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1. Introduction
Let us consider a Stratonovich stochastic differential equation
dX = b(X) dt + o(X)odW, X(0)=¢ (1.1)

where b : R? — Rd, o:RY = RY@R"™, Wis an R™-valued Wiener process and & € R4,
In the seminal paper [1] it was shown that if Y denotes the path space C([0, T]; RY)
then

Y
the support of the law of X in the path space Y = {x*:w € L2(0, T;R™)}  (1.2)

provided that b is bounded and Lipschitz continuous, ¢ is C*-smooth and ¢, ¢’ and ¢”
are bounded, where by x" the solution to the ordinary differential equation

X =b(x)+a(x)w, x(0)=¢ (1.3)

is denoted.

If Equation (1.2) is established in a path space Y smaller and finer than C([0, T]; R?)
then one gets more precise information about the law of the solution of Equation (1.1);
a considerable attention has been paid to this problem as well as to weakening hypothe-
ses on b and o. Before we provide an overview of known results, we mention that the
same characterization was proved for stochastic equations driven by little more general
semimartingales S of the form dS = Adt + QdW where W is a Wiener process and the
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Table 1. Survey.

Year Ref. Drift term b Diffusion term o State space Global existence
1972 [1] Bounded Lipschitz Cé C Implied
1985 [3] Not present Cg C Implied
1986 [4] G G C Implied
1990 [2] Lipschitz Lipschitz & C* C Implied
1994 8] Bounded Lipschitz & € g nee c/2- Implied
1994 [14] Bounded Lipschitz Cé C“/Z)T/Z Implied
1994  [13] Lipschitz c Byl Implied
1995 ) Locally mononotone Linear growth & "' (By/Z M Clrioar)= Implied
Semimononotone
Continuous
2018 Locally mononotone M (BY2)" Assumed

Here C(1/2~ means C* for some «<1/2 and the symbol (Z)
embedded in Y compactly.”

stands for “for every Banach space Y such that Z is

processes A, Q and Q! are typically bounded, see e.g. [2-4] for precise assumptions,
and we also refer the reader to [5] for support theorems for stochastic equations driven
by general Gaussian and Markov processes, approached via the rough paths theory.

In the table below and the comments following it, we list results on the support of
the law of the solution to Equation (1.1) from [1-14]. First we have to introduce the
function spaces used in these works, although we do not need most of them in the
sequel, to have the possibility to compare the results. We will denote by C* the space of
k-times differentiable functions, by C the space of continuous bounded k-times differ-
entiable functions such that all derivatives up to the order k are continuous and
bounded, by C** the space of k-times differentiable functions such that k"-derivatives
are locally a-Holder continuous and by Clg"“ the space of continuous bounded k-times
differentiable functions such that all derivatives up to the order k are continuous and
bounded and the k”-derivatives are globally a-Holder continuous. If / is a continuous
positive function on some interval (0,¢] such that h(0+) = 0, the generalized Holder
space C" corresponding to the modulus of continuity /, with the norm

f()=f(s)]

I llen(o.17ime) = sup F(1)] + L ) (1.4)
will be considered. In particular, if h(t) = t* for some o € (0,1), then we get the clas-
sical Holder space C*. If A :[0,00) — [0,00) is a continuous, non-decreasing, convex
function such that A(0) =0 and A(co—) = oo then we denote by L* the Orlicz space
with the Luxemburg norm

T
I lla (o.re) = inf {;, >0: L AN (9)])ds < 1}.
Only two cases of A will be needed in the sequel. First A(x) = ®(x) = exp (x*)—1
and second A(t)=t’,p €[l,00). In the latter case, L*(0,T;R?) is the standard
Lebesgue space L7(0, T; RY) with the norm

il oz = (j v<s>|f’ds> .
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Figure 1. Embeddings.

