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Abstract. The paper presents a detailed study of surface material recognition
dependence on the illumination and viewing conditions which is a hard challenge
in a realistic scene interpretation. The results document sharp classification accu-
racy decrease when using usual texture recognition approach, i.e., small learning
set size and the vertical viewing and illumination angle which is a very inade-
quate representation of the enormous material appearance variability. The visual
appearance of materials is considered in the state-of-the-art Bidirectional Texture
Function (BTF) representation and measured using the upper-end BTF goniore-
flectometer. The materials in this study are sixty-five different wood species. The
supervised material recognition uses the shallow convolutional neural network
(CNN) for the error analysis of angular dependency. We propose a Gaussian mix-
ture model-based method for robust material segmentation.

1 Introduction

The visual appearance of surface materials and object shapes are crucial for visual
scene understanding or interpretation. Visual aspects of surface materials which mani-
fest themselves as visual textures even if there is still missing a rigorous definition of the
texture [6]. Thus reliable visual scene interpretation cannot avoid a sound texture recog-
nition quality. The correct recognition is hindered by the considerable variability of a
material appearance and thus its corresponding textural representation based on chang-
ing observation conditions. Numerous texture recognition methods were published but
we are not aware of a method which accounts for simultaneously variable illumination
and viewing angle.

Most materials classification methods which respect illumination and view changes
are restricted to BRDF (Bidirectional Reflectance Distribution Function) material rep-
resentation [10,15,17] which neglects not only self-occlusion and inter-reflection mate-
rial properties but also the essential spatial material features. The per-pixel SVM (Sup-
port Vector Machine) classification [15] is based on spectral BRDF and detects from
training samples a discriminative illumination. The paper [10] is restricted to 5 steel
classes, BRDF, and illumination changes only. [25] demonstrate the usefulness of sev-
eral images of a material sample with different view-light conditions for material iden-
tification. [11] studies nine fabric classes with 2000 samples recognition using SIFT
(Scale Invariant Feature Transform) and CNN (Convolutional Neural Network) features
from albedo images and three concatenated normals into a single image. The authors
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[23] used convolutional neural network for 12 material classes (with 100 images per
class) recognition represented in 4D light-field measurements and achieved 7% accu-
racy improvement compared to single view images only. Material BRDF estimation
from the 4D light-field using a convolutional neural network is also studied in [17]. The
BTF classification exceptions are the papers [16] which studies the effects of illumi-
nation patterns, rotation, moreover, the scale for bag-of-words classification and [24]
which uses an SVM classifier for synthetically generated material samples in the BTF
representation. For detailed evaluation of ten previously published texture segmenters
on BTF dataset see mosaic.utia.cas.cz [5].

Real surface material visual appearance is a very complex physical phenomenon
which intricately depends on the incident and reflected spherical angles, time, and light
spectrum among other physical quantities. The general and physically correct material
reflectance function should be at least sixteen dimensional [6] which is recently unmea-
surable, and even if some simplifying assumptions have to be inevitably accepted, the
essential dependencies have to be respected. Among them, these are spectral, illumina-
tion, and viewing parameters.

Our main contributions are:

– Introduction of a new large BTF wood database measurement with 65 wood species.
– A first detailed evaluation of material recognition accuracy dependent on view and
illumination angles.

– A detailed recognition accuracy evaluation of the BTF wooden mosaics mapped on
generated 3D surfaces and using different viewing and illumination learning subsets.

1.1 Bidirectional Texture Function

The seven-dimensional bidirectional texture function (BTF) reflectance model is cur-
rently the state-of-the-art general reflectance function model approximation which can
be simultaneously measured and modeled [3,6].

Multispectral BTF is a seven-dimensional function, which considers measurement
dependency on color spectrum, planar material position, as well as its dependence on
illumination (i) and viewing (v) angles: BTF (r, θi, φi, θv, φv), where the multiin-
dex r = [r1, r2, r3] specifies planar horizontal and vertical position in material sample
image, r3 is the spectral index and θ, φ are elevation and azimuthal angles of the illu-
mination and view direction vectors. The BTF measurements comprise a whole hemi-
sphere of light and camera positions in observed material sample coordinates according
to selected quantization steps.

2 BTF Wood Measurement Database

Since the accurate and reliable BTF acquisition is not a trivial task, only a few BTFmea-
surement systems exist [3,6,12,18,19,21,22]. Several material databases were already
published [2,9]. A BTF database of 84 measured materials in seven categories, each
containing 12 different material samples, was presented in [24]. [16] measured in 150
lighting conditions eight categories with 90 samples in total in their dome system.

http://mosaic.utia.cas.cz/index.php?act=view_res&vis=1&bid=19
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Table 1.Measured illumination and viewing elevation (θ) and azimuthal φ angles for six viewing
angular sets A–F, the number of directions in each set and their relative weights in the whole BTF
space.

