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ABSTRACT
One of the current challenges in network intrusion detection re-

search is the malware communicating over HTTPS protocol. Usu-

ally the task is to detect infected end-nodes with this type of mal-

ware by monitoring network tra�c. �e challenge lies in a very

limited number of weak features that can be extracted from the

network tra�c capture of encrypted HTTP communication. �is

paper suggests a novel �ngerprinting method that addresses this

problem by building a higher-level end-node representation on top

of the weak features. Conducted large-scale experiments on real

network data show superior performance of the proposed method

over the state-of-the-art solution in terms of both a lower number of

produced false alarms (precision) and a higher number of detected

infections (recall).
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1 INTRODUCTION
Increasing number and sophistication of a�acks against critical

enterprise computing infrastructure drives the need to deploy in-

creasingly more sophisticated defense solutions. An essential com-

ponent of the defense are Network Intrusion Detection Systems

(NIDS) analyzing network tra�c that crosses the defense perimeter

and looking for evidence of ongoing malicious activities. Many

current NIDS use supervised learning algorithms to analyze tra�c

captures for possible malware infections. Such systems are �rst

trained on reference samples of malicious and benign activity to
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be later able to detect incidents of similar characteristics automati-

cally. �ese systems can analyze various network tra�c properties

(NetFlow records, web proxy logs, etc.).

�is paper focuses solely on analysis of web proxy logs that are

containing information about the web tra�c generated by end-

nodes in the monitored network. Recently developed malware

typically tunnels the communication over HTTP/HTTPS protocol

and makes the malicious tra�c masquerade as web tra�c, since this

essential channel is le� open in the majority of networks. Because

of that, proxy logs have been shown to contain enough information

to enable detection of various forms of exploitations, malicious

command & control channels and other a�acks that are di�cult or

impossible to discover using standard content-analysis-based secu-

rity solutions [7, 8, 12, 13]. �ese high-level log records represent

relatively lightweight source of data that can face scalability issues

caused by constantly rising volume of network tra�c. Contrary,

solutions based on deep packet inspection (DPI) are o�en computa-

tionally prohibitive and/or not applicable on large networks.

NIDSs built around proxy logs usually extract a set of features

from each HTTP/HTTPS request recorded in the data to create a

feature vector that is subsequently classi�ed as either malicious or

benign. Increasing usage of encrypted web communication via the

HTTPS protocol, however, makes this approach ine�ective, since

the amount of information that can be extracted from HTTPS log

records is heavily reduced. �e majority of the most informative

HTTP related log �elds (URL, User-Agent, MiMe type, etc.) be-

comes inaccessible a�er the encryption and the remaining ones,

namely the timestamp, sent/received bytes and the duration of the

communication, are very weak for a reliable malware detection.

Malware writers are aware of this fact and use communication via

HTTPS as an e�ective detection evasion technique.

One way to deal with this problem is to intercept HTTPS com-

munication on the proxy, decrypt it, log the information needed and

encrypt it again (MITM, man-in-the-middle). While this mechanism

enables to use the same detection technique as in the case of HTTP

data, it su�ers from two main drawbacks. MITM is computationally

expensive and the privacy of users is compromised. Both issues

render the mechanism problematic for a practical deployment and

alternative ways are of a great need.

Recent work of Kohout et al. [9] demonstrates that many appli-

cations exhibit unique communication pa�ers observable through

timing and transfered bytes that can be learned, modeled and identi-

�ed in network tra�c. �ese pa�erns are detectable across multiple

log records as opposed to single records. To enable their analysis

with standard machine learning tools, whole sets of log records

are transformed into single feature vectors using histogram-based

�ngerprinting. �is strategy has been successfully used to detect

domains related to malicious activity [10, 11] and infected end-

nodes [4].
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�e main contribution of this paper is a novel �ngerprinting

method that we suggest as an alternative to the histogram-based

one. �e second contribution is an empirical large-scale evaluation

on real network data that shows that the proposed solution achieves

signi�cantly be�er e�cacy results. �e evaluation is done on the

task of detecting infected end-nodes as proposed by Čech et al. [4].

