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Abstract

The contribution presents a model of a random walk with varying transition probabil-
ities implicitly depending on the entire history of the walk, which is an improvement of
a model with varying step sizes. The transition probabilities are altered according to the
last step of the walker using a memory parameter to either reward or punish success by
increasing or decreasing its probability in the next step. This walk is applied to model
Grand Slam tennis matches and fitted on their entire history since 2009. The suitability
of the model is thoroughly tested on a number of real datasets. The model seems to be
robust and describe well the majority of matches, making it an useful tool to produce
precise in-play odds.

1 Introduction

Tennis is one of the most popular sports both on professional and amateur level. Millions of
people pursue tennis as their leisure time activity [3] and same numbers hold also for the people
following and watching the professional tennis competitions. Tennis also plays a major role in
the sports betting industry, which grows rapidly and becomes more and more important part
of the global economy. In the Czech Republic only, the total sales in sports betting industry
reached CZK 64.5 billion (2.9 billion USD) in 2017, representing 1.3% of Czech GDP [8]. The
immense size of the betting market attracts also many fraudsters. The European Sports Security
Association regularly reports on suspicious betting activities, the latest report (2018) contained
267 cases of such activity, 178 (67%) in tennis [1]. It is thus obvious that a precise model
describing the game of tennis has many possible uses in real life.

Tennis is also a sport more than suitable to be modeled using random walks or random
processes in general, as it naturally consists of many such processes. A series of tennis matches
is a random walk, the sequence of sets within a match, games within a set, points within a
game or even strokes within a point can be all considered a random process and modeled using
a random walk. Additionally, these walks are well described by the tennis rules and there exist
lots of data describing these random processes (i.e. various tennis result databases provided
by the tennis federation as well as many private subjects). In this paper, the random walk
consisting of a sequence of sets within a match is studied. Matches played as a best-of-five, i.e.
the men Grand Slam tournaments, are considered in this paper. In these matches, up to 5 steps
of the random walk can be observed, making them more suitable than the best-of-three games,
where maximum 3 steps can occur.

The matches are modeled using a new type of a recently introduced random walk with
varying probabilities [6], which is a modification of a random walk with varying step size
introduced by Turban [9]. It seems more than suitable to model tennis matches as the data
suggest that a success in tennis yields another success, or in other words, that winning one
particular part of the match increases the chances of winning the next part as well. This
behavior is well described by the new random walk model.
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The paper is organized as follows. Next chapter introduces the new type of random walk
used for tennis modeling. Section 3 provides general description of the data used, Section 4
shows how to obtain starting probabilities. In Chapter 5 the actual model is described and its
performance is evaluated. Section 6 concludes this paper.

2 Random walk with varying probability

In 2010, Turban described [9] a new version of a random walk with memory, where the memory
is introduced using variable step size. This idea was further extended by Kouřim [6, 7] and an
alternative version of a random walk with memory was introduced, where the memory affects
the walk through varying transition probabilities.

The walk evolves in a following way. Initial step is made following the result of a Bernoulli
random variable with starting probability parameter p0, that is,

P (X1 = “right”) = p0.

From the second step on, the transition probability in the t− th step is given by

Xt−1 = “right” =⇒ P (Xt = “right”) = λpt−1

Xt−1 = “left” =⇒ P (Xt = “right”) = 1− λ(1− pt−1)

for some λ ∈ (0, 1). When the directions are formalized so that “right” ≈ 1 and “left” ≈ −1,
the formula for the t− th transition probability can be rewritten as

pt = λpt−1 +
1

2
(1− λ)(1−Xt). (1)

This definition of a random walk means that the opposite direction is always preferred and
that the walk tends to return back to the origin. Alternatively, inverse approach can be applied
and the same decision can be supported. Formally, the expression for the t − th transition
probability is then

pt = λpt−1 +
1

2
(1− λ)(1 +Xt). (2)

For more details on the walk and its rigorous definition, see the original papers [6, 7].

3 Data description

For the purpose of this study, a database containing the results from all Grand Slam tourna-
ments from 2009 to 2018 and corresponding Pinnacle Sports bookmaker’s odds1 was created
based on the information publicly available from website www.oddsportal.com. There are 4
Grand Slam2 tournaments each year, 40 tournaments together. Each Grand Slam has 128 par-
ticipants playing in a single-elimination system (i.e. 127 games per tournament), making it a
set of 5080 games together. However, the games where either one of the players retired were
omitted from the dataset and so were the matches where no bookmaker’s odds were available.
Together there were 4255 matches with complete data available, presenting total 432 players.

1This bookmaker is considered leading in the sports betting industry.
2Australian Open, French Open, The Wimbledon and US Open.
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The most active player was Novak Djokovic, who participated in 188 matches. On average, each
player played 19.7 matches, with the median value of 8 matches played. The most common
result was 3:0, occurring 2138 times, on the other hand, 5 sets were played only 808 times.

