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ABSTRACT

We propose an alternative use of neural models in anomaly
detection. Traditionally, in anomaly detection context the
common use of neural models is in form of auto-encoders.
Through the use of auto-encoders the true anomality is prox-
ied by reconstruction error. Auto-encoders often perform
well but do not guarantee to perform as expected in all cases.
A popular more direct way of modeling anomality distribu-
tion is through k-Nearest Neighbor models. Although kNN
can perform better than auto-encoders in some cases, their
applicability can be seriously impaired by their space and
time complexity especially with high-dimensional large-scale
data. The alternative we propose is to model the distribu-
tion imposed by kNN using neural networks. We show that
such neural models are capable of achieving comparable ac-
curacy to kNN while reducing computational complexity by
orders of magnitude. The de-noising effect of a neural model
with limited number of neurons and layers is shown to lead
to accuracy improvements in some cases. We evaluate the
proposed idea against standard kNN and auto-encoders on
a large set of benchmark data and show that in majority of
cases it is possible to improve on accuracy or computational
cost.
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Figure 1: Anomaly scores on a 2D projection of Iris
data set inferred by distance to k-nearest neigbours.
Warmer color depicts higher anomaly.

Figure 2: Anomaly scores on a 2D projection of Iris
data set. Anomalousness inferred by the proposed
model. Warmer color depicts higher anomaly.

1. INTRODUCTION

Anomaly detection (AD) is gaining on importance with
the massive increase of data we can observe in every do-
main of human activity. In many applications the goal is to
recognize objects or events of classes with unclear definition
and missing prior ground truth, while the only assumed cer-
tainty is that these entities should be different from what we
know well. The problem can thus be seen as the problem of
modeling what is common, and then identifying outliers.

Applications of anomaly detection are extensive. Anomaly
detection is inherent in cyber security, is successfully applied



in industrial quality control, banking and credit card fraud
detection, in medicine it can help raise alarms when a pa-
tient’s condition deteriorates, etc.

Anomaly detection as a general problem has been widely
studied as we overview in Section 1.1. Current state of the
art is, however, less satisfactory than in supervised learning.
Specifically, the recent rapid advances in neural networks
(for overview see, e.g., [18], [9], [14]) seem to not have been
replicated as successfully in anomaly detection.

The primary neural model use in anomaly detection is
through auto-encoders (AE). Auto-encoders, however, do
not model distribution of anomalies, they optimize a proxy
criterion, usually in form of reconstruction error. This fact
can limit the success of AEs in some problem areas.

Among traditional anomaly detection principles the k-
nearest neighbor (kNN) remains among the best performing
models. Distance-based detectors directly model the den-
sity but can become computationally expensive or even pro-
hibitive in on-line and embedded systems.

In this paper we propose to take use of distance-based
kNN principle to enable training of neural models with mul-
tiple potential advantages: better robustness against noise
as well as low computational complexity leading to high de-
tection speed - an important parameter especially in on-line
and embedded anomaly detection applications.

The paper is structured as follows: in Section 1.1 we re-
view existing anomaly detection methodology, in Section 2
we introduce the proposed method, in Section 3 we cover the
experimental evaluation of the proposed method and com-
parison to KNN and AEs on a large body of benchmark data
sets, in Sections 4 and 5 we provide discussion and conclu-
sion.

1.1 Anomaly detection

Anomaly detection is also known as one-class classifica-
tion. The goal is to detect a sample that is somehow differ-
ent from expected patterns or other observations, without
knowing the exact definition of different. Hence, anomaly
detection techniques focus on modeling what is expected,
and subsequently to mark as anomaly anything sufficiently
different from the expected.

Contrary to the other machine learning tasks such as clas-
sification, the anomaly detection is more difficult because
the character of the anomalous data is unknown when the
model is trained. In addition to that, the decision how much
the sample must be different from others, to be detected
as anomalous, is a problem. To solve the anomaly detec-
tion problem, we need to address the following concerns:
1) Choice of the model/method with properties suitable for
the problem, 2) conceptual problems including thresholding
and evaluation.