Now modulus Besov-Orlicz spaces Bﬁm, with h as above, can be introduced as
spaces with the norm

()~ Ol o7
1l (ome) = Wlla(ormey T sup o (o.r-m) (1.5)

0<t<T A&

The dependence of the norms in Equations (1.4) and (15.5) on ¢ is not important
(the norms are equivalent for different ¢). Let us realize that if A(t) = and h(t) = t*
for some p € [1,00) and o € (0,1) then B} _ is the classical Besov space B2

Table 1 surveys chronologically, as far as we know, the progress on sufficient condi-
tions that guarantee the equality (11.2), whereas the last line is referring to the present
paper (we do not list those papers from the bibliogrpahy that provided different proofs

of already known results). To better understand the table, e.g. that
presentpaper = [12] = [19]

but [11] does not cover the present paper, realize that the embeddings in Figure 1 hold
for every p € [1,00),2 € [0,1/2),f € (1/2,1),y € (0,1/2) (here — and — denote con-
tinuous non-compact and compact embeddings respectively), cf. Corollary 5.5 and
Example 3.5.

The goal of the present paper is twofold. Firstly, we want to prove the support the-
orem for equations with minimal regularity and no global growth assumption on b and
o, e.g. for broken polynomials, and secondly, as already indicated in the table, we want
to prove it for any path space into which the Besov-Orlicz space B(D/ io(O T;RY) is com-
pactly embeded; note that Bcll,/ iO(O T;R?) seems to be the smallest Banach space such
that the paths of a Wiener process are known to belong to almost surely (see e.g. [15]

r [16]). Apparently, to achieve the former goal, we need to separate the problem of
existence of solutions from the problem of characterization of the topological support of
the solutions, and so our assumptions on b and ¢ do not imply existence of solutions
(which must be thus assumed). In particular, we generalize all the above cited papers
[1-5, 8-14].

As far as the proof of the main result is concerned, we extend the idea of approxima-
tions of SDEs from [2] to exponential Besov-Orlicz path spaces using a compactness
argument as in [11]. A Lenglart-type Lemma 4.1 for continuous local martinagales is
our main tool. We also modify the method to avoid global growth assumptions on the
non-linearities (as these are imposed in the papers [1-5, 8, 10-14]). Then we proceed
via a change-of-measure argument as in [4] and hence, we could consider equations
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driven by semimartingales S of the form dS = Adt + QAW as in [4]. Yet we restrict our-
selves to S=W for simplicity.

We add, for completeness, that the seminal paper [1] was extended to stochastic
equations in Hilbert spaces (but not to SPDEs) by [7], that a description of the support
of laws of solutions to stochastic ordinary Stratonovich equations with smooth non-line-
arities with bounded derivatives of order 1 (and more) was also treated in [6] and that
support theorems were proved, using the theory of rough paths, also in [9, 10] in
modulus Hélder path spaces C" for every modulus of continuity 4 such that

= o0. (1.6)

h(e)
1/2

e=0+ |glog ¢

The interesting proofs in [5, 9, 10, 12] based on rough paths, in particular on the
continuity of the It Lyons map (which exists also for various different metrics), are
shorter comparing to the standard approach but do not reach the generality of the path
space considered in the earlier paper [11].

2. General notation and conventions, part |

We convene that, throughput this paper,

e every filtration on a given probability space is assumed to be complete, i.e. every
c-algebra in the filtration contains all measurable sets of zero probability,

L®(a, b; R?) is the Orlicz with the Luxemburg norm for ®(x) = exp(x?)—1,

Y is a complete metric space embedded continuously in C([0, T]; R?) such that
bounded sets in B}D/_ ;(0, T;RY) are relatively compact in ),

X ={ge C°(R;R™): g=0o0n(—00,0)},

if Xy, is a continuous adapted process of bounded variation, X, is a continuous
local martingale and X;,(0) = X;y(0) = 0 then X = X + Xi is called a continu-
ous semimartingale,

IRl, = sup {IRG)|: <€ [0,4]},

[|R||(t) denotes the variation of a scalar or vector function R on [0, ¢,

|[Rl|pipo,q = inf {c > 0:[R(b)—R(a)| < c[b—a|, 0 <a<b<t}t>0,

Ai(R) = inf {c: ||R(h + -)=R||pop, y < ch'/?, Vh € [0,8]},¢ >0,

(N) = Trace ((N;,N))); for a vector continuous semimartingale N,

inf() = oo.

3. The main result
Recall that
By, (0, T;RY) = {f € L°(0,T) : Ar(f) < o0},

equipped with the norm |[f|| = [|f|[;0( 1) + Ar(f), is a Banach space (see Section 5 for
basic properties).

