
Discriminative models for multi-instance problems with
tree-structure

Tomáš Pevný
CTU in Prague

Cisco R&D Center in Prague
Prague, Czech Republic
pevnak@gmail.com

Petr Somol
Cisco R&D Center in Prague

UTIA, Czech Academy of Sciences
Prague, Czech Republic
psomol@cisco.com

ABSTRACT
Modeling network traffic is gaining importance in order to
counter modern threats of ever increasing sophistication. It
is though surprisingly difficult and costly to construct reli-
able classifiers on top of telemetry data due to the variety
and complexity of signals that no human can manage to
interpret in full. Obtaining training data with sufficiently
large and variable body of labels can thus be seen as pro-
hibitive problem. The goal of this work is to detect infected
computers by observing their HTTP(S) traffic collected from
network sensors, which are typically proxy servers or net-
work firewalls, while relying on only minimal human input
in model training phase. We propose a discriminative model
that makes decisions based on all computer’s traffic observed
during predefined time window (5 minutes in our case). The
model is trained on collected traffic samples over equally
sized time window per large number of computers, where
the only labels needed are human verdicts about the com-
puter as a whole (presumed infected vs. presumed clean).
As part of training the model itself recognizes discrimina-
tive patterns in traffic targeted to individual servers and
constructs the final high-level classifier on top of them. We
show the classifier to perform with very high precision, while
the learned traffic patterns can be interpreted as Indicators
of Compromise. In the following we implement the discrim-
inative model as a neural network with special structure
reflecting two stacked multi-instance problems. The main
advantages of the proposed configuration include not only
improved accuracy and ability to learn from gross labels,
but also automatic learning of server types (together with
their detectors) which are typically visited by infected com-
puters.

1. MOTIVATION
In network security it is increasingly more difficult to re-

act to influx of new malicious programs like trojans, viruses
and others (further called malware). Traditional defense
solutions rely on identifying pre-specified patterns (called

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

signatures) known to distinguish malware in incoming net-
work connections, e-mails, locally stored programs, etc. But
signature-matching now looses breath with the rapid in-
crease in malware sophistication. Contemporary sophisti-
cated malware deploys many evasion techniques such as poly-
morphism, encryption, obfuscation, randomization, etc, which
critically decrease recall of signature-based methods. The
perpendicular approach is identifying infected computers on
the basis of their behavior, i.e., usually by monitoring and
evaluating network activity or system calls. The advantage
of the latter approach is higher recall, because it is much
harder to evade behavior-based detection. E.g., computers
infected by spamming malware almost inevitably display an
increase in number of sent e-mails. Click-fraud, where in-
fected computers earn money to the originator of infection
by showing or accessing advertisements, is another example
where the increased volume of certain traffic is a good in-
dicator of compromise. On the other hand, behavior-based
malware detection frequently suffers from higher false posi-
tive rate compared to signature based solutions.

Machine learning methods have been recently in focus due
to their promise to improve false-positive-rate of behavioral
malware detection[2]. However, the use of off-the-shelf ma-
chine learning methods to detect malware is typically hin-
dered by the difficulty to obtaining accurate labels, espe-
cially if classification is to be done on the level of individ-
ual network connections (TCP flow, HTTP request, etc.)[11,
13]. Even for an experienced security analyst it is almost im-
possible to determine which network connections are initi-
ated by malware and which by a benign user or application,1

since malware often mimics behavior of benign connections.
We have observed malware connecting to google.com for
seemingly benign connection checks, displaying advertise-
ments, or sending e-mail as mentioned above. Labeling indi-
vidual network connections is thus prohibitive not only due
to their huge numbers but also due to ambiguity of individ-
ual connection’s classification. Automatic and large-scale
training of accurate classifiers is thus very difficult.

In this work we sidestep this problem by moving the ob-
ject of classification one level up, i.e., instead of classifying
individual connections we classify the computer (a collec-
tion of all its traffic) as a whole. The immediate benefit is

1Even though one has access to the machine infected by mal-
ware and obtain hashes of processes issuing the connection,
malicious browser-plugins will have hash of the browser,
which is a legitimate application and this renders this tech-
nique useless. The database of hashes used to identify mal-
ware processes might not be complete yielding to incomplete
labeling.

ar
X

iv
:1

70
3.

02
86

8v
1

 [
cs

.C
R

]
 7

 M
ar

 2
01

7

google.com
google.com/search
 .
gmail.com/check
 .
gmail.com/check
 .
 .
100.100.100.100
 .
cnn.com
cnn.com/news
cnn.com/images
 .
addelivery.com
 .
 .

 .
skype.com
 .
skype.com/chat
 .
 .
bing.com
bing.com/search
 .
 .
 .
dropbox.com/check
 .
dropbox.com
dbox.com/upload
 .
 .

user_j_smith

user_s_dawn

http(s) traffic of John Smith

http(s) traffic of John Smith

extracted per-flow
feature vectors

extracted per-flow
feature vectors

individual flow layer
(k neurons)

„flow active as connection check“

Remark: interpretation of learned neuron is possible in after-learning phase through subsequent analysis of flows on which learned neurons excite the most.

