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ABSTRACT
The article presents, discusses, and explores incomplete vari-
ants of interdirections, lift-interdirections, and symmetrised lift-
interdirections (with a few incomplete designs). Although they are
easier to compute in high-dimensional spaces than the originals,
they can still replace them in many optimal statistical procedures
basedon signs and rankswithout significantly changing their proper-
ties. This is proved theoretically and confirmed empirically in a small
simulation study dealingwith the canonical examples ofmultivariate
sign and signed-rank one-sample tests applied to high-dimensional
data sets.
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1. Introduction

Simple, robust, and powerful univariate sign and rank statistical procedures with weak
assumptions have already inspired many multivariate generalisations. Current literature
on multivariate rank statistics is largely dominated by spatial ranks and signs (Möttönen
and Oja 1995; Oja 2010), followed by component-wise rank and sign vectors (Puri and
Sen 1971), Oja multivariate ranks and signs (Oja 1999), the ranks of pseudo-Mahalanobis
distances (Hallin and Paindaveine 2002b), and various depth concepts (Zuo and Ser-
fling 2000); see also Chaudhuri and Sengupta (1993) and Chernozhukov, Galichon, Hallin,
and Henry (2017). Unfortunately, the signs and ranks based on the purely geomet-
ric hyperplane-based concepts of interdirections (Randles 1989) and lift-interdirections
(Hettmansperger, Möttönen, and Oja 1999; Oja and Paindaveine 2005) seem to fall out of
fashion due to their high computational demands, even though they avoid any estimation
of the shape matrix.

This article can be viewed as an attempt to revive these two appealing concepts and
to bring them back to the forefront. In particular, it presents incomplete interdirections,
incomplete lift-interdirections and incomplete symmetrised lift-interdirections based on
incomplete U-statistics. They allow for various random and deterministic designs, they
are relatively quick to compute in high-dimensional spaces, and they can replace their
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complete counterparts in many sign and signed-rank test statistics without changing their
asymptotic behaviour.

In other words, this article addresses the problem of too many hyperplanes passing
through certain number of observations by working only with some of them. Such an
approach is hardly surprising, and it was already suggested in the concluding section of Oja
and Paindaveine (2005). This article shows that there is a clever way to do the selection,
analyses it, and illustrates it with multidimensional data.

The signs and ranks based on incomplete interdirections and incomplete (symmetrised)
lift-interdirections might still be used in the large number of statistical tests mentioned in
Oja and Paindaveine (2005), including the test of randomness against VARMA depen-
dence, the two-sample and multi-sample tests, the Durbin-Watson test and the test of the
order of a VARMA model. In particular, the incomplete interdirections might be used in
any sign testwhere the original interdirections appear; see, e.g. Randles (1989), Randles and
Peters (1990), Jan and Randles (1996), Gieser and Randles (1997), Um and Randles (1998),
Ghoush and Sengupta (2001), Hallin and Paindaveine (2002a, 2002b, 2004), Taskinen, Oja,
and Randles (2005), and Paindaveine (2009). Here, it is proved rigorously only for the
one-sample tests of Randles (1989) and Oja and Paindaveine (2005). Note also that all the
resulting tests can be expected to be robust with respect to both radial and angular outliers
like other hyperplane-based testing procedures (Oja and Paindaveine 2005).

Multivariate rank tests often need some symmetry to work. The sign tests discussed
here work for all distributions with elliptical directions (Randles 1989) while the signed-
rank tests require elliptical symmetry as those in Oja and Paindaveine (2005); see Ser-
fling (2006) for a review of the most important concepts of multivariate symmetry. These
assumptions permit even some distributions that are not unimodal. Such distributions
may arise easily in the context of mixtures even in the univariate case; see, e.g. Došlá
(2009).

Next Section 2 introduces incomplete interdirections, lift-interdirections, and their
symmetric variant. Section 3 then describes their properties and justifies their use in the
one-sample tests of Randles (1989) andOja and Paindaveine (2005), and Section 4 employs
them in a brief comparative simulation study using also large sample sizes and dimensions.
Section 5 discusses the results and achievements. Final Appendix collects the proofs.

2. Definitions and notation

Let Xn be a random sample consisting of n p-dimensional observations X1, . . . ,Xn ∈ R
p,

p ≥ 2. Any ordered k-tuple q(n, k) = (q1, . . . , qk) of distinct integer indices 1 ≤ q1 < q2 <

· · · < qk ≤ n then defines subsample X q(n,k) = (Xq1 , . . . ,Xqk). The set of all possible k-
tuples q(n, k) will be denoted byQ(n, k). It has exactly

(n
k
)
elements.