Set θi,v �φi,v �directions Weight [%]

A 0 – 1 1

B 15 60 6 7

C 30 30 12 15

D 45 20 18 22

E 60 18 20 25

F 75 15 24 30

Fig. 1. Selected combinations (right) of illumination and viewing elevation (θ) and azimuthal φ
measurement cutouts arranged as denoted in the left table from (rightwards, top-down) maple,
spruce, oak, plum, sycamore, bubinga pomele, zebrano, and macassar, respectively.

We used a high precision robotic gonioreflectometer. The setup consists of inde-
pendently controlled arms with camera and light. Its parameters such as angular preci-
sion 0.03◦, spatial resolution 1000 DPI, or selective spatial measurement, classify this
gonioreflectometer to the state-of-the-art devices. The typical resolution of the area of
interest is around 2000 × 2000 pixels, sample size 7 × 7 [cm], sensor distance ≈2 [m]
with field of view angle 8.25◦ and each of them is represented using at least 16-bit
floating point value for a reasonable representation of high-dynamic-range visual infor-
mation. Illumination source are eleven LED array, each having flux 280 lm at 0.7A,
spectral wavelength 450−700 [nm], and have its optics. The memory requirements for
storage of single material sample amount to 360 gigabytes per color channel but can be
much more for a more precise spectral measurement.

We measured each wood sample in 81 viewing positions nv and 81 illumination
positions ni resulting in 6561 images per sample (4 tera-bytes of data). Table 1 sum-
marizes for each combination of elevation and azimuthal angle the number of measure-
ments (�) and the corresponding angular difference steps (�φi,v). The spatial resolution
of the rectified original measurements was M × N ≈ 1800 × 1800 pixels (Fig. 1).
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The BTF wood database, used in this study, contains veneers from sixty-five var-
ied European, African, and American wood species. The wood species are acacia tree,
afzelia, alder, anigre, apple tree, ayous, cedar, elm, etimoe, eucalyptus, fir, gabon, horn-
beam, iroko, jatoba, larch, limba, linden, macassar, mahogany, mansonia, meranti, mer-
bau, movingui, olive tree, ovangkol, padouk, pear, pine, plane tree, plum, satin, teak,
tineo, tulipwood, wenge, zebrawood; two species of cherry trees, birchs, ash trees, bam-
boo, bubingas, palisanders, spruces, and beeches; three species of oaks and walnuts;
four species of maple trees.

3 Convolutional Neural Network

We use the open source TensorFlow library [1] for implementation of the convolutional
neural network (CNN) for our experiments either as the classifier or as the source of
features [13,14,20]. We used the shallow network with three convolution layers, 64
5× 5 kernels, ReLU (rectified linear unit) activation functions, max pooling with stride
2, and local response normalization (for details see [14]). Another two fully connected
layers (384 and 192 units) use the rectified linear activation, and finally, the linear trans-
formation is applied to produce logits. CNN accept input image of the size with 48×48
in three spectral bands (RGB pixels). The images (64 × 64 patches) are processed as
follows: they are cropped to 48 × 48 pixels, centrally for evaluation or randomly for
training; they are per image standardized to make the model insensitive to dynamic
range. For training, we additionally apply a series of random distortions to increase the
dataset size artificially. These are image flip from left to right (H), image flip from up to
down (V), rotation about 90◦ (R), and distortion of brightness and contrast. The model
marking (Xd

HVR) shows these training options (V, H, R). The network is trained to per-
form N-way classification using multinomial logistic regression. For regularization, we
apply the common l2 loss losses to all learned variables. The objective function for the
model is the cross-entropy loss plus L2 loss. For training this model we use the stan-
dard gradient descent optimizer with a learning rate (starting from 0.1) that exponential
decay (0.1) over time (350 epochs), and random weights initialization.

4 Mixture-Based Segmenter

We propose the segmenter based on the Gaussian mixture model similar to the unsuper-
vised algorithm in [4], but their original Markovian textural features we have replaced
with the parameters (Θ) obtained from the learned CNN model on the floating win-
dow. Thus the segmenter is invariant to both illumination and viewing angles changes
and benefits from strong noise suppression property of the Gaussian mixture model.
The number of components (K) is variable based on the Kullback Leibler divergence
estimation. The Gaussian mixture model for CNN parametric representation is

p(Θx,y) =
K∑

i=1

pi p(Θx,y |μi, Σi), (1)

p(Θx,y |μi, Σi) = (2π)
−n
2 |Σi|− 1

2 exp
{

− (Θx,y − μi)TΣ−1
i (Θx,y − μi)
2

}
, (2)
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where x, y spatial coordinates, μ,Σ the Gaussian data model parameters, and n =
66+3+2 the number of features (CNN parameters, local color, and spatial coordinates).
The mixture model Eqs. (1), (2) are solved using the EM algorithm and the parametric
vectors representing texture mosaic pixels are assigned to the classes according to the
highest component probabilities.

