 29 9 0 3 3 0 1 67 12 5

dsc 0 16 16 3 3 86 21 6 0 3 3 0 0 64 12 5

dcan 0 33 33 29 28 55 30 10 0 20 20 23 23 8 16 6

KL 19 37 36 20 23 86 37 12 18 32 32 17 20 65 31 9

J 19 38 38 4 4 86 32 11 17 32 32 1 1 65 25 8

χ2 0 16 16 4 4 86 21 6 0 3 3 1 1 64 12 5

ΔGCM111
00 14 13 13 23 24 0 15 5 4 4 4 23 24 0 10 4

dcos 13 13 13 43 43 20 24 7 2 2 2 45 46 37 22 7

JI 1 31 31 54 49 98 44 13 0 16 16 0 0 98 22 7

SDI 1 32 32 54 49 98 44 13 0 17 17 0 0 98 22 7

rSSIM 3 3 3 12 13 3 6 4 0 0 0 13 14 1 5 3

ζ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

ε 1 9 9 3 4 3 5 3 0 0 0 0 0 0 0 1

� 4 19 19 27 26 53 25 2 9 9 17 17 44 17
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Table 2. The average evaluation time, on Pentium-2.8 GHz-equivalent CPU, depending
on the size of compared images for individual criteria.

8 × 8 16 × 16 32 × 32 64 × 64

ΔH, ∩H, dsc, dcan, J , χ2 0.7 s 0.7 s 0.7 s 0.7 s

EMD 1.8 ms 85.6 ms 5.7 s 7.6 min

ΔGCM111
00 67.0µs 0.1 ms 0.2 ms 0.5 ms

dcos 32.0µs 88.0µs 93.0µs 0.6 ms

JI, SDI 0.3 ms 4.0 ms 9.0 ms 48.0 ms

rSSIM 31.0µ s 0.1 ms 0.2 ms 1.4 ms

ζ 0.1 ms 2.0 ms 18.0 ms 0.2 s

ε 0.1 ms 0.2 ms 0.7 ms 2.2 ms

it fails again in cases D and E. ΔGCM111
00 achieved better results like the

other criteria in A–C but its average error in case of D and E stayed the same.
In average, all criteria, except Δ1/2H, achieved better results (with average
improvement 8%), which may be due to the lower amount of distinct colors of
BTF textures compared to the data described in Sect. 4.2.

6 Conclusions

We introduced the mutual information based criterion for comparing the spec-
tral similarity of the color textures and bidirectional texture functions. Although
the criterion neglects spatial pixels arrangement and thus it represents only a
partial solution for the quality assessment of the multi-spectral textured images
and also for the most advanced visual representation of material surfaces - the
bidirectional texture function, it can assist in numerous texture-analytic or syn-
thesis applications. The performance quality of the proposed criterion is demon-
strated on the extensive series of specially designed monotonically image degrad-
ing experiments, which also serve for the comparison with the existing alternative
methods.

Similarly to several other existing approaches (1)–(8), the criterion (15) is
based on 3-D histograms, thus it cannot be efficiently used for hyperspectral
images. Although it has slightly worse performance than the best ζ (14) spectral
similarity criterion, it is symmetric, can be easily modified to a metric, and is
much faster.

The presented criterion proposes a reliable fully automatic alternative to psy-
chophysical experiments, which are, moreover, extremely impractical due to their
cost and strict demands on design setup, conditions control, human resources,
and time.

Acknowledgments. The Czech Science Foundation project GAČR 19-12340S sup-
ported this research.
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