Remark: aggregation
per bag is the key
advantage here over
standard Neural
Networks

„user often reads mail and news“

„communication to this domain has high
 number of connection checks“

„communication to this domain
 is mostly API based“ „communication to this domain

 contained empty path“

„flow representing search request“ „user accesses search engines through API“

domain connection
type layer
(d neurons)

user type layer
(u neurons)

binary classification
layer (infected/benign)

per-destination-domain
aggregated vector

per-destination-domain
aggregated vector

per-user
aggregated vector

per-user
aggregated vector

to be classified
in last Neural Net
layer

to be classified
in last Neural Net
layer

for google.com

for skype.com

for user_s_dawn

for user_j_smith

for gmail.com

for bing.com

for cnn.com

for addelivery.com

for dropbox.com

for 100.100.100.100

tim
e

tim
e

∈Rkf1, f2,
∈Rkf1, f2,

∈Rdf1, f2,

∈Rdf1, f2,

∈Rdf1, f2,
∈Ruf1, f2,

∈Ruf1, f2,

∈Rdf1, f2,

∈Rdf1, f2,

∈Rdf1, f2,

∈Rdf1, f2,

∈Rdf1, f2,

∈Rkf1, f2,

∈Rkf1, f2,

∈Rkf1, f2,

∈Rkf1, f2,

∈Rkf1, f2,

∈Rkf1, f2,

∈Rkf1, f2,

∈Rkf1, f2,

∈Rkf1, f2,

∈Rkf1, f2,

∈Rkf1, f2,

∈Rkf1, f2,

∈Rkf1, f2,

∈Rkf1, f2,

}

}

}

}
}

}

}

}

Multiple-Instance Neural Network in Computer Network Security

Traffic Sample

Traffic Sample

Neural Network Model

Examples of Learned IOCs

pooling function
aggregates
over flows per
bag (flows per
domain)

pooling function
aggregates over
connections per
bag (connection
type vectors per
user)

Figure 1: Sketch of the traffic of a single computer.

twofold. First, the labeling is much simpler, as it is suffi-
cient to say “this computer is infected / clean” rather than
“this connection has been caused by malware”. Second, a
grouping of connections provides less ambiguous evidence
than a single connection (see cases described above where a
single access of ad server does not tell much, but multitude
of such accesses does). This latter property is in fact the
main motivation behind our present work.

The biggest obstacle in implementing a classifier on ba-
sis of all observed traffic is the variability in the number of
network connections (hereafter called flows). This property
effectively rules out majority of machine learning algorithms
requiring each sample to be described by a fixed dimensional
vector, because the number of observed flows supposed to
characterize one computer can range from dozens to mil-
lions while the flows may vary in information content. Our
problem thus belongs to the family of multi-instance learning
(MIL) problems [3, 7] where one sample is commonly called
a bag (in our case representing a computer) and consists of
a variable number of instances (in our case one instance is
one flow), each described by a fixed dimensional vector.

The solution proposed below differs from common MIL
paradigm by taking a step further and representing data
not as a collection of bags, but as a hierarchy of bags. We
show that such approach is highly advantageous as it effec-
tively utilizes natural hierarchy inherent to our data. Flows
emitted or observed by one computer can be easily grouped
according to servers they connect to (these groups are called
sub-bags), so that the bag representing the particular com-
puter becomes a collection of sub-bags. This hierarchy can
be viewed as a tree with leafs representing flows (instances),
inner nodes representing servers (sub-bags), and finally the
root representing the computer (bag). The structure of the
problem is shown in Figure 1. Note that trees represent-
ing different computers will have different number of inner
nodes and leafs. The proposed classifier exploits this struc-
ture by first modeling servers (sub-bags) on basis of flows
targeted to them and then modeling the computer on top of
the server models. This approach can be viewed as two MIL
problems stacked one on top of the other. In Section 3 we
show how the hierarchical MIL problem can be mapped into
neural-network architecture, enabling direct use of standard
back-propagation as well as many recent developments in the

field of deep learning. Once trained, the architecture can be
used for classification but it can also be dismantled to iden-
tify types of traffic significant for distinguishing benign from
infected computer, i.e., it allows to extract learned indica-
tors of compromise (IoCs). Finally, using approach similar
to URCA [17], it is possible to identify particular connections
which made the neural network decide that the computer is
infected; hence effectively providing an explanation of the
learned IoC.

Section 4 demonstrates the proposed approach on large
scale real problem of detecting infected computers from proxy
logs. It is shown that the network can learn to identify in-
fected computers in protected network, as well as provide
sound explanation of its verdicts to the consumer. Neurons
in lower layer are shown to have learned weak indicators of
compromise typical for malware.

The proposed neural architecture is shown to have mul-
tiple advantageous properties. Its hierarchal MIL nature
dramatically reduces the cost of label acquisition. By us-
ing labels on high-level entities such as computers or other
network devices the creation of training data is much sim-
pler. The ability to dismantle the encoded structure is no
less important as it provides definition of learned indicators
of compromise. Finally, it allows human understandable ex-
planation of classifier verdict as security incident, which sim-
plifies the job of the network administrator.

This paper is organized as follows. The next section for-
mulates the problem of multiple instance learning and re-
views important work we build upon. The proposed ap-
proach is presented in Section 3 Experimental evaluation is
provided in Section 4.

2. RELATED WORK
In the following we review the evolution of paradigms lead-

ing to the solution proposed in next chapter.

2.1 Multi instance learning problem
The pioneering work [6] coined multiple-instance or multi-

instance learning as a problem, where each sample b (to be
denoted bag in the following) consists of a set of instances
x, i.e., b = {xi ∈ X|i ∈ {1, . . . |b|}}. Each instance x can be
attributed a label yx ∈ {−1,+1}, but these instance-level
labels are not assumed to be known even in the training

set. The sample b was deemed positive, if at least one of its
instances had a positive label, i.e., label of a sample b is y =
maxx∈b yx. For this scenario the prevalent approach is the
so-called instance-space paradigm, i.e., to train a classifier
on the level of individual instances f : X 7→ {−1,+1} and
then infer the label of the bag b as maxx∈b f(x).