�e paper is organized as follows. Section 2 describes the setup

of the problem in detail. Section 3 presents our solution to that

problem and Section 4 the state-of-the-art solution. Both the new

and the old HTTPS-speci�c solutions together with the traditional

approach adopted from the detection on non-encrypted HTTP data

are compared in Section 5. Section 6 concludes the paper.

2 PROBLEM SETUP
�e aim is to detect end-nodes (i.e., network hosts) of a com-

puter network that are infected with malware communicating over

HTTPS protocol. It is assumed that the only accessible data for the

detection are high-level log records about the requests of individual

network end-nodes for establishing their HTTPS connections.

Let Ei denote ith end-node of a computer network. Within a

given period of time, each end-node can initiate a set of connections.

�e requests for establishing connections are typically monitored

by a proxy server located on the perimeter of the computer network

and captured in the form of logs.

Ei = {xi
1
, xi

2
, . . . }, (1)

where vector xij ∈ R
n

represents jth log record of ith end-node.

Elements of the vector then correspond to features that are extracted

from �elds of jth log record.

A traditional approach to build a detection systemH searching

for infected end-nodes is the following. First, training set D of

feature vectors along with their label y ∈ {0, 1} indicating whether

a particular log record is related to malware communication (y = 1)

or not (y = 0) is collected.

D = {(x1

1
,y1

1
), (x1

2
,y1

2
), (x2

1
,y2

1
), . . . }. (2)

Second, supporting classi�cation model h(x) = y is inferred from

the training set. For this purpose, any common supervised learning

algorithm such as Neural Networks, Random Forests or Support

Vector Machines can be used [6]. Finally, the detection system

operating on the level of end-nodes is constructed.

H(Ei ) = max

j
h(xij ), (3)

where end-node Ei is classi�ed as infected when at least one of the

feature vectors extracted from its tra�c is classi�ed as malicious.

Although this approach has been shown to be successful on

HTTP logs (i.e., tra�c captures of non-encrypted communication),

it does not achieve a satisfying performance on HTTPS data. �is

is implicitly presumed in previous works [4, 10, 11] and veri�ed by

our experiments in Section 5. �e reason is that individual HTTPS

log records do not carry enough discriminatory information in

contrast to HTTP ones. �e information available from HTTPS

records is limited just to transfered bytes and timestamps because

of the encryption.

Kohout et al. [9] propose to extract four features (i.e., n = 4) from

each log entry, namely: uploaded bytes xup from the end-node to

a target server, downloaded bytes x
down

by the end-node from

the server, duration x
dur

(in seconds) for which the communica-

tion was active and inter-arrival time xiat (in seconds) elapsed

between two consecutive requests for establishing communication

between the same end-node and server.

x = (x̂up, x̂down
, x̂

dur
, x̂iat), x̂ = log(1 + x). (4)

�e logarithmic transformation is applied to suppress noise and

decrease ranges of the features. �e same set of four features is

used in the work of Čech et al. [4] and in this paper.

�e challenge of HTTPS tra�c analysis is emphasized by compar-

ison to the richness of information content in unencrypted HTTP.

If available, HTTP logs allow for extracting much richer sets of

features including URL string textual features, User-Agent features,

request parameter key-value features, etc. In contrast, none of this

information is available in this setup.

To make HTTPS data with the weak features applicable for

malware detection, the individual log records can no longer be

treated separately. �erefore in this paper, similarly to Čech et
al. [4], one classi�cation sample is de�ned as a set of all log entries

that belong to the same end-node and that were generated during

a �ve minute time interval (Equation 1). �e training set then has

the form

D ′ = {(E1,y1), (E2,y2), . . . }, yi = max

j
yij , (5)

where an end-node is considered to be infected if it contains at least

one request issued by a malware binary. Otherwise, the end-node

is considered to be clean.

�is de�nition of classi�cation samples preserves the informa-

tion about repeatedly established connections, co-occurring con-

nections or other possibly interesting contextual information. On

the other hand, this way de�ned samples can not be directly used

for training a classi�cation model, because standard learning al-

gorithms require samples represented by single vectors of a �xed

dimension and not sets of vectors. A simple concatenation of vec-

tors would not work, since the number of generated log records

varies across individual end-nodes.