There is a number of methods for anomaly detection the
survey of which is given, e.g., in [7], [20], [23]. This pa-
per focuses on nearest neighbor based techniques [17] and
neural models (see Section 1.1.1) and consequently inves-
tigates the question of how to find synergy between both.
Nearest neighbor techniques are beneficial for their perfor-
mance (under certain conditions) and adaptability to various
data types. Their computational complexity, however, grows
rapidly with both the dimensionality and size of the training
data. Supporting structures thus have been proposed espe-
cially in form of k-d trees [3, 12, 4] and ball trees [29, 4] to
mitigate the problem. But the problem of complexity has

thus not disappered as we also illustrate in Section 3.4.

The standard anomaly detection knowledge base also in-
cludes kernel PCA methods [21], kernel density estimation
(KDE) including robust KDFE [16] and one-class support vec-
tor machines (SVM) [27] that all have been compared to and
partly outperformed by neural models, see, e.g., [33]. Neu-
ral network models are used for anomaly detection in two
different ways: 1) fully unsupervised, i.e., neural network
is trained on the regular data only and produces anomaly
score or any other similar metric which can be thresholded
(see Section 1.1.1), 2) supervised to some extent, i.e., knowl-
edge about possible outliers or other indirect information
about anomality apart from the mere density is utilized dur-
ing training (see, e.g., [6], [24], [26], [13], [34], [22]). In
the following we consider only the standard approach to
anomaly detector training where no additional information
is assumed available apart from the unlabeled data.

1.1.1 Auto-Encoders in Anomaly Detection

Auto-encoders have been used in anomaly detection with
success (see, e.g. [1], [28], [8]), yet the application of AEs can
lead to disappointing results due to multiple problems: 1) as
with any neural model, the open question is the selection of
meta-parameters including architecture depth, numbers of
neurons, choice of activation function, etc. (addressed, e.g.,
in [15]), 2) the robustness of neural models in general tends
to be questionable unless there is large number of training
samples available (addressed successfully in de-noising auto-
encoders, see, e.g., [31], [25]), 3) the notion of anomality
implied by AE may not correspond to the expectation of
what an outlier is, as AEs do not model density but a proxy
criterion instead, e.g., reconstruction error [see the criterion
(1) below], reconstruction probability [2] or minimization of
training set energy [33]. The 3rd problem and a proposal of
its alternative solution is the primary subject of this paper
(see Section 2).

1.1.2  Auto-Encoder Definition

The auto-encoder, also known as replicator neural network
or auto-associative neural network is a feed-forward neural
network that encodes the input to a compressed form and
then decodes back to replicate the input.
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Figure 3: Structure of an auto-encoder that encodes
d-dim. vectors into d-dim., d < d, and back



The auto-encoder is composed of the encoder and the de-
coder such that the encoder observes and performs nonlinear
dimensionality reduction (from dimension d to d) with mini-
mal loss of information and similarly the decoder performs a
projection from the reduced space back to the original one.

Let us have training set X = {x1,X2,...,Xn} such that
x; € R4, Vi e {1,..,n}, where n is number of training sam-
ples and d is dimensionality. The input vector x € R? is en-
coded to z € R? which is projected consequently to x’ € R%.
The encoding is performed as:

z = fo(x) = ¢c(Wx + b)

where f is parameterized by § = {W, b}, ¢ is an activation
function, W is a d’ x d weight matrix and b is a bias vector.
Similarly the decoding (reconstruction) is performed as:

x' = gy (z) = c(W'z+b')

The parameters of the model are optimized with a training
set thus each vector x; € X can be projected to z and x|
such that the average reconstruction error is minimized:

n

1
0%,0" = in — L(i f):
: arg min - ; Xi, X}
Lo (1)
= arg 1;1}%51 - Z; L(Xi'gel (f9 (Xn)))

where L represents a loss function which may be defined in

AN 12
many ways, however, the squared error L(z,z’) = ||z — 2'||
is the most common [30]. This is also called reconstruction
error which is used for the representation of the anomaly
score.