Theorem 3.1. Let (Q, 7 ,(F,),P) be a stochastic basis, T> 0, let W be an R"-valued
(7 ,)-Wiener process, let ¢ € RY and assume that
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(HO) b: R — R s locally bounded and, for every R >0, there exists Cg such that

(b(x)=b(y)) - (x—y) < Crlx—yI’
holds for every |x| <R and |y| <R,

(H1) 0 : RY — R @ R™ is C'-smooth and o is locally Lipschitz continuous,

(H2) x' = b(x) + o(x)w, x(0) = & has a solution x on [0, T] for every w € X.
Consider the set S = {x”: w € X’} and let X solve
dX = b(X) dt +o(X)° dw, X(0)=¢ (3.1)

on [0,T]. Then X € B(ID/éO(O,T; RY) as, SC Bib/éo(o, T;RY), X is a separably valued
Borel measurable random variable in ) and if K is a closed set in ) then P [X € K] =1
holds if and only if S C K.

Example 3.2 (Generality of non-linearities). The hypotheses (HO) - (H2) of Theorem
3.1 are satisfied e.g. for the equation

dX = —sgn(X)X*|log(X)| dt + (X.)* dW, X(0)=¢

that has a global solution. In particular, Theorem 3.1 applies whereas the support theo-
rems in [1-14] do not, even in the path space C([0, T}).

Example 3.3 (The path space )] To give an example of a path space where Theorem
3.1 holds but the support theorems in [1-14] do not, we can think of e.g. the intersec-
tion Fréchet space

o 0 B, 1)
with the inductive topology where 10g<")(x)/: log(log(”fl)(x) for n > 2, see Example
3.5. This space is embedded in Crrlosr"les”W/n (o T): R?) for every n>1 by
Lemma 5.1.

Example 3.4 (Counterexample). The characterization Equation (1.2) does not hold in
the space Y = Clriogrl” ([0, T); RY) nor in any smaller and finer space, in particular in
Bgio (0, T; R?). To this end, denote by
m(f,e) = sup{|f(b)—f(a)| : a,b€[0,1], |b—a| <&} (3.2)
the modulus of continuity of f and consider a simple equation dX = o dW,X(0) =0
solved by the Wiener process W. Then
w,
“‘(781)/2 - as. (3.3)
=0+ 2¢log ¢

by [17, Theorem 1.1.1]. Hence V2 < ||[W—w||y as. for every w € S. In particular,
P [We SY] =0, and the same is true for ¥ = B(ll)<io(0, T;R%) by Corollary 5.5.
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Example 3.5 (Comparison with [11]). f 0<A<1/2 and u € R then

1/2 \rlogr\/ /2 \10gr|
1<pﬂ<ooB % (0,1)NC ([0, 1]) Z By, (0,1)
and the embedding

1/2 ‘#H/Z

"I/ZHOgT‘# r'/?|logr
By (0,1), — ¢l

([0, 1])

is not compact In ﬁ)amcular, whereas [11] does not imply the validity of the support
theorem in By, “og for 0<A<1/2 due to the above relation, Theorem 3.1 herea-
bove does.

For let {f, : n > 0} denote the Franklin system of orthonormal splines (see e.g. [18
Section III.C]) and, for every real continuous function F on [0, 1], consider the expan-
sion

F:iﬁnfn where F, —Jl F(t)f,(t)dt.

There exist strictly positive constants ¢; and C; for 4 € R such that

=~ ~ 2j2—j/p||j:||€ [2 < n<2/*l]
[Fol, [F1] — < CollFI] 172 10gn
(G+1) Bpoo  [001]

holds for every p € [1,00),4 € R and every continuous function F, see [18, Théorem
II1.1]. Consequently,

< sup

1/2“0g,‘/ o] =

T 2j||P||é [2 <n<2t]
C/l||F||Cr1/2\logr\"~[0’1] S Sgop {|F0|7 |F1|7 (]:_ 1<)::_ S C)-||F||Crl/2\logr\)'[0l’1]
j=

~ ~ 2j27j/P||1~:||z [ < n<2t]
C}~||F||Br1/2\logr\/ — Sup |F0|7 |F1|7 1/27: : ;7 S C)||F|| r1/2|log r|#
o = R, PG+ 1) By o

holds for every A € R and every real continuous function F on [0, 1].