A possible solution to this problem of variable end-node body, is

to de�ne a �ngerprinting function

F(E) = e ∈ Rd (6)

transforming end-nodes E into vectors e of d real numbers. Using

this function, every end-node can be mapped from the set space

to the vector space. Consequently, any o�-the-shelf algorithm for

supervised learning can be used to train the detection system on

top of that new vectorial representation.

H(Ei ) = h(F(Ei )). (7)

�e crucial part of this approach, however, remains in the de�ni-

tion of the �ngerprinting function. It has to be designed carefully

such that it extracts maximum useful information for the subse-

quent classi�cation.

3 PROPOSED SOLUTION
In this section we propose a �ngerprinting method that encodes

variable sets of four-dimensional vectors (i.e., end-nodes) into single

vectors of a �xed dimension.
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�e method is based on counting strategy. Given a �xed number

of pre-selected regions in the feature space, every end-node is

represented as the number of its log records residing at each region.

In this way it is ensured that the �ngerprint dimensionality, which

equals to the number of regions, remains the same for an arbitrarily

large set of log records.

As illustrated in Figure 1, the regions are two-dimensional parallel-

axis rectangles. �ese 2D rectangles are part of la�ices that are

quantizing individual 2D sub-spaces of the original 4D feature space.

�e reason behind using 2D sub-spaces instead of 1D, 3D or 4D is

a practical balance between expressiveness and robustness of the

representation. 2D regions already capture relations between two

features, yet the relations are not a�ected by any changes in other

two features. For example, the �rst �ve elements of the �ngerprint

in Figure 1 that capture the end-node activity from transferred

bytes viewpoint, would remain una�ected, even if values of time

related features were markedly shi�ed. In the case of 3D or 4D

regions, the log records would be, however, residing at di�erent

regions a�er the shi�, which would result in a completely di�erent

�ngerprint. Since the shi� of time related features can be caused

independently on the end-node behavior, e.g., by a higher load of

intermediate nodes in the network, and at the same time we do not

want to lose the information from these features completely, we

found this solution of 2D sub-spaces to be useful.

�e next two sub-sections describe the �ngerprinting function

and the procedure for selecting the rectangles in detail.

3.1 Fingerprinting using 2D projections on
parallel-axis rectangles

�e proposed transformation F encodes end-node behavior E into

compact vector (�ngerprint) e of size d .

F(E; Φ) = e ∈ Nd . (8)

�e encoding process is parametrized by Φ representing the pre-

selected 2D rectangles, each de�ned by a pair of feature indexes and

value intervals specifying boundaries on the two indexed features.

Φ is thus an ordered list of length d occupied by 6-tuples Tt .

Φ = (T1,T2, . . . ,Td ), Tt = (fidx
, f

low
, fup, sidx

, s
low
, sup)t . (9)

�e individual tuples Tt represent rectangles in a 2D space. �e

2D space is always a sub-space of the original four-dimensional

feature space (Equation 4). Edges of these rectangles are aligned

with coordinate axises of particular 2D sub-spaces. �erefore, each

tuple Tt has values f
idx
, s

idx
∈ {x̂up, x̂down

, x̂
dur
, x̂iat}, fidx

, s
idx

determining the �rst and the second feature of a chosen 2D sub-

space, respectively. Furthermore, to determine an exact position

of a rectangle in the chosen 2D sub-space, the tuple also has val-

ues f
low
, s

low
∈ R and fup, sup ∈ R specifying lower and upper

boundaries on the selected features, respectively. A procedure for

obtaining Φ is described in Section 3.2.