If k = p, then Hq(n,p) ⊂ R
p is defined as the hyperplane that contains all the obser-

vations from X q(n,p). If k = p−1, then Hq(n,p−1) ⊂ R
p is defined as the hyperplane

containing all the observations from X q(n,p−1) and the origin.
Any hyperplane Hq(n,p−1) can be expressed by the equation

det
(
M

q(n,p−1)(y)
)= dq(n,p−1)′y = 0
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where dq(n,p−1) = (dq(n,p−1)
1 , . . . , dq(n,p−1)

p )′ and dq(n,p−1)
j , j = 1, . . . , p, is the cofactor of

the jth element in the last column of matrix

M
q(n,p−1)(y) = (Xq1 ,Xq2 , . . . ,Xqp−1 , y).

Similarly, any hyperplane Hq(n,p) can be expressed by the equation

det
(
M

q(n,p)(y)
)= dq(n,p)0 + dq(n,p)

′
y = 0

where dq(n,p) = (dq(n,p)1 , . . . , dq(n,p)p )′ and dq(n,p)j , j = 0, . . . , p, is the cofactor of the
(j + 1)th element in the last column of matrix

M
q(n,p)(y) =

(
1 1 · · · 1 1
Xq1 Xq2 · · · Xqp y

)
.

The signs

Sq(n,p−1)(y) = sign(dq(n,p−1)′y) and Sq(n,p)(y) = sign(dq(n,p)0 + dq(n,p)
′
y)

then reveal the position of y ∈ R
p with respect to Hq(n,p−1) and Hq(n,p), respectively.

IfXn comes from the spherically symmetric distribution centred around the origin, then
the angular distance

α(y1, y2) = arccos
(

y′
1y2

‖y1‖‖y2‖
)

between any two points y1, y2 ∈ R
p can be measured by means of (affine invariant)

interdirections

Cy1,y2(Xn) =
∑

q∈Q(n,p−1)

(
1 − Sq(y1)S

q(y2)
)
/2;

see Randles (1989). (They are defined by means of all hyperplanes passing through the
origin and p−1 observations, but only those hyperplanes separating y1 from y2 are actually
counted.) That is to say that

ay1,y2 = πCy1,y2(Xn)

/(
n

p − 1

)
is then an affine invariant consistent estimator of α(y1, y2). Needless to say that the angles
and their estimators play a crucial role in various multivariate sign and signed-rank tests.

Oja and Paindaveine (2005) suggest to measure the empirical distance between two
points y1 and y2 by means of (affine invariant) lift-interdirection

Ly1,y2(Xn) =
∑

q∈Q(n,p)

(
1 − Sq(y1)S

q(y2)
)
/2

that counts all hyperplanes passing through p observations and separating y1 from y2. They
consider especially the particular case Ly(Xn) = Ly,−y(Xn), y ∈ R

p, and its symmetrised
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version

Ly(Xn) =
∑∑
q∈Q(n,p)
s∈{−1,1}p

1 − sign(dq(n,p)0s + dq(n,p)s
′
y)sign(dq(n,p)0s − dq(n,p)s

′
y)

2

where (dq(n,p)0s , dq(n,p)s
′
)′ is the vector of cofactors of the last column of matrix

M
q(n,p)
s (y) =

(
1 1 · · · 1 1

s1Xq1 s2Xq2 · · · spXqp y

)
,

and {−1, 1}p is the set of all 2p p-dimensional vectors s = (s1, . . . , sp)′ with individual coor-
dinates equal to either 1 or −1. That is to say that the symmetrised lift-interdirections
Ly(Xn) are invariant with respect to affine data transformations, permutations of the obser-
vations, and reflections of the observations with respect to the origin; see Oja and Pain-
daveine (2005). The ranks of Ly(Xn) can thus replace the ranks of pseudo-Mahalanobis
distances in many tests based on them; see ibidem.

The cardinality of Q(n, p − 1) may quickly become impractical for the computation
of ay1,y2 with growing n and p, which is why it seems advantageous to define incomplete
interdirections as incomplete U-statistics (see, e.g. Lee 1990)

C̃y1,y2(Xn) =
∑

q∈QS(n,p−1)

(
1 − Sq(y1)S

q(y2)
)
/2

considering only some hyperplanes determined by some (design) QS(n, p − 1) ⊂
Q(n, p − 1) withmn,p−1 elements.

One can also analogously define incomplete lift-interdirections L̃y1,y2(Xn)

L̃y1,y2(Xn) =
∑

q∈QS(n,p)

(
1 − Sq(y1)S

q(y2)
)
/2

for some (design)QS(n, p) ⊂ Q(n, p)withmn,p elements, and incomplete symmetrised lift-
interdirections:

L̃y(Xn) =
∑∑
q∈Qs

S(n,p)
s∈{−1,1}p

(
1 − sign(dq(n,p)0s + dq(n,p)s

′
y)sign(dq(n,p)0s − dq(n,p)s

′
y)
)

/2

for some (design)Qs
S(n, p) of elements fromQ(n, p) withms

n,p elements.
To be more specific, the designsQS(n, p − 1),QS(n, p), andQs

S(n, p) are arbitrary col-
lections of predefineddeterministic sizesmn,p−1,mn,p, andms

n,p containing (not necessarily
distinct) elements fromQ(n, p − 1),Q(n, p), andQ(n, p) in this order. They are called sets
or denoted as subsets by slight but useful abuse of terminology. The subscript S indicates the
(design) subsets and the index s indicates a relation to the symmetrised lift-interdirections.