2. PROPOSED METHOD

The proposed method aims to make nearest neighbor based
anomaly detection efficient utilizing a neural network. The
main idea is simple: train a neural network that estimates
kNN score. The algorithm does it in two logical steps. First,
it creates an auxiliary dataset covering the input space, and
for each point of this auxiliary set a kNN anomaly score is
computed. Then, this auxiliary dataset is used as a training
set to train the neural network-based estimator.

Having the training set X = {x1,X2,..,Xn},X; € R?
Vi € {1,..,n}, let us denote A the auxiliary data set of m
samples where A = {a;,as,...,am}, a; € R Vi € {1,..,m}
and Y the vector of respective anomaly scores, where Y =
{y1,92, .-, ym}, yi € R, Vi € {1,..,m}. We will consider the
size of the proposed neural network’s hidden layers to be d-p
where p is a parameter.

2.1 Computing the auxiliary dataset

The auxiliary set A is computed from the training set X
as described in the following steps:

1. A bounding hyper-block of X is observed. Such hyper-
block is defined with the vector of lower bounds h; and
upper bounds h, such that hl(J PS xz(.J )< hnY vie
{1,..,n} Vj € {l,.,d} where xl(j) represents j-th el-
ement of i-th vector from X

2. The hyper-block is filled with randomly generated and
uniformly distributed samples {ai, as, ..., a,, }. By de-
fault we consider uniform random sampling. Note that

the choice of m for concrete problem may depend on
n and d (see also Sec. 3.2.3).

3. The anomaly score vector Y is constructed so that for
each auxiliary sample a;,7 € {1,..,m} the respective
yi € Y is computed as k-Nearest Neighbor mean dis-
tance G(-):

v = Gla) = 1 > Dya) 2)

j=1

where Dj(a;) represents the j-th smallest distance of
a; to samples from X. Note that the number of neigh-
bors k is a parameter [35, 19].

2.2 Training of the model
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Figure 4: Structure of the utilized network

The feed forward multi-layer neural network (see Fig.4)
is trained with A and Y to be able to predict the anomaly
score. In other words, the input vector a; € R? is projected
to y; € R as follows:

4 3 2 1
yé = fo(ai) = ;(2>(f(§(z?)(fé(z)>( 9(<1)) (a:)))) (3)
where f{;{}) represents the j-th layer of the NN and the layer
propagation is defined as:

1) (a) = (W2 + b)) (4)

thus (fY is parameterized by %) = {W bW} cis an
activation function, W% is a weight matrix and b"¥ is a
bias vector of the j-th layer.

The parameters of the model are optimized with A and
Y such that the average loss function is minimized:

6" = argmin % Z L(yi, yi) (5)

where L represents a loss function.

3. EXPERIMENTAL EVALUATION

We compare the proposed methodology to standard kNN
based anomaly detecion and then to auto-encoder based
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Figure 5: Anomaly detectors’ prediction time dependence on training data size in application phase. Tested
on magic telescope and Isolet data sets. Neural model prediction speed does not depend on training data size

(note the close-to-zero time in magic telescope case)
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Figure 6: Anomaly detectors’ prediction time dependence on dimensionality in application phase. Tested on

magic telescope and Isolet data sets

anomaly detection. We compare area under the curve of
receiver operating characteristics (AUC of ROC) [5] of the
three approaches on a body of benchmark data. Addition-
ally, we compare computational complexity of the proposed
method to kNN with respect to increasing dimensionality
and training data size®.

3.1 Data Sets

Our aim is to compare the methods on a variety of data
sets of various properties, ideally such that are widely used
in literature.