2.1.1 Embedded-Space Paradigm
Later works (see reviews [3, 7]) have introduced different

assumptions on relationships between the labels on the in-
stance level and labels of bags or even dropped the notion of
instance-level labels and considered only labels on the level
of bags, i.e., it is assumed that each bag b has a correspond-
ing label y ∈ Y, which for simplicity we will assume to be
binary, i.e., Y = {−1,+1} in the following. The common
approach of the latter type is either to follow a bag-space
paradigm and define a measure of distance (or kernel) be-
tween bags or to follow an embedded-space paradigm and
define a transformation of the bag to a fixed-size vector.

Since the solution presented in Section 3 belongs to the
embedded-space paradigm, we describe this class of methods
in necessary detail and adopt the formalism of [16], which is
for our solution essential. The formalism of [16] is intended
for a general formulation of MIL problems, where labels are
assumed only on the level of bags without any labels on the
level of instances. Each bag b consists of a set of instances,
which are viewed as a realization of some probability distri-
bution pb defined over the instance space X . To allow more
flexibility between bags even within the same class, the for-
malism assumes that probability distributions pb of different
bags are different, which is captured as pb being realization
of a probability P (pb, y), where y ∈ Y is the bag label.

During the learning process each concrete bag b is thus
viewed as a realization of unknown probability distribution
pb that can be inferred only from groups of instances {x ∈
b|x ∼ pb} observed in data. The goal is to learn a dis-
crimination function f : B 7→ Y, where B is the set of
all possible realizations of all distributions p ∈ PX , i.e.,
B =

{
xi|p ∈ PX , xi ∼ p, i ∈ {1, . . . l}, l ∈ N

}
. Note that this

definition also includes that used in [6].2

Methods from embedded space-paradigm [3, 7] first repre-
sent each bag b as a fixed-dimensional vector and then use
any machine learning algorithm with samples of fixed di-
mension. Therefore the most important component in which
most methods differ is the embedding. Embedding of bag b
can be generally written as

(φ1(b), φ2(b), . . . , φm(b)) ∈ Rm. (1)

with individual projection φi : B 7→ R being

φi = g
(
{k(x, θi)}x∈b

)
, (2)

where k : X ×Θ 7→ R+
0 is a suitably chosen distance function

parametrized by parameters θ (also called dictionary items)
and g : ∪∞n=1Rk 7→ R is the pooling function (e.g. minimum,
mean or maximum). Most methods differ in the choice of

2Ref. [6] assumed labels on instances and a bag was classified
as positive if it contained at least one positive instance. In
the used general formulation this corresponds to the case,
where in each positive bag exist instances that never occur in
negative bags, which means that the difference of support of
positive and negative probability distributions is non-empty,
i.e., p+\p− 6= Ø, where p+ ∼ P (p|+) and p− ∼ P (p|−).

k1(·)

k2(·)

km(·)

··
··

g(·)

g(·)

g(·)

··
··

f(·)

multiple vectors per bag single vector per bag

Figure 2: Neural network optimizing the embedding in
embedding-space paradigm.

aggregation function g, distance function k, and finally in
selection of dictionary items θ ∈ Θ.

2.2 Simultaneous Optimization of Embedding
and Classifier

The important novelty introduced in [16] is that embed-
ding functions {φi}mi=1 are optimized simultaneously with
the classifier that uses them, as opposed to the prior art
where the two optimization problems are treated indepe-
dently. Simultaneous optimization is achieved by using the
formalism of neural network, where one (or more) lower lay-
ers followed by a pooling layer implement the embedding
function φ, and subsequent layers implement the classifier
that is thus built on top of bag representation in form of
a feature vector of fixed length. The model is sketched in
Figure 2 with a single output neuron implementing a linear
classifier once the embedding to a fixed-length feature repre-
sentation is realized. The neural network formalism enables
to optimize individual components of the embedding func-
tion as follows.

• Lower layers (denoted in Figure 2 as {ki}mi=1) before
pooling identifies parts of the instance-space X , where
the probability distributions generating instances in
positive and negative bags differs the most with re-
spect to the chosen pooling operator.

• The pooling function g can be either fixed to mean
or maximum, or other pooling function such that it
is possible to calculate gradient with respect to its
inputs. The pooling function itself can have param-
eters that can be optimized during learning, as was
shown e.g. in [9], where the pooling function has form
q
√

1
|b|
∑

i∈b |xi|q with the parameter q being optimized.

• Layers after the pooling (denoted in Figure 2 as f(·))
optimize the classifier that already uses representation
of the bag as vector of fixed dimension.

The above model is very general and allows automatic op-
timization of all parameters by means of back-propagation,
though the user still needs to select the number of layers,
number of neurons in each layer, their transfer function, and
possibly also the pooling function.

3. THE PROPOSED SOLUTION
In the light of the previous paragraph, the problem of

identifying infected computers can be viewed as two MIL
problems, one stacked on top of the other, where the traffic
of a computer b is generated by a two-level generative model.

3.1 Generative Model
Let us denote S the set of all servers accessible by any

computer. Let Sc ⊆ S denote the selection of all servers
accessed from computer c in given time frame. The commu-
nication of computer c with each server s ∈ Sc consists of
a group of flows x ∈ X that are viewed as instances form-
ing a first-level bag bs. Bag of flows bs is thus viewed as a
realization of some probability distribution pbs ∈ PX .

We imagine that every server s is associated with a type
t(s), which influences the probability distribution of the flows
pbs . Accordingly, each first-level bag bs is realized according
to pbs which itself is a realization of a probability distribu-
tion P (pbs , t(s)). This captures the real-world phenomenon
of user’s interaction with some server (e.g., e-mail server)
being different from that of a different user communicating
with the same server, as well as the fact that different types
of servers impose different communication patterns.