These considerations lead to a few meaningful rank concepts in the multivariate space
because one can easily write Ri, R̃i, and R̃i for the ranks of X

′
i�

−1Xi, L̃Xi(Xn), and L̃Xi(Xn)

in the corresponding samples of the same quantities for i = 1, . . . , n. Of course, these ranks
would be meaningful only for centred observations.
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3. Theoretical considerations

Fortunately, both C̃y1,y2(Xn)/mn,p−1 and L̃y1,y2(Xn)/mn,p, y1 �= y2, are non-degenerate
incomplete U-statistics (with kernel hy1,y2) in the form

Ũy1,y2
n = 1

mn,k

∑
q(n,k)∈QS(n,k)

hy1,y2(q(n, k)), mn,k = |QS(n, k)|,

(Note also that even L̃y1,y2(Xn) may be viewed as an incomplete U-statistic if the design
set is really in the form specified above.)

The properties of Ũy1,y2
n and relations to the corresponding complete U-statistics

Uy1,y2
n = 1(n

k
) ∑
q(n,k)∈Q(n,k)

hy1,y2(q(n, k))

have already been thoroughly investigated in the literature; see Blom (1976) and Jan-
son (1984) for most of the results presented here. All the references below nevertheless
point to the book Lee (1990) for simplicity. Note also that both Ũy1,y2

n and Uy1,y2
n are

unbiased.
Here, the kernel is

hy1,y2(q(n, k)) =
(
1 − Sq(n,k)(y1)S

q(n,k)(y2)
)/

2

and k stands for the kernel order equal to the dimension of q(n, k): k = p−1 for C̃y1,y2(Xn),
and k = p for L̃y1,y2(Xn). The kernel, despite the simplified notation, actually depends on
k independent and identically distributed random variables from the random sample Xn.
Similarly, all the arguments and indices may be omitted when no confusion is possible. In
particular, QS(n, k) may be shortened to QS andmn,k tomn.

The first question concerns the choice of the design set QS and its influence on the
asymptotic relative efficiency (ARE) of Ũn with respect to Un:

ARE(Ũn,Un) = lim
n→∞

varUn

varŨn
.

The following discussion is limited to the three most important cases when the design
elements ofQS are set deterministically or chosen randomly with or without replacement.
Then the theory of incomplete U-statistics answers the problem satisfactorily (Lee 1990,
Section 4.3).

Define

hc(x1, . . . , xc) := Eh(x1, . . . , xc,Xc+1, . . . ,Xk),

pc := P(hc(X1, . . . ,Xc) = 1), and

σ 2
c := var(hc(X1, . . . ,Xc)),

c = 1, . . . , k. Generally, σ 2
d ≥ (d/c)σ 2

c for any k ≥ d ≥ c ≥ 1 (Lee 1990, Theorem 4 on
p. 15). In the special context considered here, each hc follows the Bernoulli distribution
B(1, pc) and, therefore, σ 2

c = pc(1 − pc), which also depends on y1 and y2. These quantities
influence the asymptotic relative efficiencies stated below.
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Recall that limn→∞ nvarUn = k2σ 2
1 (Lee 1990, Theorem 3 on p. 12). Furthermore,

Theorem 4 on p. 193 theremakes it possible to obtain the variance of Ũn for the two special
random designs considered. Consequently, if QS is chosen from Q by random sampling
with replacement, then

ARE(Ũn,Un) = lim
n→∞

(
n

k2mn

σ 2
k

σ 2
1

+ 1 − 1
mn

)−1

,

and ifQS is chosen fromQ by random sampling without replacement, then

ARE(Ũn,Un) = lim
n→∞

(
(Cn,k − mn)

(Cn,k − 1)
n

k2mn

σ 2
k

σ 2
1

+ Cn,k

Cn,k − 1

(
1 − 1

mn

))−1

,

where Cn,k = (nk). The difference between the two sampling schemes is thus minimal if
bothmn and n are large butmn � Cn,k.

Fixed designs are interesting only when they are simple or optimal. In the latter case,
they should minimise the variance of Ũn and, therefore, maximise its ARE(Ũn,Un). In
view of symmetry, it seems natural to consider only equireplicate (or, balanced) designs
when each index appears in the same number, say r, of the elements ofQS. Thenmk = nr.