Now fix 0 < < 1—24 and define F,, =;/*27 for j > 1 and 1 < k < 27" and set
F, = 0 for all remalmng indices. Hence, the function F with the coefficients F, belongs
to Bl/2 [0,1] N Clogr*[0, 1] for every 1 < p < oo but not in By |1°gr‘ [0, 1].

To dlsprove the compactness of the embedding, consider the sequence FU) with the

— jut327J and F(]) = 0 for all remaining indices, for j > 1. Then {FU)}
Plogrl" 1 ¢

coefficients F g)ﬂ

is bounded in Bq)

||F0')_F<k)Hc,l/zuog,w/z >e jF#k

4, The key tools

We will often need to estimate exponential Besov-Orlicz pseudonorms Ar(-) of indefin-
ite Stieltjes and stochastic integrals in the sequel. For that purpose, we present the fol-
lowing estimates where the first one is the main and the most important ingredient of
the paper. In case of the standard Besov spaces Bll,fo, the origins of Proposition 4.1 can
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be found already in [19, Remarque 4] and the first realization of the idea (having been
applied to Brownian local times) was given, to our best knowledge, in [20]. Below, we
prove the result for continuous local martingales in the form of a Lenglart-type esti-
mate, showing that uniform convergence of derivatives of the quadratic variation in
L°(Q; L>°(0, T)) turns to convergence of the local martingales in L°(<; B(ID/‘ (2)0(0, T)).

Theorem 4.1. Let T>0. There exists a function Gr:[0,00) — [0,1] such that
lim;_,o Gr(t) = 0 and

P [AT<V) > a, [[{(V)]ltipjo gc} < Grlac™/?) (4.1)

holds for every a € [0,00),¢ € (0,00), every [0, T]-valued random variable t and every
real continuous local martingale V with V(0) = 0.

Proof. Extend the stochastic basis such that there exists a Wiener process U independ-
ent of V. Then N=U+V 1is a local martingale with quadratic variation
(N)(t) =t + (V)(t). By the Dambis-Dubins-Schwarz theorem, there exists a Wiener
process W such that N(t) = W((N)(t)) for every t >0 as. In particular, on the set
Y lwippo < 105

A(V) < A(U) + Ac(N) < A(U) + 19280 (W) < A7(U) + 19297(W)
by Lemma 4.3 and we get the result by Lemma 4.4 and by scaling. O

Proposition 4.2. Let T > 0. Then, for every measurable bounded function A and every
continuous function B with bounded variation,

AT(LA dB) < |AlAz(||B])). (42)

Proof. The inequality follows directly from the definition of A;. O

Lemma 4.3. Let u > 1, T>0 and let ¢ be an increasing function on [0, T] such that
u tt—s| < |o(t)—0(s)| < u|t—s| holds for every s,t € [0, T]. Then

(48u2) " Ay (f) < Ar(foo) < (48uP)Ap)(f) (4.3)

holds for every measurable vector or scalar function f on (0, o(T)).

Proof. Except for the explicit constants in Equation (4.3), this result was essentially
proved in [20, Lemma 2.2]. The constants can be derived by a careful revision of the
proof therein. O

Lemma 4.4. Let W be a Wiener process and T > 0. Then Ar(W) < co ass.
Proof. See e.g. the original paper [15] or a simplified proof valid also for Banach
space valued Wiener processes in [16], Theorem 4.1]. O

5. Basic properties of exponential Besov-Orlicz spaces

Below, let X be a Banach space. We are going to investigate embeddings of exponential
Besov-Orlicz spaces to modulus Holder spaces and existence of continuous extension
operators that we will need in the sequel.
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Lemma 5.1 (Garsia, Rodemich, Rumsey [21]). Let p : Ry — R. be a continuous, strictly
increasing function with p(0) =0, let I be an interval and f : I — X measurable such
that

_ F@=fON
K= L;q)<p(|a— ) ) dadb < cc.
Then

lx—|
F)~F )l < sj . (Ku)dp()

0

holds for all points of Lebesgue density x,y € I.

Remark 5.2. The proof of Lemma 5.1 in [21] is carried out for scalar-valued functions f
but such a restriction is not important and the proof holds for Banach space valued
functions f mutatis mutandis.