To do so we have adopted the experimental protocol of
Emmott [11], who has introduced a methodology of creat-
ing general AD benchmarking sets using multi-class data
from the UCI repository. For each source dataset one se-
lected class is used to form the non-anomalous data and
some of the others are used as source of anomalies. The
concrete choice of anomaly representing classes leads up to
four different datasets of four levels of detection’ difficulty.
Emmott demonstrated the utility of such approach by cre-

The utilized hardware for this experiment is provided by
the supercomputer services of the computing and informa-
tion center at the Czech Technical University and Cognitive
Research at Cisco Systems, Prague.

ating a number of carefully selected sets and using them to
evaluate performance of six popular AD method. There is a
large number of various multi-class data sets usually based
on a real-world data in the UCI repository hence the con-
structed benchmark sets provide a reasonable reality check.
In 2014 Dau considered Emmott’s methodology as the most
advanced [8].

For our comparison we thus include 64 data sets generated
using Emmott’s methodology from 18 source data sets rep-
resenting real-world data. To give more insight into meth-
ods’ performance under various conditions the data sets are
grouped according to their difficulty. We thus perform our
evaluation on easy (see Table 1), medium (Table 2), hard
(Table 3) and wvery hard (Table 4) problems. Numbers of
samples in data sets vary from 66 to 12332, dimensionalities
vary from 4 to 90. For details on individual data sets see
[11]. See also comments in Section 4.

3.2 Evaluation Setup

To construct training and testing sets, in all cases random
sampling is used such that 75 % of normal (non-anomalous)
samples is used for training and the rest 25 % for testing.
The anomalous samples are only used for testing. The accu-
racy score is measured by AUC of ROC [5] as is common in



Figure 7: Anomaly scores on a 2D projection of waveform data set. Left: anomaly scores obtained by kINN.
Right: anomaly scores obtained by the proposed model. Warmer color depicts higher anomaly

literature. The advantage of this metric is the independence
on specific thresholding.

3.2.1 k-Nearest Neighbors Setup

To evaluate kNN accuracy we compute AUC according
to the anomaly score obtained as mean distance G(-) intro-
duced in Equation (2).

To evaluate kNN computational complexity we consider
multiple kNN versions: the basic kNN, which is implemented
as brute tree, k-d tree and ball tree. The k-d tree [3, 12, 4]
is a special type of binary search tree that uses hyperplanes
to divide the space to accelerate search. Similarly, the ball-
tree [29, 4] uses hyperspheres to cover the space recursively.
The usage of the supporting structure does not affect the
precision of the method. However, the time complexity may
differ significantly.

The optimal choice of the parameter k which is essential
for kNN is not addressed in this paper. However, we ob-
served k = 5 as the best performing on average for all the
sets thus it is used for all presented experiments. Remark:
note that the proposed method is applicable for any k.

3.2.2 Auto-Encoders Setup

We evaluate the denoising three-layer auto-encoder ac-
cording to [8, 30] (see Section 1.1.1). When computing AUC,
anomaly score is proxied by reconstruction error. AEs are
subject to parametrization; for the tests we needed to decide
on the number of neurons per hidden layer, initialization and
the type and magnitude of noise. To ensure unified approach
across all data sets and to avoid the worst local maxima we
opted for a meta-optimization procedure. For each bench-
mark data set we trained multiple AE models with varying
parameters to eventually retain the one with best loss func-
tion result.

We observed that Gaussian noise worked better than salt
and pepper noise across the considered data sets. Four dif-
ferent magnitudes of noise are tried with deviations between
0.01 and 0.2 while the samples were scaled to [0, 1] for each
dimension.

To set the number of hidden neurons we propose to take
guidance from pre-analysis of the data. The number of hid-
den neurons is selected empirically among six various setups
implied by expected relative variance. First, we define a rel-
ative variance (0.7, 0.8, 0.9, 0.95, 0.97, 0.98) that we want
to preserve with the encoding. Then the required number of
hidden neurons is estimated using principal component anal-

ysis (PCA) [32] as the lowest number of dimensions required
to preserve the relative variance.

We observed only negligible improvement from repeated
random initialization. All models were trained in 300 000
iterations; varying the number of iterations also proved to
have only negligible impact.

Hence the eventual meta-optimization procedure consists
from building the 24 models (4 noise parameters, 6 hid-
den layer size parameters) and retaining the one with best
achieved loss function result.