The order in which the players are listed is rather random. The first listed players3 won
2201 in total, just slightly over the half. On the other hand, if the bookmaker’s favorite (i.e.
the player with better odds or the first listed player in case the odds are even) is considered,
the situation changes significantly. The favorites won 3307 matches in total, mostly 3:0, and
lost 311 times 0:3, 347 times 1:3 and 290 times 2:3. It suggests that bookmaker’s odds can be
used as a probability estimate, which is in accordance with previous results, for example [5].

4 Initial probability derivation

The model of a random walk with varying probabilities described in Section 2 takes two pa-
rameters, initial set winning probability p0 and the memory coefficient λ. Finding the optimal
value of λ is the main subject of this paper and is described in Section 5.

Estimating the initial set winning probability is a major task by itself and represents one of
the elementary problems in tennis modeling. For the purpose of this article an estimation based
on bookmaker’s odds will be used. Specifically, the closing odds4 by Pinnacle Sports bookmaker
for the first set result are used to estimate the probabilities of each player winning the first set,
i.e. p0 and 1−p0. Such odds represent a good estimation of the underlying winning probability
and are considered as a baseline in the sports betting industry. The odds, however, have to be
transformed into probabilities. A method described in [4] is used to obtain probabilities, using
a parameter t ∈ [0, 1] set to the value t = 0.5. Obtained first set winning probabilities are then
used as a given starting probability p0 in the random walk.

5 Model description and evaluation

5.1 Model description

Original inspiration of the random walk described in Section 2 is based on intensive study
of historical sport results and their development. The data suggest that the probability of
success (i.e. scoring, winning a set or a point etc.) evolves according to the random walk with
varying probabilities. Moreover, it follows from the data that sports can be very roughly divided
into two categories. Sports played for a certain amount of time, such as soccer or ice-hockey,
evolve according to the walk defined by expression 1. On the other hand, sports where there is
necessary to achieve certain number of points, such as tennis or volleyball, appear to follow the
pattern defined in equation 2. Therefore the later approach is used to model a tennis game.

The model is used to predict the winning probabilities of sets 2 through 5 and is constructed
in a following manner. For each match, the first set winning probability of Player A5, p0, is
given (see Section 4) and a coefficient λ is fixed for the entire dataset. In order to compute the
second set winning probability6, the result of the first set is observed and second set winning

3Such player/team would be normally considered as “home”, however, as there are (usually) no home players
on the international tournaments, the order is based on the www.oddsportal.com data and/or the respective
tournament committees.

4Closing odds means the last odds available before the match started.
5The player which is listed first in the database, see Section 3 for details.
6Winning probability of Player A is always considered as Player B winning probability is just the complement.
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Year Optimal lambda

2010 0.8074
2011 0.8497
2012 0.8142
2013 0.9162
2014 0.8523
2015 0.8429
2016 0.8920
2017 0.8674
2018 0.8333

Table 1: Optimal values of the coefficient λ for respective years.

probability is computed using equation 2. This procedure is repeated for all remaining sets
played.7

5.2 Model evaluation

In order to verify the model’s accuracy, several tests were performed. First, the dataset was
divided into training and testing sets. The division can be done naturally by the order of games
played. Given a specific time, past matches constitute to a training set, future matches to a
testing set. For the purpose of this paper, the split was done on a yearly basis, the data from
one previous tennis season were used as a training set to predict winning probabilities in the
following season, considered the testing set (i.e. 2010 was the first season used as testing data,
2017 was the last season used as training data), making it 9 training/testing splits together.
Another approach to dataset splitting is to consider data from all previous years as testing data
and from one future year as training data, however, previous study shows that the difference
between these two approaches is negligible [5].

Next step in model verification is the estimation of parameter λ. Training sets and maximal-
likelihood estimates were used for this task. The likelihood function is defined as

L =

Ntrain∏

i=1

(xipi + (1− xi)(1− pi)),

where Ntrain is the number of sets 2 thru 5 played in the training dataset, pi is Player A’s
winning probability in the i − th set obtained using equation 2 for each match, and xi is the
result of the i−th set, xi = 1 if Player A won the i−th set, xi = 0 otherwise. For computational
reasons the log-likelihood Ll = log(L) was used, i.e. the function

Ll =

Ntrain∑

i=1

log(xipi + (1− xi)(1− pi))

was maximized. Numerical methods implemented in Python library SciPy were used to obtain
specific values of λ. The optimal values of the coefficient λ can be seen in Table 1.

Finally, the model was used to predict set winning probabilities of the unseen data from
the training set using initial bookmaker derived odds, equation 2 and memory parameter λ

7There can be either 3, 4 or 5 sets played in total in a best-of-five tennis game.