Let {1 be the primitive function to 4®_,(2Tu~?)u~'/? such that {;(0) = 0. Applying
Lemma 5.1 to a given function fand to p(u) = Ar(f)u'/?, we get the following result.

Corollary 5.3. Let T> 0 and let f : [0, T| — X be integrable. Then
)~ )] < Ar(H)Er(lx—yl)
holds for all points of Lebesgue density x,y € I.

Remark 5.4. Observe that {7(x) is increasing in x and T and |rlogr|~"/*{1(r) converges
to 272 if r | 0.

Corollary 5.5. Let T> 0. Then

1/2

1/2 1/2
By”.(0,7;X) C e (0, 7);x),  ByE (0, T5.%) € s ([0, T]; X)

and the embeddings are continuous.

Proof. The first embedding follows from Corollary 5.3 whereas the second one follows
from Lemma 5.1 for p(u) = clulogu|'’? for small u where ¢ is the norm of f in the
space Bg}gf" (0, T; X). O

The next result is going to be applied to extended or stopped processes.

Corollary 5.6. There exists an increasing function x : Ry — Ry such that
Hf(h + ')_f”Lq’(R;X) = K(T)hl/zAT(f)’ Vh =0

holds for every T> 0 and every continuous function f : R — X constant on (—0o0,0) and
on (T, o00).
Proof. Since f(h + x)—f(x) can be non-null only for —h < x < T we observe that

-+ )=Alloeny < ArlF) B+ 2 AT 1l

holds for every h >0 by Corollary 5.3 by splitting (—h,T) = (—h,0]U (0, T—h)U
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[T—h,T)if h < Tand (—h,T) = (—h,0] U (0, T] if h> T. Now we get the claim as

. 1/2 .
ltglg|logt| / ||1||L<D(o,z) = }H}}Ct 1/2||1||L‘1’(0,t) =1 O

The following simple lemma, whose proof is omitted, yields that {A,(Y)},, is a left-
continuous adapted process whenever Y is a progressively measurable process.

Lemma 5.7. Let f : [0, T| — X be Bochner measurable. Then h— ||f(h + -)~fl10( r_px)
is lower-semicontinuous on [0, T].

6. General notation, part Il

Often in this paper, we are going to work on probability spaces (Q°, 7%, P°) for d € N.
So, to shorten the notation for convergence in law to the Dirac measure, we are going
to use the notation below, cf. the symbol ~in [2].

Definition 6.1. Let Z° be a random variable on a probability space (Q°,7° P°) for
0 € N. We are going to write shortly Z°~~0 instead of

(Slim P° [|Z°] >¢| =0 foreverye>0.
—00

We also convene to denote the R? @ R” @ R™-valued function

d
(U,G)ijk = Z
I=1

where ¢ is our diffusion non-linearity in Equation (1.1).

801']'
Ok
8xl

7. A generalization of approximation results of Gyongy, Prohle, Nualart,
and Sanz-Solé

In [2], Gyongy and Prohle have proved, for equations driven by continuous semimar-
tingales, that the equality (11.2) holds in Y = C([0, T]; RY) provided that b is Lipschitz
continuous, o € C>(R?) and Vo € C,(R?). Subsequently, in [11], Gyongy, Nualart and
Sanz-Solé have improved this result for equations driven by Wiener processes by show-
ing the equality (11.2) in Banach spaces that embed compactly intersections of modulus
Holder and modulus Besov spaces, provided that b is continuous, locally monotone and
of semilinear growth, ¢’ is locally Lipschitz and o, (¢’c) grow at most linearly. In par-
ticular, in [11], the path space was finer and the assumptions on b and o less restrictive
than in [2]. In both papers, the proofs were based on an approximation result for equa-
tions

dx® = b(x%) dt + o(x?)odM?® (7.1)
dy’ = b(y°) dt + o (y°)odN° (7.2)

on [0, T] where ¢ € N, cf. [2, Theorem 2.2] and [11, Theorem 2.1]. We are now going
to prove an analogous approximation result in exponential Besov-Orlicz spaces while
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removing the assumptions on the global growth of b and ¢. In other words, comparing
to [2, 11], the path space is finer and the assumptions on b and ¢ are less restrictive.