3.2.3 Proposed Method Setup

To evaluate the accuracy of the proposed model we com-
pute AUCs using the neural network introduced in Sec-
tion 2.2. The method is subject to parametrization: its per-
formance can be affected by the properties of auxiliary data
set as well as by the standard neural model parametrization
(number of layers, number of neurons in layers etc).

We fixed the auxiliary set construction parameters for all
experiments as follows. We fixed £ = 5 in kNN used for
auxiliary data set construction to get results comparable to
the standalone kNN anomaly detector. The auxiliary data
set is constructed as described in Section 2.1 with the total
number of auxiliary samples set to m = n - d? - [, where [ is
set to 150. The choice of the parameter [ is empirical and re-
flects a trade-off between model accuracy and computational
complexity of the training.

ReLU (f(z) = max(0,z)) activation function is used for
all neurons (except input). Size of batch is set always to 80.
We opted for a simple meta-optimization of neural model
parameters so as to avoid the worst local optima. The same
procedure is applied across all benchmark data. For this
purpose we train for each training data set multiple mod-
els, to eventually retain the version with best loss function
result. The variation across training runs consist in: 2 or 3
hidden layers, hidden layer size 3d or 5d, multiple random
weight initializations, number of iterations thresholded by
six values between 1000 and 300000.

3.3 Detection Accuracy Results

Assessing results of three methods over multiple datasets
can be done in multiple ways [10]. We focus on pair-wise
comparison of the proposed method separately to kNN and
auto-encoder.

We summarize the best achived AUC accuracies in four
tables, each covering one problem difficulty level: Table 1 for



Table 1: AUC scores for easy problems. Table pro-
vides two pairwise comparisons of proposed NN vs
kNN and auto-encoder

Set d | NN kNN NN AE
abalone 10 | 0.972 0.994 | 0.972 0.961
blood-transfusion 4 0.955 0.987 | 0.955 0.991
breast-cancer-wis. 30 | 0.989 0.969 | 0.989 0.978
breast-tissue 9 1.000 0.997 | 1.000 0.996
cardiotocography 27 | 0.884 0.566 | 0.884 0.617
ecoli 7 10.927 0.918 | 0.927 0.876
glass 10 | 0.816 0.785 | 0.816 0.803
haberman 3 10.996 0972 | 0.996 0.911
ionosphere 33 | 0.811 0.962 | 0.811 0.984
iris 4 1.000 0.936 | 1.000 0.569
libras 90 | 0.500 0.768 | 0.500 0.562
magic-telescope 10 | 0.901 0.946 | 0.901 0.896
page-blocks 10 | 0.990 0.981 | 0.990 0.976
parkinsons 22 1 0.895 0.830 | 0.895 0.862
pendigits 16 | 0.975 0.994 | 0.975 0.945
pima-indians 8 | 0.890 0.920 | 0.890 0.892
sonar 60 | 0.500 0.605 | 0.500 0.664
spect-heart 44 | 0.500 0.277 | 0.500 0.502

easy, Table 2 for medium, Table 3 for hard and Table 4 for
very hard. Note that we report results rounded to 4 decimal
places. Pair-wise better results are emphasised in bold.

To obtain a global picture we then aggregate results over
data sets and use Wilcoxon signed rank test to verify the
statistical significance (at 0.05 level) of one method’s win
over the other.

When compared to kNN, Table 5 shows that the proposed
method performed better on notable majority of very hard
problems. Overall, the proposed method performed better
on 36 problems while the kNN on 28. However, the statisti-
cal significance is not approved for any of the problem dif-
ficulty groups. Nevertheless, we have achieved the primary
goal of providing a neural model that achieves comparable
or better accuracy when compared to kNN with consider-
ably lower computational complexity in application phase
(see also Section 3.4).

When compared to auto-encoders, Table 6 shows that the
proposed method outperformed AEs in all difficulty levels.
The most notable success occurs for medium and very hard
problem level where the statistical significance is achieved.
In summary, the NN performed better for 43 problems while
the auto-encoder for 21.

Remark: Note that the Wilcoxon test could not be per-
formed across difficulty groups, because it requires indepen-
dent results.