4

MathSport International 2019 Conference Proceedings

223



Random Walks in Tennis Modeling Tomáš Kouřim

obtained from the corresponding training set. In order to verify the quality of the model,
the average theoretical set winning probability of Player A p̂ = 1

n

∑Ntest

i=1 pi and its variance

σ̂2 = 1
n

∑Ntest

i=1 pi(1 − pi) were computed and so was the observed Player A winning ratio

x̄ = 1
n

∑Ntest

i=1 xi. Using the Lyapunov variant of Central Limit Theorem [2], the resulting
random variable y follows the standard normal distribution

y =

√
Ntest(x̄− p̂)

σ̂
∼ N (0, 1).

Then ow to verify the model accuracy, the the null hypothesis that the true average Player A set
winning probability p̄ equals p̂ against the alternative hypothesis p̄ �= p̂ was tested. Formally,

H0 : p̄ = p̂

H1 : p̄ �= p̂.

One of the assumptions of the CLT is that the observed random variables are independent.
This is obviously not true in the case when Ntest contains all sets from the testing data. Quite
the opposite, the model assumes that the winning probability of a set directly depends on the
winning probability of the previous set. This can be easily solved by splitting the testing dataset
into 4 subsets containing only results from single set of each match, i.e. sets 2, 3, 4 and 5 (if
they were played). The matches can be considered independent from each other and so can be
the i− th sets of respective matches.

Using this approach, there are 36 testing sets8 together. On a 95% confidence level, only on
2 out of the 36 available subsets provide strong enough evidence to reject the null hypothesis.
On the other hand, the null hypothesis is relatively weak. It only says that the prediction is
correct on average. In order to verify the quality of the predictions, more detailed tests have to
be created. This can be done primarily by testing the null hypothesis on many subsets created
according to some real life based criteria. The natural way how to create such subsets is dividing
the matches to the 4 different tournaments. This refining yields 180 subsets9 altogether. Using
95% confidence level, only 6 of the 180 subsets have data strong enough to reject the null
hypothesis. It is worth mentioning that the size of some of the datasets regarding fifth sets is
only slightly above 20 observations, which can interfere with the assumptions justifying the use
of Central Limit Theorem.

To further analyze the robustness of the model it is important to realize the structure of the
data. So far, the player, whose winning probability was estimated, was chosen arbitrarily based
on some external (more or less random) order. As such, the observed winning probability in
every subset equals approximately to 1

2 , see further Section 3. In such a dataset it is not very
difficult to estimate the average winning probability. The situation changes if the bookmaker’s
favorite is considered for predictions (more details on who is the favorite and how to choose him
in Section 3). Performing the same tests as described in the previous paragraph the data allows
to reject the null hypothesis (at 95% confidence level) on 5 subsets containing all tournaments
and 8 single tournament subsets (out of 180 subsets total).

Finally, the testing data can be divided into groups using the initial probability p0. Such a
division is based on an assumption that the matches with similar bookmaker odds should have
similar development. The matches are divided into 5 groups, each containing 10 percentage
points in first set winning probability. Except for the biggest favorites (with first set winning
probability over 90%), this division seems reasonable. The data histogram can be seen on Figure

8Up to 4 sets considered in each match, 9 yearly testing datasets.
94 sets in each match evaluated, 4+1 tournaments every year, 9 years for testing.
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Figure 1: First set winning probability p0 histogram.

1. Out of the 18010 newly created odds-based subgroups, only 9 have data strong enough to
reject H0 on a 95% confidence level. The entire results of the hypothesis testing (the p-values
of respective tests) can be seen on Figure 2.

Overall, the model was tested on 360 different subsets and only 22 of them (6.1%) provided
enough evidence to reject H0 on 95% confidence level. These subsets are distributed randomly
and there is no pattern among them, indicating there is no systematic bias in the model. The
random walk with varying probabilities thus seems to be a robust model which can be used to
precisely predict set winning probabilities in men tennis Grand Slam matches.

6 Conclusion

This paper describes the random walk with varying probabilities and its application on Grand
Slam tennis data. A model describing the development of a single match is introduced and
tested on a dataset containing all matches from seasons 2009-2018. The results show that the
model is robust and performs well on the absolute majority of reasonable data subsets. This
suggest that the model could be used as a tool to generate precise in-play odds during the

10Further division, i.e. by tournament and odds, was not performed as the resulting datasets would not
contain enough data.
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Figure 2: p-values of hypothesis tests for different testing sets. Red are marked those allowing
to reject H0 on 99% confidence level, orange on 95% and yellow on 90% confidence level.
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matches or to directly compete against the odds currently provided by the bookmakers.

7 Remarks

The source code containing all functionality mentioned in this article is freely available as open
source at GitHub11 together with a database containing all data that was used in this paper.
Some results can be also obtained from the same repository.
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[8] Ministry of Finance of the Czech Republic. Hazard games overview for 2017.
https://www.mfcr.cz/cs/soukromy-sektor/hazardni-hry/archiv-zakon-c-202-1990-sb/vysledky-z-
provozovani/2017/hodnoceni-vysledku-provozovani-loterii-2016-32211, 2018. Accessed: 2019-01-23.
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