5 Results

All our experiments were provided on two BTF wooden sets. The first set contains
426465 = 65 × 812 measured wooden textures from 65 different wood species, while
the second set contains ten synthetic BTF wooden mosaics from the Prague texture
segmentation data-generator and benchmark [5,7].

5.1 Learning from the Complete BTF Space

Each measured BTF space image was divided into four quadrants. From each quad-
rant randomly selected 64 × 64 cutouts for every single combination of an illumina-
tion and viewing angle were chosen, i.e., a from left upper, b from lower left, c from
upper right, and d from lower right. Figures 2 and 3 show how the CNN recognition
accuracy depends on the viewing elevation angle for different learning scenarios aver-
aged over all wooden species and all illumination angles. The short line segments in
right in these graphs (Figs. 2 and 3) highlight the corresponding weighted average value
between angles 0◦−75◦.

Viewing Angle Dependence and Horizontal Learning Flip. The CNN model (Xb
H)

was learned on the cutout b in all classification experiments in cutouts a–d. The accu-
racy curves (Fig. 2) show the similar ranking in all eleven angle combination experi-
ments the best hold out results are on the a cutous (always in the direction along the
grain) then d (close parallel with b) and finally c (distant parallel with b). The best
classification accuracy is reached if all sets are used for learning (A-Fb

H). Table 2-left
show the weighted (Table 1) averaged accuracy for all four possible cutouts and viewing
elevation ranges from 0◦ until 0◦−75◦. This table confirms the best possible results for
the resubstitution accuracy estimates (b) for every angular range and the overall best
accuracy (85.6) for the A–F range, followed with results on the a cutout. The worst
accuracy has the most distant cutout c with the exception on the range A.

Table 2. Weighted averaged accuracy for the a–d cutouts over viewing elevation (θ) and
azimuthal (φ) angles. CNN learning cutout is b/d.

X b
H X d

HVR

θv [◦] 0 0–15 0–30 0–45 0–60 0–75 0 0–15 0–30 0–45 0–60 0–75

a 36.3 51.7 59.9 67.9 75.1 79.8 27.4 43.3 51.8 58.6 64.0 68.5

b 38.2 54.5 63.6 72.6 80.2 85.6 27.9 43.0 51.9 58.8 64.2 68.8

c 29.2 44.0 50.9 57.2 63.5 67.5 33.8 52.1 61.7 69.5 76.4 81.8

d 29.1 44.7 52.4 58.8 65.1 69.4 35.4 53.5 63.8 72.0 79.2 85.0
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Fig. 2. Classification accuracy of the model X b
H for cutouts a, b, c, d, a–d after learning from the b

cutouts (�) with the horizontal flip obtained from the set X ∈ {A, B, C, D, E, F} (see Table 1).
The vertical axes show accuracy in %, while the horizontal axes show the viewing elevation
angles.
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Fig. 3. Classification accuracy of the model X d
HVR for cutouts a, b, c, d, a–d after learning from

the d cuts (�) with the horizontal, vertical flips and 90◦ rotation. The vertical axes show accuracy
in %, while the horizontal axes show the viewing elevation angles.
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Viewing Angle Dependence with Horizontal, Vertical Flip and Sample Rotation
Learning. The CNN model (Xd

HVR) was learned on the cutout d in all classification
experiments in Fig. 3. The accuracy curves show the similar ranking again in all eleven
experiments the best results are on the c cutous (in the direction along the grain), effects
on a, b cutouts are very similar. The best classification accuracy is reached if all sets
are used for learning (A-Fd

HVR). Table 2-right show the weighted averaged accuracy
for all four possible cutouts and viewing elevation ranges from 0◦ until 0◦−75◦. As
expected, also in this table the best possible results are the resubstitution estimates (d)
for every angular range and the overall best accuracy is 85.0 for the A–F range, very
similar with the corresponding result in the Table 2-left. The results on the cutouts a,
b are very similar for all tested angular ranges. This is the consequence of the addi-
tional learning data (vertical flip and rotation). Comparing the results in both tables, it
is possible to see that the additional flip and rotation learning data are advantageous
only for the closest cutout (c) for Xd

HVR and larger angular ranges > 〈0; 30〉 but not for
all ranges in the more distant cutouts (a) and all experiments on the A set only. How-
ever, the accuracy difference is very small for comparable cutouts and angles mostly
in the range of 1%. Poor performance on the A set in both part of Table 2 illustrates
inadequate learning set size (one image only) and the perpendicular viewing and illu-
mination angle which is the standard but a very insufficient representation of the huge
material appearance variability. The difference between the best and the worst accu-
racy in each angular range is gradually increasing from set A until A–F for both tables.
This accuracy difference is between 38.3% (Table 2-left-c) and 49.6% (Table 2-right-d).