3.4 Time and Space Complexity Results

The time complexity of the proposed method in detection
phase is its main expected advantage over kNN, including
advanced kNN forms that utilize search trees. When mea-
suring the detection time we assume that the neural network
is already trained and the kNN search tree (if any) built.

We illustrate the advantage on two data sets: magic tele-
scope, (10-dim., 12332 samples) and Isolet (617-dim., 4497
samples), both of medium difficulty. Figure 5 compares the
detection speed of proposed neural model to various forms
of kNN with respect to dependency on training data size. To
construct the graph we run a series of tests on the same data

Table 2: AUC scores for medium problems. Table
provides two pairwise comparisons of proposed NN
vs kNN and auto-encoder

Set d | NN kNN NN AE

abalone 10 | 0.871 0.935 | 0.871 0.825
blood-transfusion 4 0.800 0.806 | 0.800 0.902
breast-cancer-wis. 30 | 0.973 0.918 | 0.973 0.954

breast-tissue 9 | 1.000 0.964 | 1.000 0.958
cardiotocography 27 | 0.855 0.561 | 0.855 0.622
ecoli 7 | 0.837 0.843 | 0.837 0.790
glass 10 | 0.711 0.685 | 0.711 0.703
haberman 3 10.963 0.955 | 0.963 0.865
ionosphere 33 10961 0.993 | 0.961 0.988
iris 4 | 0.980 0.924 | 0.980 0.858
libras 90 | 0.500 0.628 | 0.500 0.532
magic-telescope 10 | 0.868 0.898 | 0.868 0.850
page-blocks 10 | 0.956 0.983 | 0.956 0.952
parkinsons 22 1 0.638 0.525 | 0.638 0.551
pendigits 16 | 0.869 0.974 | 0.869 0.873
pima-indians 8 | 0.787 0.789 | 0.787 0.735
sonar 60 | 0.502 0.717 | 0.502 0.701
spect-heart 44 | 0.589 0.236 | 0.589 0.434

Table 3: AUC scores for hard problems. Table pro-
vides two pairwise comparisons of proposed NN vs
kNN and auto-encoder

Set d | NN kNN NN AE

abalone 10 | 0.520 0.550 | 0.520 0.529
blood-transfusion 4 0.716 0.521 0.716 0.714
breast-cancer-wis. 30 | 0.735 0.627 | 0.735 0.742

breast-tissue 9 0.542 0.463 | 0.542  0.559
cardiotocography 27 | 0.780 0.372 | 0.780 0.526
ecoli 7 10.702 0.736 | 0.702 0.666
glass 10 | 0.607 0.556 | 0.607 0.651
haberman 3 10.937 0.922 | 0.937 0.796
ionosphere 33 | 0.542 0.863 | 0.542 0.782
iris 4 | 0.880 0.842 | 0.880 0.574
magic-telescope 10 | 0.835 0.850 | 0.835 0.807

page-blocks 10 | 0.937 0.963 | 0.937 0.941
parkinsons 221 0.432 0.365 | 0.432 0.515
pendigits 16 | 0.886 0.977 | 0.886 0.878
pima-indians 8 | 0.606 0.647 | 0.606 0.606
spect-heart 44 1 0.500 0.085 | 0.500 0.129

Table 4: AUC scores for very hard problems. Table
provides two pairwise comparisons of proposed NN
vs kNN and auto-encoder

Set d | NN kNN NN AE

abalone 10 | 0.521 0.447 | 0.521 0.498
blood-transfusion 4 0.506 0.366 | 0.506 0.471
breast-tissue 9 0.504 0.413 | 0.504 0.450
cardiotocography 27 | 0.790 0.307 | 0.790 0.437

ecoli 7 | 0.567 0.504 | 0.567 0.566
glass 10 | 0.321 0.568 | 0.321  0.529
haberman 3 | 0.555 0.529 | 0.555 0.498
iris 4 | 0.740 0.632 | 0.740 0.493
magic-telescope 10 | 0.667 0.643 | 0.667 0.590
page-blocks 10 | 0.854 0.874 | 0.854 0.872
pendigits 16 | 0.857 0.924 | 0.857 0.817
pima-indians 8 |0.470 0.428 | 0.470 0.471