If the simplest balanced design QS = {(1, . . . , k), (k + 1, . . . , 2k), . . . , (mk − k +
1, . . . , n)} is considered for n = mk, then

ARE(Ũn,Un) = k
σ 2
1

σ 2
k

≤ 1.

In general,QS is aminimumvariance design, if, for each v = 1, 2, . . . , k − 1, every ν-subset
of {1, 2, . . . , n} is contained in the same number m

(k
ν

)
/
(n
ν

)
of elements of QS (Lee 1990,

Theorem 1 on p. 195). For example, ifQS(n, 2) is a balanced design of Ũn, then it must be
optimal and

ARE(Ũn,Un) = 2r

2(r − 1) + σ 2
2

σ 2
1

≤ 1

increases with r (Lee 1990, p. 196).
Write θ for the common expectation of unbiased Ũn and Un: θ = EŨn = EUn.
For the two random designs considered here, the justification for the use of incomplete

statistics instead of the complete ones follows from Theorem 1 on p. 200 of Lee (1990)
restated here:

Theorem 3.1: Assume min(n,mn) → ∞, mn/n → ∞, and that QS results from the ran-
dom sampling with or without replacement. Then

√
n(Ũn − θ) and

√
n(Un − θ) have the

same asymptotic distribution.

Analogous Theorem3 on p. 211 of Lee (1990) for fixed balanced designs denotes with fcn
the number of pairs q1, q2 ∈ QS that have exactly c elements in common, c = 0, 1, . . . , k:
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Theorem 3.2: If QS is a balanced design, min(n,mn) → ∞, nfcn/m2
n → 1 for c = 0, and

nfcn/m2
n → 0 for c = 1, . . . , k, then

√
n(Ũn − θ) and

√
n(Un − θ) have the same asymptotic

distribution.

Note that the assumption of Theorem 3.1 is satisfied even for mn � (n
k
)
such as mn =

O(n log(log(log(n)))), irrespective of the fixed kernel order k. This fact seems rather
unappreciated in the field of multivariate statistics.

Now assume that X1, . . . ,Xn is a random sample from an elliptical distribution with
median vector θ ∈ R

p, positive definite scatter matrix� ∈ R
p×p, and density proportion-

ate to

f
(√

(x − θ)′�−1(x − θ)
)
, x ∈ R

p,

where function f : [0,∞) → [0,∞) satisfies
∫∞
0 zp−1f (z) dz < ∞. Then ‖�−1/2(X1 −

θ)‖ has cumulative distribution function Fr with density fr(z) ∝ zp−1f (z)I[z > 0].
Without any loss of generality, consider the one-sample testing problem with the null

hypothesis H0 : θ = 0 and alternative H1 : θ �= 0. Randles (1989) proposed a test for H0
using interdirections and showed that the test statistic

VB := p
n

n∑
i=1

n∑
j=1

cos(aXi,Xj)

has an asymptotic (distribution-free) χ2
p null distribution with p degrees of freedom in the

whole class of elliptical distributions.
It appears that the test remains valid even when the interdirections are replaced with

incomplete interdirections.

Proposition 3.3: Assume a random sample X1, . . . ,Xn from an elliptical distribution and
consider incomplete interdirections C̃Xi,Xj(Xn), i, j = 1, . . . , n, based on QS(n, p − 1) (with
cardinality |QS(n, p − 1)| = mn,p−1) chosen randomly with or without replacement from
Q(n, p − 1). If H0 holds and mn,p−1/n → ∞, then

SB := p
n

n∑
i=1

n∑
j=1

cos(ãmn,p−1
Xi,Xj

)
D→ χ2

p for n → ∞ (1)

where ãmn,p−1
Xi,Xj

= π C̃Xi,Xj(Xn)/mn,p−1.

Note that Proposition 3.3 holds even for the distributions with elliptical directions
(Randles 1989) because of the same arguments contained in that article.

Also the three types of ranks considered here are asymptotically equivalent.

Proposition 3.4: If X1, . . . ,Xn is a random sample of size n from an elliptical distribution,
mn,p/n → ∞, and ms

n,p/n → ∞, then

R̃i
n + 1

= Ri
n + 1

+ oP(1), and
R̃i

n + 1
= Ri

n + 1
+ oP(1)

as n → ∞.
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Oja and Paindaveine (2005) proposed a test statistic forH0 that also has the asymptotic
χ2
p null distribution for all elliptical distributions and that uses both interdirections and

ranks of symmetrised lift-interdirections which can still be replaced with their incomplete
variants without changing the limiting null distribution under mild assumptions.

Assumption A: Assume a function K that is continuous almost everywhere on (0,1) and
satisfies (1/n)

∑n
i=1 |K(i/(n + 1))|2+δ → ∫ 1

0 |K(u)|2+δ du < ∞ for some δ > 0.