Given a list of such rectangles together with a sample of an

end-node behavior that is sought to be encoded, the �ngerprinting

process counts for every rectangle the number of log entries inside

the sample that �t to that rectangle. As a result, elements of the

output vector (i.e., �ngerprint) correspond to these counts. See

Algorithm 1 for the description of this process in the form of pseudo-

code.
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Figure 1: �e proposed �ngerprinting function in three
phases. �e �rst phase shows an example of end-node activ-
ity with three log records, where each log record is described
by four features. In the second phase, it is veri�ed whether
some log records �t to any of 200 pre-selected 2D rectan-
gles. �ese rectangles are part of 36 2D lattices quantizing
the original 4D feature space from various aspects. �e lat-
tices di�er in the chosen sub-space, applied discretization
method or in the density at which the particular sub-space
is quantized. �e �nal �ngerprint is then constructed as the
number of log records in each of the selected rectangles.

3.2 Procedure for obtaining rectangles
In this sub-section we describe a procedure that constructs list

of rectangles Φ based on properties of the training data. It is a

top-down approach consisting of two phases. In the �rst phase —

candidate rectangles generation — an exhaustive set of rectangles

covering the feature space with many overlapping rectangles of

various sizes is generated. In the second phase — candidate set opti-
mization— the set is reduced to produce required list Φ of rectangles

covering only those regions that are important for the classi�cation.

Candidate rectangles generation �e aim of this phase is to

generate rectangles that could potentially serve as new discrimina-

tive features in the resulting vectorial representation. As it is not

known at this stage, which regions can produce useful features, the

intention is to generate many rectangles of various sizes with the

hope that some of them will produce the discriminative features.

�e complete set of possible rectangles would be in�nite. In practice

we therefore resort to approximate the complete set of candidate

Algorithm 1: Fingerprinting Method

Input :End-node E and list of 6-tuples Φ
Output :Vector e representing behavior of end-node E
Function �ngerprinting F(E; Φ)

e[1 . . . length(Φ)] ← 0

foreach (f
idx
, f

low
, fup, sidx

, s
low
, sup)t ∈ Φ do

foreach x ∈ E do
if f

low
≤ x[f

idx
] ≤ fup and s

low
≤ x[s

idx
] ≤ sup

then
e[t] ← e[t] + 1

return e
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rectangles with quantization of 2D sub-spaces into several la�ices

with intervals estimated from the training data.

Speci�cally, for each feature pair out of six possible combinations

(x̂up, x̂down
)1, (x̂up, x̂dur

)2, (x̂up, x̂iat)3,
(x̂

down
, x̂

dur
)4, (x̂down

, x̂iat)5, (x̂dur
, x̂iat)6,

(10)

several la�ices that quantize the selected 2D sub-space is con-

structed. Internal regions of these la�ices then serve as the candi-

date rectangles. �e number of such la�ices is determined by the

number of di�erent methods used for the quantization and by the

number of di�erent densities at which the features (i.e., coordinates

of the 2D sub-space) are discretized with each of these methods.

In particular with regard to our experiments in Section 5, for

each feature pair both feature ranges are divided into either 8 or 16

intervals. �ese two densities of quantization form two di�erent

types of la�ices with 64 and 256 rectangles. We employ three

discretization methods (described in the next paragraph) to capture

various aspects of pa�erns in the data. In total, there are 6×2×3 = 36

distinct la�ices including 6 × (64 + 256) × 3 = 5760 candidate

rectangles.

�e �rst employed method — uniform quantization — partitions

the feature space uniformly. It divides a range of a given feature

into a desired number of equally sized bins. It is a pure unsuper-

vised method that use the training data only for estimating range

bounds of the feature. �e next two methods — quantile quantiza-
tion on positive/negative data — take into consideration probability

of log occurrence with respect to the class label. �e higher the

probability is, the �ner partitioning is performed. �is is achieved

by dividing the feature range according to estimated quantiles on

the data of both classes separately.

Candidate set optimization In this phase the �nal list of rect-

angles is to be selected as a subset of the candidate set so as to

maximize the amount of discriminative information extracted by

the eventual �ngerprinting method.

Once the candidate rectangles get collected, they can be used

to transform training set D ′ into �ngerprints. �e new vectorial

representation would, however, expectedly contain a mix of useful

features with irrelevant ones. To avoid the danger of over-��ing

and to reduce the computational time during both the training and

the testing part, we propose to select only discriminative features

from these �ngerprints that are generated with the usage of the

candidate set. �us, the candidate set optimization problem can

be viewed as a form of standard feature selection (FS) problem [3],

which can be solved by an existing FS method.