In view of the above we can now consider computer c to be
the second-level bag consisting of a group of first-level bags
bs. Similarly to the above we assume cto be a realization
of probability distribution pc ∈ PB where B is the set of all
possible realizations of all distributions p ∈ PX . Probability
distribution pc is expected to be different for each computer,
particularly we assume this to be true between infected and
clean computers labeled by y ∈ {−1,+1}. Probability dis-
tribution pc is thus viewed as realization of a probability
distribution P (pc, y). This captures the real-world observa-
tion that infected computers exhibit differences in commu-
nication patterns to servers, both in selection of servers and
inside individual connections to the same server.

input : y ∈ {−1,+1} label marking computer as clear
or infected

output: Set of flows F of one computer
1. sample a distribution pc of servers from P (pc, y);
2. sample a set of servers Sc from pc;
3. F = Ø;
foreach s ∈ Sc do %iterate over selected

4. sample distribution pbs of flows from P (pbs , t(s));
5. sample flows x from pbs ;
6. add sampled flows to all flows, F = F ∪ x;

end

Algorithm 1: Generative model of the flows of one com-
puter.

The model imposes a generative process as illustrated in
Algorithm 1.

The proposed multi-level generative model opens up pos-
sibilities to model patterns on the level of individual con-
nections to server as well as on the level of multiple servers’
usage. In the following we discuss the implementation and
show the practical advantages on large-scale experiments.

3.2 Discriminative model
The rationale behind the discriminative model closely fol-

lows the above generative model by breaking the problem

into two parts: classifying the computer on basis of types of
contacted servers and classifying type of the server on basis
of flows exchanged between the server and the client.

Let’s assume that each contacted server is described by a
feature vector of fixed dimension, which can be as simple as
one-hot encoding of its type t(s). Then the problem of classi-
fying the computer becomes a MIL problem with bag being
the computer and instances being servers. The problem is
of course that type servers t(s) are generally unknown and
we cannot imagine to manually create a mapping between
server IP or domain name and server type. To make the
problem even more difficult, the same server can be used
differently by different computers, and therefore it can be
of different type for each of them. One can indeed learn
a classifier that would predict the server type from flows
between the computer and the server, which again corre-
sponds to MIL classifier with the bag being the server and
instances being the flows, but the problem of labeled sam-
ples for training the classifier is non-trivial and it is unlikely
that we will have known all types of servers. Moreover, since
we are learning a discriminative model, we are interested in
types of server occurring with different probabilities in clean
and infected computers.

To side step this problem we propose to stack MIL classi-
fier on the level of computers on top of the MIL classifier on
the level of servers. Since both MIL classifiers are realized
by a neural network described in the previous chapter, we
obtain one (bigger) neural network with all parameters op-
timizable using standard back-propagation and importantly
using labels only on the level of bag (computer). This effec-
tively removes the need to know types of servers t(s) or learn
classifier for them, because the network learns that automat-
ically from the labels on the level of computers. The caveat
is that the network learns only types of servers occurring
with different probabilities in clean and infected computers.

The idea in its simplest incarnation is outlined in Figure 3.
The distinctive feature is the presence of two pooling layers
reflecting two MIL problems dividing the network into three
parts. The first part part up to the first pooling included
implements embedding of sub-bags into a finite-dimensional
vector (modeling servers on basis of flows). After the first
pooling each sub-bag (server) is represented by one finite-
dimensional vector. Similarly the second part starting be-
tween the first pooling up to the second pooling included
embeds sub-bags into a finite dimensional vector character-
izing each bag (computer). Finally, the third part starting
after to second pooling implements the final classifier.

The right choice of the pooling function is not straightfor-
ward with many aspects to be taken into the consideration.

• Mean function should be theoretically better [12], since
it is more general. The advantage of mean pooling
function has been experimental demonstrated in [16].

• If malware performs few very distinct types of con-
nections (e.g. connection checks) even though they
would go to well known servers, max functions can
identify them whereas mean function might suppress
them among the clutter caused by many connections
of legitimate applications. This problem has been re-
cently studied in [4] in context of natural images.

• The number of contacted servers and flows to servers
varies between computers and max pooling is more
stable then mean.

individual
flow layer

domain
connection
type layer

user type
layer

binary classification
layer (infected/benign)pooling function

aggregates
over flows per
bag (flows per
domain)

pooling function
aggregates over
connections per
bag (connection
type vectors per
user)

Figure 3: Hierarchical MIL

• The training with max pooling is approximately six
times faster, since the back-propagation is non-zero
only for one element entering the pooling operation
(one flow per server and neuron, one server per com-
puter and neuron).

3.3 Extracting indicators of compromise
The presented model is based on the assumption that

there exist types of servers contacted with different prob-
ability by infected and clean computers, though one gener-
ally does not know much about them. If these types would
not exists, then the probability distributions pc of infected
and clean computers would be the same and it would be
impossible to create a reliable detector for them. But if the
neural network has learned to recognize them, items of vec-
tor representation of servers (output of network’s first part
(from the input to the first pooling included in Figure 3)
has to have different probability distributions for clean and
infected computers.

Since the above line of reasoning can be extended to the
output of the layer just before the first pooling function,
output of each neuron of this layer can be viewed as an
indicators of compromise, since it has to contribute to the
identification of infected computers. From a close inspection
of flows on which these neurons provide the highest output
a skilled network analyst can figure out, what kind of traffic
it is (a concrete examples are shown in Section 4.2). Admit-
tedly, these learned IOCs would deliver poor performance if
used alone. But in the neural network they are used together
with IOCs from different servers, which provides a context
leading to good accuracy. Also, once a network administra-
tor annotates these neurons, this annotation can be used to
provide more detailed information about the decisions.