Proposition 3.5: Assume that a random sample X1, . . . ,Xn comes from an elliptical dis-
tribution and that a function K satisfies Assumption A. Consider incomplete interdirections
C̃Xi,Xj(Xn) and incomplete symmetrised lift-interdirections L̃Xi(Xn), i, j = 1, . . . , n, that are
based, respectively, on the design setsQS(n, p − 1), |QS(n, p − 1)| = mn,p−1, andQs

S(n, p),
|Qs

S(n, p)| = ms
n,p, chosen independently and randomly with or without replacement. If H0

holds,mn,p−1/n → ∞, and ms
n,p/n → ∞, then

SA := p
nEK2(V)

n∑
i=1

n∑
j=1

K
(

R̃i
n + 1

)
K

(
R̃j

n + 1

)
cos(ãmn,p−1

Xi,Xj
)

D→ χ2
p (2)

as n → ∞ where ãmn,p−1
Xi,Xj

= π C̃Xi,Xj(Xn)/mn,p−1 and V is uniformly distributed on [0, 1].

All the propositions stated above are proved in the Appendix.

4. Simulation study

Consider a p-dimensional random sample Xn of size n, X1, . . . ,Xn, that comes from an
elliptical distribution with location parameter θ . Use random selection with replacement
to independently construct design setsQS(n, p − 1) (of sizeNH) andQs

S(n, p) (also of size
NH) and compute incomplete interdirections C̃Xi,Xj(Xn) and incomplete symmetrised lift-
interdirections L̃Xi(Xn), i, j = 1, . . . , n. Use van der Waerden’s scores, i.e., set K =

√
F−1

where F−1 stands for the quantile function of the χ2
p distribution (with p-degrees of

freedom).
Then the null hypothesis H0 : θ = 0 can be checked by means of the χ2

p signed-rank
test TA and sign test TB that are based on the statistics SA (2) and SB (1), respectively. Their
asymptotic null distributions are assumedχ2

p in both cases (for p fixed and n → ∞), which
is justified in the previous section and proved in the Appendix.

The tests TA and TB are compared with the benchmark Hotelling’s T2 test (as imple-
mented in the ICSNP package (Nordhausen, Sirkia, Oja, and Tyler 2015) for R (RDevelop-
ment Core Team 2008)) in Figures 1 and 2 for a few elliptical distributions and parameters
n, p, and NH in terms of empirical power based on 1000 independent replications. In par-
ticular, the simulation study uses multivariate canonical Student t null distributions with
q = 1, q = 2.01, and q = ∞ degrees of freedom, n = 100 or n = 1000 p-dimensional
observations with fixed p such as p = 10 or p = 100 always less than n, and NH = 5n.
Every simulated data set was used for evaluating the tests under both H0 and all ten shift
alternatives considered.
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Figure 1. Power comparison of two one-sample tests at significance level α = 0.10. The plots display
empirical powers of the sign test TB (dotted line) and the benchmark Hotelling’s test (thick solid line)
with common significance level α = 0.10 (horizontal thick dashed line). The sign test based onNH = 5n
hyperplanes was applied to 1000 p-dimensional random samples of size n from the multivariate canon-
ical Student t distribution with q degrees of freedom shifted by (d, . . . , d)′. The parametric combination
(p, n, q) characterising each experiment is stated below individual pictures. Each column of subfigures
corresponds to one null distribution.

Apparently, even NH mildly higher than n already leads to tests TA and TB with
power comparable to the benchmark for normally distributed data and with far better
performance for heavy-tailed distributions.

In fact, Figure 3 illustrates the sensitivity of test TB to the choice of NH and confirms
that even NH = 25 may be satisfactory for common sample sizes (n = 100 or n = 500) to
achieve a desirable test performance, at least in case of not too large p such as p = 5 and
the multivariate canonical Student t null distribution with only one degree of freedom.



10 Š. HUDECOVÁ ET AL.

Figure 2. Power comparison of two one-sample tests at significance level α = 0.10. The plots display
empirical powers of the signed-rank test TA (dashed line) and the benchmark Hotelling’s test (thick solid
line) with common significance levelα = 0.10 (horizontal thick dashed line). The signed-rank test based
on 2pNH hyperplanes, NH = 5n, was applied to 1000 p-dimensional random samples of size n = 100
from the multivariate canonical Student t distribution with q degrees of freedom shifted by (d, . . . , d)′.
The parametric combination (p, q) characterising each experiment is stated below individual pictures.
Each column of subfigures corresponds to one null distribution.