The global growth conditions on b and ¢ in [2, 11] guaranteed not only existence of
global solutions to Equations (7.1), (7.2) but also their tightness. While existence of glo-
bal solutions is an independent problem, tightness of {x° y°};_ in the exponential
Besov-Orlicz spaces is the main ingredient for the proof of the support theorem. We
will prove below that tightness does not require global growth assumptions upon b and
o whatsoever. Observe also, the we removed the assumption on continuity of b, com-
paring to [2, 11].

Theorem 7.1. Let (Q°,%°,(#°),P°) be stochastic bases for EN, T>0, M? N° con-
tinuous R™-valued (F°)-semimartingales on [0,T],x°,y° (F?%)-adapted solutions to
Equations (7.1), (7.2) and assume that

the hypotheses (H0) and (H1) hold,

the laws of the processes {y°}s-y are tight in C([0, T]; R?),
Ar(||M]]]) is finite a.s. for every 6 € N,

|x°(0)—°(0)|~0, [M°—N?|~~0 and |R°|~~0 where

o T

RO(t) = J (N7 ) d(M,‘j)j + (N?=M2, M) (1) +§ (4, M) () =(N7. N)) (1)),

e. the laws of Ar(Mg), Ar(/INgI1), M) 10,77, [N} |pipp0.7) and

A(j M~ N d||Mf2|)
0

are tight with respect to 6 € N

Then Ar(x°), Ar(y°), Ar(M?), Ar(N°) are tight with respect to 5 € N and |x°—y°| ~0.

The following simple lemma based on the Prokhorov theorem and a Borel isomorph-
ism theorem (see e.g. [22], Chap. 3, Par. 39, Sect. IV, p. 487]) demonstrates the real
strength of Theorem 7.1.

Corollary 7.2. If conditions in Theorem 7.1 are satisfied then x%, 9% are separably valued
Borel random variables in Y and dy(x°,y°)~0.

Proof. The proof of Theorem 7.1 will be carried out in several steps.

I. Tightness of Ar(y?), Ar(M?), Ar(N?) follows from (b), (e), 4.1, 4.2. Additionally,
from (c), one gets that Ar(x%) is finite a.s. for every § € N in the same vein.

II. Introducing, analogously to [2], an adapted, continuous, non-decreasing
process

Q (1) = (O] + [y°], + MO =N, + (M) (1) + (N°)(¢) + [N 1) + J; [M°—N°| d||Mg]l,
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define stopping times

pl =inf {t€[0,T]:Q(t) >r}, ¢ =inf {t €0,T]: |x° —y°|, > c}
and observe (as in [2]) that

|x‘5—y‘$|TWO “— \x‘s—y‘3|“p%gﬁ~wo for every r>0and ¢>0

as Q‘S(T) is tight by (b), (d), (e), (I) and Corollary 5.3. So we fix r,c € (0,00), define

v’ = TAp?Ag® and proceed to prove that [x°—y°| ;~~0.

III.  The laws of {A,(x°)};oy are tight. To prove this, let v be a smooth density
compactly supported around the origin in R? define mollifiers 1;(x) = Fv(Ix)
and o' =0y, and apply the integration-by-parts formula XdY =
d(XY)—YdX—(X,Y) to

J o) d(M)-N)

0

ij

in the same way as in the proof of [2, Theorem 2.2]. Using local boundedness of b,
g, ',d", (e), Equations (4.1) and (4.2), we get that

{AW (awm N - J ) dle — m)}

0 (6,)eN?

is tight, hence
{ (o200 ) [ o) dlor’ =) |
0 deN
is tight by lower-semicontinuity of A;(-) with respect to a.e.-convergence, for every

t > 0. Now, using again local boundedness of b, g, ', (e), Equations (4.1) and (4.2), we
get that

{au = o) —N) |

is tight. The inequality A;(AB) < |A|,A+(B) + |B|,A¢(A), local boundedness and local
Lipschitzianity of g, (I), as in [11, Proposition 2.4], yield existence of a constant C inde-
pendent of ¢ and tight non-negative random variables {Ss} 5. such that

Ay (x) < 85+ CIM°—N°|, A, (x°)
hence A,s(x°) is tight by (d) and (I).