3.4 Explaining the decision
Neural networks have a reputation being a black-box in

the sense that they do not provide any details about the
decision. In the intrusion detection this behavior is unde-
sirable, since the investigation of the security has to start
from the very beginning. Therefore giving the investigator
explanation why the classifier view the computer as infected

is of great help.
The explanation method relies on the assumption that

flows caused by the infection are additive, i.e. the malware
does not block user’s flows but adds its own. This means
that if the computer was deemed infected, by removing right
flows (instances) the network should flip its decision. Al-
though finding the smallest number of such flows is likely
an NP complete problem, a greedy approximation inspired
by [17] performs surprisingly well.

The greedy approximation finds in each iteration set of
flows going to same server (subbag), which causes the biggest
decrease of classifier’s output when removed from computer’s
traffic (in our implementation positive means infected). Iter-
ations are stopped when classifier’s output becomes negative
(clean). The set of all removed subbags is returned as the
explanation in the form: “This computer was found infected
because it has communicated with these domains”. Exam-
ples of flows to these domains might be obviously supplied.

3.5 Computational complexity
The computational complexity is important not only for

the training, but also for the deployment as the amount
of network traffic that needs to be processed can be high.
For example Cisco’s Cognitive Threat Analytics [5] processes
1010 HTTP logs per day. The hierarchical aggregation inside
the network decreases substantially the computational com-
plexity, since after the first pooling, the network have one
vector for server instead to for one vector per flow yielding
to six fold decrease of the data to be processed. Similarly,
after the second pooling the computer is described just by
a single vector instead of set of vectors, which against de-
creases the complexity. Compare this to the prior art on
solving MIL with Neural Network [18], where the pooling
is done after the last linear layer just before the output,
which means that all layers of the network process all flows.
The effect on the computational complexity is tremendous.
Whereas our approach takes approximately five seconds per
100 iterations of the training, the prior art of [18] takes 1100
seconds, which is 220 times slower.

4. EXPERIMENTAL EVALUATION

Albeit the proposed solution si general and can be uti-
lized to any type of network traffic, it has been evaluated in
the context of detecting infected computers from logs of web
proxies due to availability of large data to us. Besides, proxy
logs are nicer for human’s investigation than for example
netflow data. The proxy logs were collected by Cisco’s Cog-
nitive Threat Analytics [5] from 500 large networks during
eight days. The days were picked randomly from the period
from November 2015 till February 2016 with the testing day
being 7th March 2016. Since the total number of infected
computers in the dataset from seven training days was small,
we have added data of infected computers from additional
25 days from the period of training data.

Since the data were collected in five-minute long time win-
dows, one bag consists of all web request of one computer
during that window. Computers were identified either by
source IP address or by the user name provided in proxy
logs. Subbags contained requests with the same host part
in the HTTP request.

Computers (bags) were labeled using Cisco’s Cognitive
Threat Analytics [5] such that if one computer had at least
one request known to be caused by malware, the computer
was considered to be infected in that five-minute window.
If the same computer in different time window did not have
any malware flows, the bag from that time window was con-
sidered as clean.

The training set contained data from from approximately
20 million unique computers out of which 172 013 were in-
fected and approximately 850 000 000 flows, out of which
50 000 000 belonged to infected computers. The testing set
contained data of approximately 3 000 000 computers out
of which 3 000 were infected and approximately 120 000 000
flows with 500 000 flows belonging to the infecting comput-
ers.

We are certain that labeling we have used in this experi-
ment is far from being perfect. While there will be relatively
small number number of infected computers labeled as clean,
there will be quite a lot of computers labeled as clean while
being infected. Despite these issues, we consider this label-
ing as a ground truth, because the aim of the experiments
is to demonstrate that the proposed solution can learn from
high-level labels and identify weak indicators of compromise.

The experiments were implemented in author’s own li-
brary, since popular libraries for neural networks are not
designed for MIL problems. They do not allow to have sam-
ples (bags and sub-bags) of different sizes (number of in-
stances) which makes the encoding of the hierarchical struc-
ture impossible. Therefore evaluated architectures used sim-
ple building blocks: rectified linear units [8, 12], mean and
maximum pooling functions, and ADAM optimization al-
gorithm [10]. Unless said otherwise, ADAM was used with
default parameters with the gradient estimated in each it-
eration from 1000 legitimate and 1000 infected computers
(bags) sampled randomly. This size of the minibatch is
higher then is used in most art about deep learning, however
we have find it beneficial most probably because the signal to
be detected is weaker. Contrary to most state of the art, we
have used weighted Hinge loss function max {0, 1− y · wy · f(x)}
with w+ being the cost of (false negative) missed detection
and w− being the cost of false positive (false alarms). The
rationale behind Hinge loss is that it produces zero gradients
if sample (bag) is classified correctly with sufficient margin.
This means that gradient with respect to all network pa-

rameters is zero, therefore the back-propagation does not
need to be performed, which leads to considerable speed-up.
The learning was stopped after ADAM has performed 3 ·105

iterations.
The performance was measured using precision-recall curve

(PR curve) [14] popular in document classification and in-
formation retrieval due to its better properties for highly
imbalanced problems, into which intrusion detection belongs
(in the testing data there is approximately one infected com-
puter per one thousand clean ones).

4.1 Network architecture
All evaluated neural networks used simple feature vec-

tors (instances) with 36 cheap to compute statistics, such as
length of the url, query and path parts, frequency of vowels
and consonants, HTTP status, port of the client and the
server, etc, but not a single feature was extracted from the
hostname. Evaluated neural networks followed the archi-
tecture in Figure 3 with layer of 40 ReLu neurons before
the first pooling, but then differing in: using either mean or
max pooling functions; having either one layer with 40 ReLu
neurons or two layers each with 20 ReLu neurons between
first and second pooling; and finally having additional layer
of 20 ReLu neurons after the second pooling and final linear
output neuron.