The simulation studies do not include the classic tests (based on complete interdi-
rections/symmetrised lift-interdirections), because their computation would be too time
consuming or even impossible for most settings considered. Speed comparison is omitted
for the same reason. Except for some rather special cases of low n and p, the difference
would be not only in the speed of computation but also in its feasibility.
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Figure 3. Test dependence on NH. The plots display empirical powers of the sign test TB (dashed line)
with common significance level α = 0.10 (horizontal thick dashed line). The test based on N1H (thin), N

2
H

(normal) orN3H (thick) hyperplaneswas applied to 1000 five-dimensional (p = 5) random samples of size
(a) n = 100 or (b,c) n = 500 from the multivariate canonical Student t distribution with one degree of
freedom shifted by (d, . . . , d)′. In particular, N1H = cn/4, N2H = cn/2 and N3H = cn where c = 1/5 in (b)
and c = 1 in (a) and (c), which leads to the same NiH in (a) and (b), i = 1, 2, 3. Apparently, there is hardly
any visible difference in the test performance if the number of included hyperplanes is not too small.

To sumup the results, the incomplete interdirections and incomplete lift-interdirections
make it possible to obtain powerful and computationally feasible tests of high-dimensional
data.

5. Discussion

The classic tests based on interdirections or (symmetrised) lift-interdirections are compu-
tationally feasible only if the number n or the dimension p of the observations is small.
The article uses incompleteU-statistics to define incomplete versions of those hyperplane-
based concepts and shows their usefulness for nonparametric statistical inference in spaces
with large but fixed dimensions.

In particular, the number of hyperplanes considered by the incomplete interdirections
does not grow with the dimension of observations at all while it is equal to

( n
p−1
)
in case of

their complete counterparts. Consequently, even dimensions like p = 100 can be handled
easily.

As for the incomplete symmetrised lift-interdirections, the number of processed hyper-
planes grows with the dimension by factor 2p, which still may make the computation
challenging for p>10 or so. But the improvement achieved by them is still considerable.

The classic tests should be preferable due to their non-stochastic nature given the obser-
vations.When they are not feasible to compute, then the incomplete variants provide a way
how to proceed further. The results for hyperplanes sampled at random with or without
replacement are then virtually the same because the chance of choosing a hyperplane at
least twice in the former case is negligible. Therefore, the first option is recommended due
to its simplicity.

The brief simulation study confirms that the exact number NH of hyperplanes consid-
ered by the incomplete variants is not too important and that even NH as low as NH = 5n
can still produce reliable results in common settings with n ≤ 1000 and p ≤ 100 as far as
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p ≤ n/10 (ideally p ≤ n/20). In fact, evenNH = 25 was shown satisfactory for small p and
not too large n in a very limited comparison. Nevertheless, further simulations are needed
to confirm and extend the rules to other contexts and to explore the incomplete variants
in small samples.

This article also shows that incomplete U-statistics and simple geometric concepts of
multivariate signs and ranks may be very useful for nonparametric inference and play
important role in the future.
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Appendix. Proofs

All the expectations involved in the proofs are taken with respect to the probability distribution of
X and with respect to the random designs involved due to the use of incomplete interdirections and
symmetrised lift-interdirections. For the sake of simplicity, this is stressed out with a subscript only
where confusion would be possible.

Proof of Proposition 3.3: Thanks to the invariance properties of incomplete interdirections, it is
sufficient to consider the situation when Xi = U i, i = 1, . . . , n, where U1, . . . ,Un are independent
variables uniformly distributed on the unit sphere in R

p. The same arguments as in the proof of
Theorem A.1. in Randles (1989) imply

E

⎡⎣SB − p
n

n∑
i=1

n∑
j=1

U�
i U j

⎤⎦2

≤ 2π2p2E
[
C̃U1,U2(Xn)

mn,p−1
− 1

π
arccos(U�

1 U2)

]2
.

The right unconditional expectation converges to zero for n → ∞ because all the conditional
expectations given U1, U2 and QS(n, p − 1) do so owing to Theorem 3.1 and Lemma 1 in
Hallin and Paindaveine (2002b). Consequently, SB must have the same asymptotic distribution as
(p/n)

∑n
i=1
∑n

j=1 U
�
i U j, which is known to be χ2

p . �

Proof of Proposition 3.4.: Consider only R̃i (as the proof for R̃i is analogous), arbitrarily fix x ∈ R
p,

and assume � = Ip without any loss of generality. If Xi = x, then R̃i ≡ R̃i(x) =∑n
j=1 I[̃Lx(Xn) ≥

L̃Xj(Xn)] andRi ≡ Ri(x) =∑n
j=1 I[‖x‖ ≥ ‖Xj‖]. It suffices to show that n−2E[̃Ri(x) − Ri(x)]2 → 0

as n → ∞, which follows, as in the proof of Proposition 2 in Oja and Paindaveine (2005), from∫
Rp

gj(x, z)f (z) dz = o(1), j = 1, 2, (A1)

where g1(x, z) = EI[̃Lx(Xn) ≥ L̃z(Xn), ‖x‖ < ‖z‖] and g2(x, z) = EI[̃Lx(Xn) < L̃z(Xn), ‖x‖ ≥
‖z‖]. This is shown in the following.
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If ‖x‖ ≥ ‖z‖, then g1(x, z) = 0. Furthermore, Theorem 3.1 and Oja and Paindaveine (2005)
imply that m−1

n,pL̃x(Xn) converges in quadratic mean to the theoretical lift-interdirection l(x) =
Em−1

n,pL̃x(Xn), which is a strictly increasing function of ‖x‖. If ‖x‖ < ‖z‖, then the Chebyshev
inequality consequently results in

g1(x, z) = P(m−1
n,p [̃Lx(Xn) − L̃z(Xn)] ≥ 0)