5.2 Synthetic BTF Wooden Mosaic

This experiment used the synthetic BTF wooden mosaic scenes from the Prague tex-
ture segmentation data-generator and benchmark [5,7] as well as the online evaluation
capability (Table 3) of this web-based (http://mosaic.utia.cas.cz) service. The bench-
mark ranks segmentation experiments or algorithms results according to a chosen crite-
rion. The benchmark has implemented twenty-seven frequented evaluation criteria (see
[5] for their detailed explanation) categorized into region-based, pixel-wise, clustering
comparison criteria, and consistency measures criteria sub-groups.

The benchmark test 1024×1024mosaics layouts and each cell texture membership
are randomly generated and filled with the measured BTF wooden textures from the
large UTIA BTF database [8]. The BTF wood measurements are mapped on the ran-
domly generated 3D spline surfaces. Each surface region is mapped with a physically
correct wood material measurement which precisely corresponds to the local illumina-
tion and viewing conditions, and as such it represents the state-of-the-art realistic mate-
rial visual representation [6] and also the best available current texture segmentation
benchmark. The benchmark allows generating an unlimited number of experimental
physically correct mosaics with exactly known segmentation ground truth. All bench-
mark mosaic experiments were carried out with the Gaussian mixture-based supervised
classifier (Sect. 4) applied to CNN learned features. Table 3 illustrates the differences
between classification accuracy between models learned on different viewing angle
training subsets.

http://mosaic.utia.cas.cz
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Table 3. BTF wood benchmark results; (Benchmark criteria: CS = correct segmentation; OS =
over-segmentation; US = under-segmentation; ME = missed error; NE = noise error; O = omis-
sion error; C = commission error; CA = class accuracy; CO = recall - correct assignment; CC =
precision - object accuracy; I. = type I error; II. = type II error; EA = mean class accuracy esti-
mate; MS = mapping score; RM = root mean square proportion estimation error; CI = comparison
index; GCE = Global Consistency Error; LCE = Local Consistency Error; dD = Van Dongen met-
ric; dM = Mirkin metric; dVI = variation of information; f̄ are the performance curves integrals);
small numbers are the corresponding measure rank over the listed methods.

The first row shows various view angle ranges (A, B, C, D, E, F, A–B, A–C, A–
D, A–E, A–F) used for CNN learning as explained in Table 1. Small numbers are the
corresponding criteria rank value in this table and the second row in Table 3 lists the
average rank for the corresponding learning set. The best learning set is A–D (2 × 105

learning images with elevation angles 0◦−45◦) with ten best performing criteria. This
set is the best compromise between the learning variability and recognition accuracy.
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Fig. 4. Selected BTF benchmark mosaics (a), ground-truth (b), A-D d
HVR (c), B d

HVR (d), E d
HVR (e),

A-C d
HVR (f) segmentation results, respectively.
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The learning sets ordering in Table 3 is based on the best average rank over all segmen-
tation criteria rightwards. The worst segmenter performance (eleven worst criteria) is
learned from the set AE. This learning variant has the worst class accuracy, recall, and
nine other criteria values, and none winning criterion.

The best-fixed learning elevation angle is 15◦ - the B set from the region-based
criteria point of view, while the A set (0◦) has the worst average rank and only the
variation of information being the second best (Fig. 4).

6 Conclusions

This study presented two experiments of view and illumination-dependent material
recognition analysis. The sixty-five wood species measured in the state-of-the-art bidi-
rectional texture function representation is classified using the convolutional neural
network. The novel Gaussian mixture based segmenter with CNN learned features is
favourably evaluated on eleven different angular combinations. The results document
sharp classification accuracy decrease when using standard texture recognition app-
roach, i.e., small learning set size and the vertical viewing and illumination angle which
is a very inadequate representation of the enormous material appearance variability. The
ideal learning is to use the whole possible viewing angle range. The benchmark exper-
iments suggest 15◦ to be the best single elevation angle and 0◦−45◦ the best range of
elevation angles. The mosaic surfaces are smooth without sharp declinations thus they
possibly prefer narrower elevation ranges than an object in real visual scenes.
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