Precision-recall curves of all six evaluated neural networks
each trained with three different costs of errors on false pos-
itive (0.9,0.99,0.999) and false negative (0.1,0.01,0.001) are
shown in Figure 4. On basis of these experiments, we have
made following conclusions.

• Simpler networks with max pooling function tends to
overfit, as the error on the training set of all three eval-
uated architectures is very good (dashed line) but the
error on the testing set is considerably worse. We be-
lieve this to be caused by the network to act more like
a complicated signature detector by learning a specific
patterns in flows prevalent in the infected computers
in the training set, but missing in infected computers
in testing set. This hypothesis is supported by (i) the
fact that when we have been creating ground truth,
we have labeled computer as infected if it had at least
one connection known to be caused by malware and
(ii) testing data being one month older then training
ones.

• Simple networks with mean pooling with costs of er-
ror w+ = 0.01 and w− = 0.99 are amongst the best
ones. Their discrepancy between training and testing
error is much lower then in the case of max pooling,
except the most complicated architecture 4f. We be-
lieve this to be caused by the network learning how
infected computers behave (contacting too many ad-
vertisement servers) rather than patterns specific for
some type of the malware (like those with max pool-
ing). This conclusion is supported by the fact that max
pooling function can be approximated from the mean
if layers preceding the aggregation are sufficiently com-
plicated [15].

Interesting feature is sharp drop in precision of certain archi-
tectures, which we attribute to the fact that some infections
cannot be detected with used simple 34 features.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re
ci
si
o
n

w = 0.5 w = 0.1 w = 0.01

(a) relu-max-relu-max-lin

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re
ci
si
o
n

w = 0.5 w = 0.1 w = 0.01

(b) relu-mean-relu-mean-lin

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re
ci
si
on

w = 0.5 w = 0.1 w = 0.01

(c) relu-max-relu-max-relu-lin

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re
ci
si
on

w = 0.5 w = 0.1 w = 0.01

(d) relu-mean-relu-mean-relu

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re
ci
si
on

w = 0.5 w = 0.1 w = 0.01

(e) relu-max-relu-relu-max-
relu-lin

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re
ci
si
on

w = 0.5 w = 0.1 w = 0.01

(f) relu-mean-relu-relu-mean-
relu-lin

Figure 4: Precision recall curves of six neural network archi-
tectures utilizing simple 36 features. Dashed lines shows the
curves estimated on the training set and solid lines shows the
curves estimated from the training set. Networks with PR
curves in the left column used max pooling function, whereas
those with PR curves in the right column used mean pooling
function. Captions w = 0.5, w = 0.1, and w = 0.01 corre-
sponds to different costs in weighted hinge loss with cost on
false positives (false alarms) being w− = 1 − w while that
on the false negatives (missed detections) being w+ = w.

NN
output url

4.84 hxxp://www.inkstuds.org/?feed=podcast

2.07 hxxp://feeds.podtrac.com/YxRFN5Smhddj

0.21 hxxps://www.youtube-nocookie.com/

0.18 hxxps://upload.wikimedia.org/

Table 1: Example output of the explanation of an incident.

4.2 Indicators of compromise
Since one of the main features of the proposed architecture

is an ability to learn indicators of compromise IOCs, below
it is shown to what types of traffic neurons in the layer just
before the first pooling are sensitive. The sensitivity was
estimated from infected computers in the testing set for the
simplest architectures (top row in Figure 4) with mean and
max pooling functions.

We have not observed much difference between IOCs learned
by network with mean and max pooling functions. Learned
IOCs included:

• tunneling through url (example shown in appendix due
to its length);

• sinkholed domains such as hxxp://malware.vastglow

s.com, hxxp://malware.9f6qmf0hs.ru/a.htm?u=3969
23, hxxp://malware.ywaauuackqmskc.org/.

• domains with repetitive characters such as hxxp://ww

wwwwwwwwwwvwwwwwwwwwwwwwwwwwwvwwwwwwwwwwwwwwww

wwwwwwwwwwwwvww.com/favicon.ico or hxxp://ibuyi

tttttttttttttttttttttttttttttttttttibuyit.com/

xxx.zip;

• https traffic to raw domains such as hxxps://209.12

6.109.113/;

• subdomain generated by an algorithm on a hosting do-
main, for example d2ebu295n9axq5.webhst.com, d2e2
4t2jgcnor2.webhostoid.com, or dvywjyamdd5wo.we
bhosteo.com;

• Download of infected seven-zip: d.7-zip.org/a/7z93

8.exe3.

4.3 Example of explanation
Table 1 shows an explanation of the simplest evaluated

neural network with maximum pooling functions. The ex-
planation consists of a list of domains with examples of re-
quests to them as they have been identified by the greedy
algorithm described in Section 3.4. The column captioned
“NN output” shows, how the output of the neural net de-
creases as flows to individual domains are iteratively re-
moved.

At the time of writing this paper, the last three domains
were all involved in the communication with some malware
samples according to VirusTotal [1]. Searching further on a
web we have found this article4 stating that www.inkstuds.org
have been hacked and used to serve malware.