V.  {x°(-A1?),9°(-:Av°)} 5oy are tight in C([0, T]; R?) by (IIT), Corollary 5.3 and (b).
V. If {]l‘])} are continuous adapted processes with tight laws in C([0, T]) then

J“ ]5 dRé

0

~~0.
T

This is so since |R°|;~0 by (d), ||[R?||(T) is tight by (e) and J°, being tight in
C([0, T]), can be uniformly approximated by step processes.
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VI. The follownig equality holds

Jy (=)ot a(5-F) = 3 [ 3o s) o1

k=1

+zm:J [(x )’1) o'0)u(x?) + aij(x(s)a,»k(xé)} dAJ{)}( +K3-(t)

k=1

(7.3)

where

v

t
AL(D) :L (Nf—Mf) d(Mﬁ)jJr(Nf—M?,Mf)(t) and  E° |K°]% < CE° [M°—N°[?

the constant C here not depending on J. To prove this, apply the Ito integration-by-
parts formula to the product of the semlmartmgales X030 i ! (x%) and Mb N" and let
I — oo, using local boundedness of b, g, ¢’ and ¢”. Reahze that Eb |K‘3| s — 0
as 0 — oo.

VII.  Defining
d

— ZJ [Z (x;s —yf) (0'0)ii(x) + (0"0)i(x*) | dRY,
=1 k=1 1
we have that |l//5|vo' < C by the definition of %, where C does not depend on &, and
[Y/°|,s~+0 by (IV) and (V). In particular, E°[°|%; — 0 as & — co.
VIIL.  Let us define the processes
SO(t ) = (t/\vﬂ) + <N‘5><t/\v5) + |IN2[|(tav?),  20(8) = %0 (Earv®) =2 (EAr°))|
= ZJ"[M (x* =) [o(x?) —a(x?)] dN?., 20%(t) = 22 (1) 15(0)<a] -

By the It6 formula and the hypotheses (HO) and (H1), we get for every t > 0 that

2

o - t o
|27, < o+ 2y°), + CIK?|,» + CL 2%, dS°(s) + 1,(0)< | U°|,

hence

E|2%%% < cE° [oc + |05 + K Voi| +CE5J |2%%2 dS°(s)

holds by the Burkholder-Davies-Gundy inequality for every finite stopplng time 17,

whereas the constants ¢ and C do not depend on § € N,a>0 nor °. So, by the sto-
chastic Gronwall inequality (see e.g. [3, Lemma 4]), we get

BOJ2 2, < o o+ 9 + K7L
for some k independent of 6 € N and « > 0. Thus, by the Chebyshev inequality,
PO ([0 > o] < SB[+ W + K| + B0 [19(0)—(0)] > v
&

which implies |x°—°| ;~+0 by (d), (VI) and (VII). In particular, [x°—y°|~0 by (II).
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IX. Since |x°—y°|; is tight by (VIII), [x°], r is tight by (II) and (III). O

8. Sufficient conditions for Theorem 7.1

Here we derive conditions that guarantee that the assumptions (d) and (e) in Theorem
7.1 are satisfied for suitable transformations of the Wiener process, introduced in [4].
In conformity with [3, 4], we let ¢ : R — [0,00) be a smooth density supported in (0,
1) and we define @°(t) = 5¢(5t), € N and

Cs(t) = sign(t)min {9, |t|}, teR.
If V is a scalar continuous adapted process, we extend it as V=0 on (—o00,0) and we

realize that Vs = V * ¢ and V° = Cs(V) * ¢° are smooth adapted processes vanishing
on (—00,0] and

! .
(Vo)) < [0, y0min {0,[V],}, t>0.

Below, we revisit the estimates in [3, 4] to cover the exponential Besov-Orlicz spaces.
Towards this end, we fix T € (0, c0).

Proposition 8.1. Let V be an adapted continuous process. Then Ar(V°) < x(T)Ar(V)
for every 5 € N and |V°—V|, — 0.

Proof. By Corollary 5.6, for every h € [0, T},
VO (h+ )=V loporsg S V(R4 )=Vl sz py < ©(THPAL(V).