For the purpose of this paper we veri�ed that even a simple FS

method such as Mutual Information (MI) [14] is a viable option.

MI assigns a score to each feature according to measure of the

mutual dependence in between the feature and the class labels.

�erefore, the �nal list of rectangles Φ is determined on the basis

of a graph showing the sorted features according to the assigned

scores (Figure 2).

4 RELATEDWORK
�is section is dedicated to related works that take advantage of

supervised learning in combination with high-level network tra�c

log records in order to detect malware infections.

4.1 Detection on HTTP data
A vast majority of works employs the traditional approach, where

the detection is done on per-log record basis [7, 12, 13]. While in

that case the feature vectors (as extracted from log records) are

used directly as the input vectors for the classi�cation, Bartoš et
al. [1] show that a classi�cation model trained on �ngerprints

rather than individual low-level vectors achieves higher recall at

comparable precision. �e particular transformation is designed

so that the output representations are invariant under shi�ing and

scaling of the input feature values and under permutation and size

changes of the input sets. However, the transformation can be

used to represent individual connections only. By a connection, it

is understood a set of records related to the same end-node and

server instead of a number of servers. �us, the information about

repeatedly established connections or their co-occurrence is not

preserved in the classi�cation samples. Furthermore, the proposed

features can be extracted from log records of non-encrypted HTTP

communication only.

4.2 Histogram-based �ngerprinting
As the closest prior art we consider the work of Kohout et al. [9].

�eir statistical �ngerprinting method relies on four already de-

scribed features in Equation 4 that can be extracted from HTTPS

log records. Individual log records within a given classi�cation

sample are treated as realizations of a four-dimensional random

variable. To represent a distribution of that variable as a vector,

a joint four-dimensional histogram is constructed. Speci�cally, a

smoothed histogram is constructed, in which contribution of each

log entry is distributed among multiple bins instead of just one.

�is intervention helps to smooth out small disturbances in the

data. Bins of that histogram are centered at equidistant points of

four-dimensional la�ice

L = {0, . . . , 11}4. (11)

�ese histograms are represented as sparse feature vectors (i.e.,

�ngerprints) with the dimensiond = 11
4 = 14, 641. �e technique is

unsupervised and does not require optimization of any parameters.

�e histogram-based �ngerprinting is demonstrated on the task

of grouping web servers that are hosting similar applications [9].

Recently, the same representation has been used to detect domains

related to malicious activity [10, 11] and to identify infected end-

nodes [4]. �erefore, the histogram-based �ngerprinting represents

the state-of-the-art method that the herein proposed solution is

compared to in Section 5.

Before presenting results from the comparison, we would like to

highlight several di�erences between the histogram-based and the

herein proposed �ngerprinting. First, the histogram-based method

quantizes the feature space into 4D bins, while the proposed method

into 2D bins (i.e., rectangles). As mentioned in Section 3, the advan-

tage of 2D rectangles over 4D bins is the robustness to arbitrarily

large changes in one or two input features. Second, the 4D bins

of histograms are obtained by quantizing the feature space with

one 4D la�ice (Equation 11), whereas the proposed solution tries to

minimize the risk of an inappropriately discretized feature space by

quantizing each of the six 2D sub-spaces several times with various

2D la�ices. �ird, elements of a histogram-based �ngerprint sum
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Table 1: Dataset Speci�cations

Dataset Training Testing

Time period March 2016 April 2016

Infected batches 2,800 1,578

Clean batches 43,813,135 31,607,364

Positive log records 17,574 17,938

Negative log records 1,346,888,662 895,445,264

to one because of the normalization condition. �is property might

suppress the information about malicious behavior when a benign

activity strongly dominates in a particular time window. It is a

well-known evasion technique when malware tries to intentionally

communicate in the same time window as a legitimate process

in order to make an eventual detection harder. In the case of the

proposal, there is no such property and the elements are stored as

non-negative integers.