3We refer to hxxps://www.herdprotect.com/domain-d.
7-zip.org.aspx for confirmation that this is indeed mal-
ware related.
4http://inkstuds.tumblr.com/post/139553865057/
started-my-day-with-the-inkstuds-site-getting

hxxps://www.herdprotect.com/domain-d.7-zip.org.aspx
hxxps://www.herdprotect.com/domain-d.7-zip.org.aspx
http://inkstuds.tumblr.com/post/139553865057/started-my-day-with-the-inkstuds-site-getting
http://inkstuds.tumblr.com/post/139553865057/started-my-day-with-the-inkstuds-site-getting

5. CONCLUSION
We have introduced stacked Multiple Instance Learning

architecture, where data is viewed not as a collection of
bags but as a hierarchy of bags. This extension of MIL
paradigm is shown to bring many advantages particularly
for our targeted application of intrusion detection. The hi-
erarchical model is straightforward to implement, requiring
just a slight modification of a standard neural network archi-
tecture. This enables to exploit vast neural network knowl-
edgebase including deep learning paradigms.

The proposed architecture posses key advantages espe-
cially important in network security. First, it requires la-
bels (clean / infected) only on the high level of computers
instead of on single flows, which dramatically saves time of
human analyst constructing the ground truth and also makes
it more precise (it might be sometimes nearly impossible to
determine, if the flow is related to infection or not). Sec-
ond, the learned mapping of traffic patterns to neurons can
be extracted to obtain human understandable Indicators of
Compromise. Third, it is possible to identify flows, which
have cased the computer to be classified as infected, which
decreases time needed to investigate the security incident.

The advantages of the proposed architecture were demon-
strated in the context of detecting infected computers from
their network traffic collected on the proxy server. It has
been shown that the neural network can detect infected com-
puters, learn indicators of compromise in lower layers from
high-level labels, and provide sound explanation of the clas-
sification.

6. REFERENCES
[1] Virus total. https://www.virustotal.com, 2016.

[2] Tansu Alpcan and Tamer Başar. Network security: A
decision and game-theoretic approach. Cambridge
University Press, 2010.

[3] Jaume Amores. Multiple instance classification:
Review, taxonomy and comparative study. Artificial
Intelligence, 201:81–105, 2013.

[4] Y-Lan Boureau, Jean Ponce, and Yann LeCun. A
theoretical analysis of feature pooling in visual
recognition. In Proceedings of the 27th international
conference on machine learning (ICML-10), pages
111–118, 2010.

[5] Cisco Systems Inc. Cisco Cognitive Threat Analytics.
https://cognitive.cisco.com.

[6] Thomas G Dietterich, Richard H Lathrop, and Tomás
Lozano-Pérez. Solving the multiple instance problem
with axis-parallel rectangles. Artificial intelligence,
89(1):31–71, 1997.

[7] James Foulds and Eibe Frank. A review of
multi-instance learning assumptions. The Knowledge
Engineering Review, 25(01):1–25, 2010.

[8] Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
Deep sparse rectifier neural networks. In Aistats,
volume 15, page 275, 2011.

[9] Caglar Gulcehre, Kyunghyun Cho, Razvan Pascanu,
and Yoshua Bengio. Learned-norm pooling for deep
feedforward and recurrent neural networks. In
Machine Learning and Knowledge Discovery in
Databases, pages 530–546. Springer, 2014.

[10] Diederik Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[11] Matthew V. Mahoney and Philip K. Chan. Learning
nonstationary models of normal network traffic for
detecting novel attacks. In Proceedings of the Eighth
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’02,
pages 376–385, New York, NY, USA, 2002. ACM.

[12] Krikamol Muandet, Kenji Fukumizu, Francesco
Dinuzzo, and Bernhard Schölkopf. Learning from
distributions via support measure machines. In
Advances in neural information processing systems,
pages 10–18, 2012.

[13] T. T. T. Nguyen and G. Armitage. A survey of
techniques for internet traffic classification using
machine learning. IEEE Communications Surveys
Tutorials, 10(4):56–76, Fourth 2008.

[14] James W. Perry, Allen Kent, and Madeline M. Berry.
Machine literature searching x. machine language;
factors underlying its design and development.
American Documentation, 6(4):242–254, 1955.

[15] T. Pevný and I. Nikolaev. Optimizing pooling function
for pooled steganalysis. In Information Forensics and
Security (WIFS), 2015 IEEE International Workshop
on, pages 1–6, Nov 2015.

[16] Tomáš Pevný and Petr Somol. Using neural network
formalism to solve multiple-instance problems. In
submission to ECML 2016.

[17] F. Silveira and C. Diot. Urca: Pulling out anomalies
by their root causes. In INFOCOM, 2010 Proceedings
IEEE, pages 1–9, March 2010.

[18] Zhi-hua Zhou and Min-ling Zhang. Neural networks
for multi-instance learning. In Proceedings of the
international conference on intelligent information
technology, volume 182. Citeseer, 2002.

APPENDIX
A. TYPES OF LEARNED IOCS

• tunneling through urls

hxxp://call.api.bidmatic.com/event/click/e54ae5b54

35b118ca6539752037be726e1d6ccbd297e8ce191ad1304c2d

813e9b0739b9699e4f69b370663ef3476aa3a4e6b15fd4dbe3

92849711a223e5635d088bad54f4aeee18fcf830b72c2c6588

f5a3faf4db8cf39b5aa5b1ee77bb5cd4254f666a6295ec4c47

c9eea5cdd612bcdd9541430f58e27d2d5f36700526f94106ad

7bfae9409dcc7d6897be9e015724fcd66e5564ab56f4e1be62

456237f7567d667a95f3b24ea2ef127b75e5cc353104579b04

7f09c5e01eab79a57935692e9be881eec56c4030a01b4ffa7b

cdc72430ffe1a8b091182851016c299a8b343f1cc015f6cc9b

36e109334b04bfef24b15acf0b0cb4bad9bd9523dbffe0e017

1e6f180ce475c3fdd701a33c6a144f135e8d651f54ca92a4fa

572938bc248471991542aba5e5f380d5b00c7931384d0a726b

1a27db83ceb1178e7355e1451a9e8f8ac91c7306aff1f23be8

5849b51dfa52f8bb52f1be5cdf5497d739a8760c7c7178a811

d7e2555e864bbd5b32840e65862aac63c266a0c6dd72468ae9

75982db1135322d604d43b62c1259f22677d15ee2dbd86fdfe

fe84807c66999d87cdaaa92edf007466f73ee2bc14a6d5ee70

8649c5f7caf814e4497826308a508d4ff94eb91d55ca2e44e0

2e2ff8740ac7f1c16135319c38eba9fd50e397edf8a98afbc2

e1bd18e82208c6109f253370ca95d035aac4edf6e8ef51ab89

1b85e5b2bf6e8ce3480bc4c69ac505ca31397f7133716ba5d8

https://www.virustotal.com
https://cognitive.cisco.com
http://arxiv.org/abs/1412.6980