Lemma 8.2. Let V be a standard Wiener process on [0, T|. Then, for every 6 € N,

IELT |V—V5|* dr <3T672, ELT [(Vs)'[" dr < 3T o[-
Proof. We know that E |V (£)—=V(s)|* = 3|t—s|* for every t,s € [0, T]. So
E |V(t)—Vs(t)|* < EJ:/(S V() =V (t—u)|*¢® (u) du <367
By the It6 formula, for every semimartingale Y starting from zero and for every
t>0,

t
P l(Y * (p")/(t) = J °(t —s) dY(s)} =1 (8.1)
0
so, by the It6 formula applied on x+ x*,
2
b 2
E |(Vs)(1)]* <3 (J [p%(t—s)] ds) <389l 0 O
0
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Proposition 8.3. Let V and J be standard Wiener processes on [0, T|. Then

. 2
E[M(JWVﬂMﬁw]SCw
0

Proof. Using the Cauchy-Schwarz inequality, we get that

t+h
J [V=Vs||(Js)'] dr < h1/2||V_V5||L4(0,T)||(]5)/||L4(O,T)

t

for every 0 <h < T and 0 <t < T—h so, by Lemma 8.2,

. 2
E[M(LW—M%MMO}SCMM@my

Now V° = V; and J° = J5 on the set [|V|;v|]|; < J], whereas, on its complement,

t+h , ,
J |V*V6||(]6) | dr < 2h5||(:0/”L1(0,1)‘V|T|]|T < 2h||€0/”L1(0,1) [|V|TV|]|T]

t

forevery 0 <h < Tand 0 <t < T—h. O

Proposition 8.4. Let V and J be standard Wiener processes on [0, T|. Then

lim E| J (v —vd) ar —%(V,DIZT =0.
0

0—00

Proof. See [4, Lemma 3 (3)]. O

9. Proof of the main result

We devide the proof to four steps, the last two being within the framework of [2, 4].

1. Ar(X)<oo as. and Ar(x") < oo for every w € X by Equation 4.1, (4.2).

2. Ift€(0,T] and W, w € X satisfy fot lw'—w| ds — 0 as | — oo then [x"'—x"|, —
0 by (HO) and (H1). In particular, the trace space {f,, : f € X'} equipped with
the L'(0,t)-norm is a separable normed space and the assignment X, — R :
f |[o,t] —x/ is well-defined (by uniqueness of the equation in (H2)), continuous,
hence Borel measurable. For if Z is an adapted process with paths in X" then
x%(t) is also an adapted process.

3. We follow [2, 4] in the rest of the proof. Set P’ = P, M? = C5(W;) x ¢° as in
Section 8, N? = W;,x® = x™") and y° = X for 6 € N. The omega-wise defined
process x° is (% ;)-adapted by (2). By the results of Section 8, the assumptions
of Theorem 7.1 are satisfied and so dy(x°,X) — 0 in probability by Corollary
7.2. Since paths of x° belong to S, paths of X belong to the closure of S in
a.s. by the Portmanteau theorem.

4. For the converse, we also follow [2, 4]. For let w € X and define W=0 on
(—00,0). Unique solutions to

70 = Wi—w; + Q;(Zf) %@’ Z2=0 on (—00,0, 1<i<m (9.1)
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can be constructed omega-wise on (—oo, T| by Picard iterations' that converge uni-
formly on (—oo, T}, hence the solutions Z¢ are continuous and (F)-adapted. We
define

Yo = L [0°] aw, I°= exp {st(T) —%<Y5>(T)}

where every derivative of O :=w;—Cs(Z) * ¢° is uniformly bounded. The
Novikov condition is satisfied for Y° at T, hence EL’ =1 and we define dP° :=
L? dP for which Z° is an ((%,),P°)-Wiener process on [0, T] by the Girsanov the-
orem. We set M° = W,N° = w,x° = X, y5 = x" and consider the probability meas-
ures {IP°};_ under which M2 = 7% and M{ = O°. Using the results of Section 8,
we check that the assumptions of Theorem 7.1 are satisfied and so dy(x", X)~+0 by
Corollary 7.2. Since P° and P are equivalent, this means that P [dy(X,x") <¢] >0
for every ¢>0. If K is a closed set in Y such that P [X € K] =1 then x* € K,
which is what we needed to prove.

Note

1. Since paths of W; and w; are bounded on [0, T], one can consider a suitable o >0 and the
complete norm sup,. e *[f(t)| for f bounded, continuous and null on (—o0,0], and apply the
Banach fixed point theorem.
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