Table 5: Counts of wins of the proposed method versus kNN, grouped by problem difficulty. Wilcoxon signed
rank test at 0.05 level is used to verify statistical significance of wins

Easy Medium Hard V. Hard Sum

Proposed NN 10
kNN 8

Significance no

9 9 36
7 3 28
no no -

Table 6: Counts of wins of the proposed method versus auto-encoder, grouped by problem difficulty. Wilcoxon
signed rank test at 0.05 level is used to verify statistical significance of wins

Easy Medium Hard V. Hard Sum

Proposed NN 12
Auto-encoder 6

Significance no

9 9 43
7 3 21
no yes -

set while gradually removing samples. Figure 6 compares
the same anomaly detectors with respect to dependency on
data dimensionality. To construct the graph we run a series
of tests on the same data set while gradually (randomly)
removing features.

Note that the neural model has constant complexity with
respect to the number of training samples. This makes it
potentially very useful whenever a kNN would perform well
only with large sample sets. Figure 6 illustrates that even
with respect to growing dimensionality the neural model can
be expected to keep the edge over kNN models.

We do not provide space complexity measurements but it
is clear that larger dimensionality increases space complex-
ity for all models. Neural models can be considered par-
ticularly practical to optimize the trade-off between model
size and accuracy due to great parametrization variability.
Larger data sets severely increase space complexity for kNN
but leave neural model size unaffected. This fact can prove
crucial, e.g., in embedded applications.

Remark: Note that to measure time complexity of kNN
and of the proposed method we set the test environment to
use a single CPU core on a computer in controlled environ-
ment to minimize unwanted system influences.

4. DISCUSSION

To give more insight into how the proposed model repli-
cates kNN-induced anomaly distribution we provide heat-
maps in Figures 1, 2 and 7. To construct the heat-maps
the data sets were transformed into 2D space using PCA.
The respective anomaly in each pixel position is marked by
color on a scale from blue (lowest anomaly) to red (highest
anomaly).

Note that due to the extent of performed tests we have
not obtained full results for very-high-dimensional data sets
from UCI Repository. However, our partial results allow for
the following observation: for the proposed neural network it
gets more difficult to keep up AUC with kNN with increasing
dimensionality. This is not surprising as neural networks are
known to require large numbers of samples; with increasing
dimensionality this effect gets more pronounced. If training
complexity is not the limiting factor, then the effect can be
compensated for by increased size of the auxiliary set.

Note also that we have not exhausted all parametrization
options of the neural network when comparing the proposed
model to kNN. It should be also noted that the main idea
behind our proposed method does not actually depend on

neural networks. Once an auxiliary set is constructed, it
should be possible to apply any predictor capable of learning
from samples with labels from (0, 1).

The accuracy of the proposed method thus depends cru-
cially on the number and distribution of auxiliary samples.
In the present paper we assume only the simplest definition
of the auxiliary set (cf. Section 3.2.3). Expectably the ac-
curacy of the proposed model can be improved further by
weighted sampling and optimization of the auxiliary set size
with respect to data set properties. This is the subject of
our next effort.

5. CONCLUSION

We propose a novel anomaly detection methodology. We
take use of distance-based k-Nearest Neighbor principle to
enable unsupervised training of neural networks that di-
rectly model the density of anomaly values. This is in con-
trast to auto-encoders where anomality is modeled indirectly
through reconstruction error or other proxy criterion.

We compare the proposed method’s accuracy and com-
plexity to kNN and to auto-encoders on an extensive set of
benchmark data. To obtain robust results we defined meta-
optimization of parameters for all compared neural mod-
els. The evaluation shows that the proposed model exhibits
multiple advantages. When compared to auto-encoders it
often provides better accuracy. When compared to kNN it
provides comparable accuracy with principally lower com-
putational complexity - an important property especially in
on-line and embedded anomaly detection applications.
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