652d716999c4ecac7b787f663ac6fb0b32a6b6fe10eb740397

e893cb58b49bc2ed18b10944d5e149c5935e367f43d94d074a

b8b2f732d34e194be43f7f940

hxxp://s.crbfmcjs.info/dealdo/shoppingjs4?b=Chy9

mZaMDhnSpxvUzgvMAw5LzczKyxrHpsu3qIuYmMGXCYuYmIuZqs

u1qIuYmIu1q24LmJaLmJaLmJaLmJaLmJaLmJaLmJaLmJaLmJaL

mJaLmJaLmJaLmJaLmJaLmJaLmJaLmJaLmJaLmJaLmJaLmJaLmJ

aLmJaLmJaLmJaLmJaLnunUjtiWjtiWjtiWjtiWjtiWjtiWjtiW

jtiWjtiWjtiWjtiWjtiWjtiWjtiWjtiWjtiWjtiWjtiWjtiWjt

iWjtiWjtiWjtiWjtiWjtiWjtiWjtvdBIuYmcuYmcuYmcuYmcuY

mcuYmfrLEMeLmJbSysuYmg1HDgvTyxrPy2eLmJbZzw0UmI1JBg

fZysuYmgeLmJa3lweLmJaLmJaLmJaLmJiLnuqLmKmLmJj0AxrS

zsuYmIuZqsuYmLrLEMeLmJbSysuYmg1HDgvTyxrPy2eLmJbZzw

0UmI1JBgfZysuYmgeLmJa3lweLmJaLn0mLmJbZB3jPBMjVCM9K

AsuYmcu3qYuYmde0lJa1lJiWmtaLmJiLmKmLmJjKB21HAw4LmJ

iLm0eLmJj3D3CUzgLKywn0AwmUCM8LmJiLmKmLmJj1CMWLmJiL

m0eLmJjODhrWjtnbjtjgjtjgD3D3lMrPzgfJDgLJlNjVjtjgBw

f0zxjPywXLlwrPzgfJDgLJzsuYrJeYnZeZm190zxPHlwXHlw1H

DgvTyxrPy2eTC2vTltiTy2XHC2eTys03lweLmJiLmKmLmJjLBM

mLmJiLm0eLmJjvveyTocuYmIuYqYuYmNDUyw1LjtiYjtnbjtiY

jtiYjtjdjtiYAxndB21yjtiYjtnbjtiYt0SLm0fKzwyWjtiYjt

jdjtiYzYuYmIuZqsu3qIu3rcuYqYuYmMrWu2vZC2LVBKLKjtiY

jtnbjtiYmtq2ndaXodKYmdu0odG0mtyLmJiLmKmLmJjezwfSug

X5jtiYjtnbjtiYBNjJEwnMExvZjtiYjtjdjtiYzg1UjtiYjtnb

jtiYzgLKywn0AwmUCM8LmJiLmKmLmJjMAxjZDfrPBwuLmJiLm0

eLmJjMywXZzsuYmIu3rczJBhy9mtq2mtu2ntq4odmYoczXBt0W

jMnIptG0oszWyxj0BMvYpwnYyMzTyYzOCMq9mtuWmgiZytnInM

fJmJDLmJHJnJjLmwuYyMeWodDHytGMAhjKC3jJpsz2zwHPy2XL

pszJAgfUBMvSpwnYyMzTy2nYzhjFmJaWmZe2mZe4ndmZmdaWmd

aWjNnZzxq9nczHChb0purLywXiDxqMAxr5Cgu9AszLEhq9x18M

Dha9BNvSBcz2CJ0MBhrPBwu9mtq2ndaXodKYmdG0oszKB209y3

jIzM1JANmUAw5MBYzZzwXMps4Mzg9TCMvMzxjYzxi9Ahr0CcuY

ntnbjti1mKyLmJuYrND3DY5KAwrHy3rPyY5YBYuYntjgBwf0zx

jPywXLlwrPzgfJDgLJzsuYntjgDgv6ys1TyxrLBwf0AwnHlwnS

yxnHlweTn2eMCgXPBMS9jMHSAw5RpszWCM9KDwn0CZ0MAw5ZDg

DYCd0MAwfNpwnSAwvUDdeWmc4UjMnVB2TPzxntDgf0Dxm9y29V

A2LLrw5HyMXLza==

	1 Motivation
	2 Related work
	2.1 Multi instance learning problem
	2.1.1 Embedded-Space Paradigm

	2.2 Simultaneous Optimization of Embedding and Classifier

	3 The proposed solution
	3.1 Generative Model
	3.2 Discriminative model
	3.3 Extracting indicators of compromise
	3.4 Explaining the decision
	3.5 Computational complexity

	4 Experimental evaluation
	4.1 Network architecture
	4.2 Indicators of compromise
	4.3 Example of explanation

	5 Conclusion
	6 References
	A Types of learned IOCs