5 EXPERIMENTS
In this section we present results from an experimental evaluation

on the task of detecting end-nodes that are infected with malware

communicating over HTTPS. �e evaluation is performed on real

network data described in the next section. �e herein proposed

solution is compared to the state-of-the-art �ngerprinting method

as well as to the traditional approach classifying end-nodes based

on analysis of isolated log records.

5.1 Dataset
�e used dataset contains HTTPS log records from 15 computer

networks of international companies of various types and sizes.

�ey are collected during the time period of two months, namely

March and April of 2016, using Cisco Cognitive �reat Analytics
1
.

In total, there are over two billions records produced by more than

half million of unique end-nodes. See Table 1 for details about the

dataset. �e �rst month is used as the training dataset, whereas the

later one serves for testing purposes only.

Every log record consists of end-node’s identi�er, server IP ad-

dress, number of sent and received bytes, duration of the connection

and the timestamp indicating when the connection has started. We

adopted the set of four features (Equation 4) from [9] that are ex-

tracted from each log entry.

Besides the mentioned �elds, some logs are provided with a hash

of the process that has initiated the HTTPS connection. �ese

hashes are compared against the database of malware hashes main-

tained by VirusTotal service
2
. If a hash is identi�ed by at least 20

anti-viruses used by VirusTotal, the log record is considered to be

positive (i.e., malicious). In other cases, the log is treated as negative

(i.e., benign).

�e availability of these hashes depends on whether Cisco Any-

Connect Secure Mobility Client
3

is running on end-nodes, which

does not have to be so in all cases. Although the networks are

supposed to be well maintained, we admit, therefore, that in the

1
h�ps://cognitive.cisco.com/

2
h�ps://www.virustotal.com/

3
h�ps://ist.mit.edu/cisco-anyconnect
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Figure 2: Feature Scores. Both graphs show the same data,
the le� view covers all features, the right view zooms to the
�rst 200 features. �e 200 features induce the selected rect-
angles from the generated candidate set (Section 3.2).

dataset there still might remain undiscovered malicious records

that are actually mislabeled with the negative label.

Similarly to Čech et al. [4], the end-nodes are analyzed in �ve

minute batches. Consequently, one classi�cation sample Ei corre-

sponds to the set of end-node’s HTTPS logs generated in a particular

�ve minute time period. A batch is infected when it includes at

least one positive record. Otherwise, the batch is considered to be

clean.

5.2 Experimental setting
�e following three methods are evaluated on the presented dataset.

1. Isolated logs �is method represents the traditional approach

where a classi�er is trained on isolated feature vectors as extracted

from log records. Batches are then classi�ed as infected when at

least one of inner records is identi�ed as positive (Equation 3).

2. Histograms Histogram-based �ngerprinting is the state-of-

the-art approach on HTTPS data described in Section 4. �is tech-

nique encodes every batch into a vector of 14, 641 real numbers.

3. Proposal �e novel technique for end-node �ngerprinting is

implemented following the description in Section 3.

�e initial set of the 5, 760 candidate rectangles is reduced to 200

using Mutual Information feature selection. As can be seen from

Figure 2, there is an exponential decay in the assigned scores by

the FS method. �erefore, only the �rst 200 e�ective rectangles are

utilized, resulting in �ngerprints of 200 natural numbers.

Figure 3 illustrates a distribution of the selected rectangles with

respect to the 36 parent la�ices created on six feature pairs by using

three discretization methods and two densities. It can be observed

that even though every la�ice produces some useful rectangles, the

most used ones on average are those generated with — quantile
quantization on positive data — at the �nest density of 256 rectan-

gles per a la�ice. It can be also seen that the sixth feature pair F6

(i.e., the sub-space of time related features) has a lower number

of informative rectangles than the �rst feature pair F1 (i.e., the

sub-space of transferred bytes). We a�ribute this di�erence to the
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Figure 3: Properties of selected rectangles. �e sequence of
six feature pairs respects the order in Equation 10. Colors
indicate the used quantization method. Le� and right bars
reveal the density (64 and 256, respectively) of the parent
lattice.

Figure 4: Results from an experimental evaluation on the test-
ing set presented in terms of Precision-Recall andROC curves.
Please note that the ROC curve has a logarithmic scale on the
x-axis to magnify the area of interest with low false positive
rate.

instability of time related features mentioned in Section 3.