≤ P
(∣∣∣m−1

n,p [̃Lx(Xn) − L̃z(Xn)] − (l(x) − l(z))
∣∣∣ ≥ l(z) − l(x)

)
≤ var[m−1

n,pL̃x(Xn) − m−1
n,pL̃z(Xn)]

(l(z) − l(x))2
= O(1/n) = o(1)

as n → ∞ for all x, z ∈ R
p, which implies the result because g1 is bounded. The proof for g2 is

analogous. �

Proof of Proposition 3.5: The proof mimics that of Proposition 3 in Hallin and Paindav-
eine (2002b), but some steps require different justification due to the use of incomplete versions
of both interdirections and symmetrised lift-interdirections. These arguments are gathered in the
concluding Lemma A.1.

Consider distances di = ‖�−1/2Xi‖ and independent random vectors U i = d−1
i �−1/2Xi uni-

formly distributed on the unit sphere in R
p, i = 1, . . . , n. Assume � = Ip without any loss of

generality and define:

Tn
1 = 1

n

n∑
i,j=1

K
(

R̃i
n + 1

)
K

(
R̃j

n + 1

)[
cos(ãmn,p−1

Xi ,Xj
) − U�

i U j

]
,

Tn
2 = 1

n

n∑
i,j=1

[
K
(

R̃i
n + 1

)
K

(
R̃j

n + 1

)
− K(Fr(di))K(Fr(dj))

]
U�

i U j,

Tn = 1√
n

n∑
i=1

K(Fr(di))U i,

Sn = 1√
n

n∑
i=1

K(Ri/(n + 1))U i, and Ŝn = 1√
n

n∑
i=1

K (̃Ri/(n + 1))U i

where Ri is the rank of di, i = 1, . . . n.
To sum up, the proof approximates SA with

S0A = p
nEK2(V)

n∑
i,j=1

K(Fr(di))K(Fr(dj))U�
i U j

whose limit distribution follows easily from the central limit theorem for Tn. The difference SA −
S0A ≡ (p/E[K2(V)])(Tn

1 + Tn
2 ) must be oP(1) because both Tn

1 → 0 and Tn
2 → 0 in probability as

n → ∞, which is proved below.
As forTn

2 , Hallin and Paindaveine (2002b) proved that E‖Tn − Sn‖2 = o(1) and E[K(Ri/(n+ 1))
− K(Fr(di))]2 = o(1) as n → ∞. Lemma A.1(1) further implies that

E‖Sn − Ŝn‖2 = 1
n

n∑
i=1

E
[
K
(

Ri
n + 1

)
− K

(
R̃i

n + 1

)]2
→ 0

because the squared differences in the summands are both uniformly integrable thanks to Assump-
tion A and o(1) in probability thanks to Proposition 3.4 and the continuity of K almost everywhere.
They are thus o(1) in quadratic mean. Hence, E‖Tn − Ŝn‖2 → 0, too. Therefore, E‖Tn‖2 < ∞
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implies E‖̂Sn‖2 < ∞. The Cauchy-Schwartz inequality then concludes that

E|Tn
2 | = E|̂S�

n Ŝn − T�
n Tn| ≤

√
E‖̂Sn + Tn‖2

√
E‖̂Sn − Tn‖2 → 0

for n → ∞, which proves that Tn
2 → 0 both in L1 and in probability.

Now turn to Tn
1 and define

Di := K
(

R̃i
n + 1

)
and Cij := cos(ãmn,p−1

Xi ,Xj
) − U�

i U j.

Then

E‖Tn
1‖2 = 1

n2
E

⎛⎝ n∑
i,j=1

DiDjCij

⎞⎠2

= 2
n2
∑
i�=j

E[DiDjCij]2 = 2(n − 1)
n

E[D1D2C12]2

≤ 2(n − 1)
n

(E|D1D2|2+δ)2/(2+δ)(E|C12|2(2+δ)/δ)δ/(2+δ)

for the particular δ > 0 from Assumption A thanks to Cii = 0 almost surely, i = 1, . . . , n,
Lemma A.1(2,3) and the Hölder inequality.

The conditional expectation of bounded C12 given the design, X1 and X2 always converges
to 0 in quadratic mean for the same reasons as in Proposition 3.3. Therefore, E|C12|2 → 0 and
also E|C12|2(2+δ)/δ → 0 as n → ∞. Furthermore, E|D1D2|2+δ < ∞ due to Lemma A.1(2). Con-
sequently, Tn

1 → 0 in L2 (and in probability) as n → ∞. �

Lemma A.1: (1) If i �= j, then

E
[
K
(

Ri
n + 1

)
− K

(
R̃i

n + 1

)][
K
(

Rj

n + 1

)
− K

(
R̃j

n + 1

)]
U�

i U j = 0.

(2) E|D1D2|2+δ < ∞ and EDiDjCij = ED1D2C12 for i �= j.
(3) If (i, j) �= (k, l) and (i, j) �= (l, k), then

EDiDjCijDkDlCkl = 0.

Proof: Recall that R̃i and C̃Xi ,Xj(Xn) respectively depend on independent and equally probable
design sets Qs

S(n, p) and QS(n, p − 1) that are also independent of X .
(1) Let i �= j. The statement holds when

EK(Ri/(n + 1))K(Rj/(n + 1))U�
i U j = 0,

EK (̃Ri/(n + 1))K (̃Rj/(n + 1))U�
i U j = 0, and

EK (̃Ri/(n + 1))K(Rj/(n + 1))U�
i U j = 0.

Set Bi := sgn(Xi1), Yi := BiXi, and note that Bi are (for spherically distributed Xi = (Xi1, . . . ,Xip)
′)

independent of Yi, mutually independent and identically distributed with P(Bi = 1) = P(Bi =
−1) = 1/2, i = 1, . . . , n. Recall thatXi = diU i andU i = Xi/di = YiBi/di where di = ‖Xi‖ = ‖Yi‖.
Hence, di is a function ofYi and the ranksRi’s are functions of the sampleY consisting ofY1, . . . ,Yn.
Consequently,

EK(Ri/(n + 1))K(Rj/(n + 1))U�
i U j

= EYEB[K(Ri/(n + 1))K(Rj/(n + 1))U�
i U j|Y1, . . . ,Yn] =

= EY
Y�
i Yj

didj
K(Ri/(n + 1))K(Rj/(n + 1))EB[BiBj|Y1, . . . ,Yn] = 0.
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Any design Qs
S(n, p) independent of X leads to the symmetrised lift-interdirections L̃Xi(Xn), i =

1, . . . , n, that are the same for any s1X1, . . . , snXn, (s1, . . . , sn) ∈ {−1, 1}p. Therefore, they are only
functions of Y1, . . . ,Yn, and the same thus holds even for their ranks.

Consequently,

EK (̃Ri/(n + 1))K (̃Rj/(n + 1))U�
i U j

= EYEQs
S
EB[K (̃Ri/(n + 1))K (̃Rj/(n + 1))U�

i U j|Y1, . . . ,Yn,Qs
S]

= EYEQs
S

Y�
i Yj

didj
K (̃Ri/(n + 1))K (̃Rj/(n + 1))EB

[
BiBj|Y1, . . . ,Yn,Qs

S
] = 0.

The proof of the last equality is analogous.
(2) Obviously,

EDiDjCij = 1
|{Qs

S}||{QS}|
∑
Qs
S

∑
QS

EXK
(

R̃i
n + 1

)
K

(
R̃j

n + 1

)

×
(
cos(ãmn,p−1

Xi ,Xj
(X )) − X�

i Xj

didj

)
.

The expectation is the same for all pairs (i, j) of distinct indices because the Xi’s are i.i.d. and the
design sets are properly independent and equiprobable. The following expectation is independent
of (i, j), i �= j, for the same reason:

E|D1D2|2+δ = 1
|{Qs

S}|
∑
Qs
S

EX |K (̃R1/(n + 1))K (̃R2/(n + 1))|2+δ

=
∑
l �=m

|K(l/(n + 1)|2+δ|K(m/(n + 1))|2+δ
∑
Qs
S

1
|{Qs

S}|
P(̃R1 = l, R̃2 = m).

︸ ︷︷ ︸
p(l,m)

As p(l,m) does not depend on l andm, necessarily p = [n(n − 1)]−1. The finiteness of E|D1D2|2+δ

then follows from the arguments in the proof of Proposition 3 in Hallin and Paindaveine (2002b).
(3) Define CY

ij := cos(π C̃Yi ,Yj(Yn)/mn,p−1) − Y�
i Yj/(didj), and realise that

cos(π C̃Xi ,Xj(Xn)/mn,p−1) = BiBj cos(π C̃Yi ,Yj(Yn)/mn,p−1).

Then

EDiDjCijDkDlCkl

= EYEQs
S
EQSC

Y
ij C

Y
klEB[DiDjDkDlBiBjBkBl|Y1, . . . ,Yn,Qs

S,QS]

= EYEQs
S
EQSDiDjCY

ij DkDlCY
klEB[BiBjBkBl],

which is indeed zero if (i, j) is different from both (k, l) and (l, k). �
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