All three methods produce classi�cation samples in the form of

vectors. To compare the methods, a classi�cation model is trained

and evaluated on respective samples of each method separately.

We opt for Random Forests (RF) [2] as this model is known to

perform well in the majority of practical learning problems [6]. �e

number of trees to grow and their maximum depth are �xed to 128

and 30, respectively. �e only hyper-parameter of the model that

is tuned for each method separately is the number of randomly

selected a�ributes at each split. �e appropriate values are se-

lected from a list speci�c for each method: Isolated logs - {1, 2, 3, 4},
Histograms - {10, 100, 500, 1000}, Proposal - {10, 100, 150, 200}; by

measuring out-of-bag error on the training data. �e rule of thumb

for se�ing this parameter on classi�cation tasks is square root of

the dimension.

All compared methods are trained using 2, 800 infected batches

and two millions of clean ones. �e non-infected batches are uni-

formly sampled from the complete set in order to avoid out of

memory issues during the training. Although we were able to

use the complete training set in the case of the proposed method,

since the �ngerprints are compact and can be e�ectively stored in

memory using only 8 and 16 bit unsigned integers, we have not

observed any signi�cant improvements in e�cacy. �erefore, we

consider the used subset of clean batches as a representative sample

of end-node benign activity.

5.3 E�cacy results
�e results are presented in Figure 4 in terms of Precision-Recall

(PR) and Receiver Operating Characteristic (ROC) curves [5]. �e

PR curves show whether every positive prediction is indeed infected

batch (precision) and at the same time whether the model detects

as many infected batches as possible (recall also called true positive

rate). �us perfect recall (i.e., the score equals to 1.0) means that all

infected batches are detected, while perfect precision means that

there are no false alarms. �e ROC curves then indicate how much

are network administrators �ooded by the individual systems with

meaningless false alarms (false positive rate) at various levels of

model recall. Considering the strong prevalence of clean end-nodes,

the emphasis in the network security domain is put on extremely

low false positive rate and high precision at a reasonable recall [15].

As can be seen from Figure 4, the traditional technique — Isolated
logs — adapted from the detection on HTTP data does not achieve

a satisfying e�cacy. It produces too many false alarms at any

operational point. Network administrators of such system would

spend an enormous amount of expensive time by examining many

reported incidents only to eventually determine that they mostly

re�ect benign end-node activities.

�e classi�cation model based on the histogram �ngerprinting

exhibits false positive rate reduced by two orders of magnitude

when compared to the traditional approach at 20% recall, which is

remarkable. �is emphasizes the advantage of the �ngerprinting

approach.

�e proposed solution, however, improves the detection capabil-

ities even further. It enables to detect about twice as many infected

batches at the same or even higher precision in the area with low

false positive rate. �e large decrease in precision a�er 50% recall

indicates an inability to reliably detect more than a half of infections

contained in the dataset. Considering the fact that only four simple

features are used for the detection, it is reasonable to not expect

the approach to detect all infections with a high con�dence.

Overall, the proposed solution exhibits an improved detection

performance in precision as well as in recall when compared to the

state-of-the-art method.

6 CONCLUSION
�is paper addresses the challenging problem of detecting end-

nodes that are infected with malware binaries communicating over

HTTPS protocol. Since only a limited number of features can

be extracted from HTTPS data without using MITM (man-in-the-

middle) mechanism or DPI (deep packet inspection), we introduce

a solution based on the idea of modeling communication pa�erns
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observable through timing and transfered bytes. �ese pa�erns

are primarily detectable across multiple connection requests issued

by individual end-nodes. To encode the variable end-node activity

into a single vector, enabling its direct use in supervised learning,

we propose a novel �ngerprinting method. �e method is designed

such that the output �ngerprints are robust to changes in one or

two input features. In the real-world cases, such changes can be

caused independently on the end-node behavior, e.g., by a variable

load of intermediate network nodes. In the experimental section of

this paper we demonstrate that the proposed method outperforms

the prior art technique.
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