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In non-genetic systems, such as culture, inheritance is often non-particulate. Owing to blending and consequent 
loss of variability, however, selection in such systems has been considered ineffective. The issue of loss of variability 
was solved by the Galton–Pearson model, which assumes a constant offspring variability and predicts gradual 
adaptation regardless of model parameters. The supposition of constant offspring variability is, however, arbitrary, 
and it is rather unrealistic in the context of social learning, because variability of inputs may affect the resulting 
trait acquisition. We present an alternative non-particulate inheritance model, ‘Parental Variability-Dependent 
Inheritance’, in which offspring variability is proportional to parental variability. Results of computer simulations 
show that despite its simplicity, this model can, even from the same initial conditions, result in one of two stable 
states: successful adaptation or loss of variability. Successful adaptation is more probable in larger populations with 
a larger relative offspring variability and an intermediate level of selection. A third possible outcome is an unstable, 
chaotic increase in variability, which takes place when relative offspring variability is too large to be trimmed by 
selection. Without any additional assumptions, this inheritance system results in punctuated evolution.

ADDITIONAL KEYWORDS: blending inheritance – computer simulations – cultural evolution – Galton–Pearson 
model – swamping argument.

INTRODUCTION

The downfall of non-parTiculaTe inheriTance

Non-particulate inheritance has been considered 
outdated at least since the rediscovery of the principles 
of genetic inheritance at the beginning of the 20th 
century (Nurse, 2000). The paradigm of mutation, 
selection and admixture of discrete trait determinants 
solved some of the greatest difficulties of evolutionary 
theory of that time and dominated evolutionary biology 
for decades thereafter.

The main drawback of non-particulate inheritance 
lies in the assumption that offspring inherit an 

average trait value of homologous parental traits. This 
model, known as the ‘paint-pot’ theory of inheritance, 
leads to a loss of variability in each generation, which 
implies that after several generations, all individuals 
in a population ought to be indistinguishable and 
natural selection irrelevant. The first person to draw 
attention to this problem was Darwin’s vocal opponent 
Henry Fleeming Jenkin (Fleeming Jenkin, 1867). 
He coined the term ‘swamping’ for the hypothetical 
cases where some exceptional traits of unusually fit 
individuals (so-called ‘sports’) are, together with the 
accompanying reproductive advantage, dissolved in a 
large population of average individuals. Although the 
thought experiment he used to illustrate the argument 
was racist (Bulmer, 2004) and mathematically unsound 
(Davis, 1871), it seems that Darwin was unsettled *Corresponding author. E-mail: petr.turecek@natur.cuni.cz
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by this objection. In response, he started to stress 
the importance of a ubiquitous, ‘common’ variance 
over exceptional qualities provided by rare mutants 
(Darwin, 1857, 1866, 1867), and later introduced a 
particulate system parallel to Mendelism (Darwin, 
1868) designed to sidestep non-particulate inheritance.

Other theorists defined numerous clever add-ons to 
the classical blending inheritance model, which served 
the same purpose; frequent introduction of individuals 
with advantageous mutations, i.e. sports (Davis, 1871), 
or error terms that secure a constant (or minimal) 
offspring variability (Galton, 1889; Pearson, 1896). 
Particulate inheritance prevailed owing to its broad 
applicability in life sciences, whereas non-particulate 
models were eventually abandoned, leaving behind 
only a vague idea of paint-pot inheritance as an 
example of a paradigm our predecessors were not yet 
able to discard.

a simulaTion of culTural evoluTion

We are currently witnessing a growing interest 
in studying the evolution of human cultures and 
artefacts by methods used in population genetics 
(McElreath et al., 2003), cladistics (Tehrani, 2013) 
and bioinformatics (Barbrook et al., 1998). Cultural 
traits are, after all, variable, heritable, transmittable 
and subject to selection (Mesoudi, 2011; Henrich et al., 
2016). In contrast, cultural evolution differs from 
biological evolution, at whose core are the processes of 
mutation and selection, in some key aspects, such as 
different modes of transmission and, frequently, also a 
non-particulate nature of cultural variants (Henrich & 
McElreath, 2003; Mesoudi, 2017).

Mathematical models of cultural evolution that 
use non-particulate inheritance go back to the 
pioneering work of Cavalli-Sforza & Feldman 
(1973, 1978, 1981). Nevertheless, models of 
cultural change based on the idea of competition 
between discontinuous particulate traits and their 
subsequent abundance in the population received 
more attention (Boyd & Richerson, 1987, 1988a), 
and they are, in fact, still dominant in current 
theoretical work on cultural evolution (Buenstorf & 
Cordes, 2008; Strimling et al., 2009; Li, 2017). They 
are used despite concerns that this approach might 
result in a ‘phenotypic gambit’, where complex 
interactive phenomena (cooperation, imitation and 
learning) are reduced to strategies determined 
by single ‘alleles’ (such as ‘cooperate’ vs. ‘betray’, 
‘imitate’ vs. ‘invent’), which might jeopardize the 
relevance of such models for real-world applications 
(Centola & Baronchelli, 2015; Cownden et al., 2017). 
Moreover, inheritance in these models is frequently 
uniparental, which casts further doubt on their 
applicability (Enquist et al., 2010).

Although some models of cultural inheritance are 
based on non-particulate systems (Boyd & Richerson, 
1988b; Acerbi et al., 2009), even these tend to be 
substantially influenced by particulate theories. They 
tend to assume, for example, a flawless replication 
(Mesoudi & O’Brien, 2008), competition between 
discontinuous phenotype variants (Doebeli et al., 
2017), identical parent–offspring pairs without any 
stochastic variation (Li, 2017), constant mutational 
rate (Chiou & Wang, 2017) or constant innovative 
change (Mesoudi & O’Brien, 2008; Acerbi et al., 2009).

non-parTiculaTe inheriTance revisiTed

If we assume that in systems with non-particulate 
inheritance the trait levels in the individual offspring 
cannot exceed the parental trait range, after several 
generations we indeed end up with a homogeneous 
population. That can, however, be avoided by 
introducing some minor changes to the classical non-
particulate inheritance system while making certain 
that Fleeming Jenkin’s assumptions remain almost 
unchanged, so that: (1) the expected average trait value 
of offspring is equal to parental average trait value; and 
(2) trait values of the individual offspring are normally 
distributed around the parental average value. 

One way of complying with these requirements is to 
use the Galton–Pearson model (Galton, 1889; Pearson, 
1896). This model was formulated in modern terms by 
Cavalli-Sforza & Feldman (1981) and has been used in 
a quantitative approach to cultural evolution before. 
In an early work by Boyd & Richerson (1988b), half 
of their models rely on this kind of non-particulate 
inheritance. In this model, the trait value of an 
individual offspring, t, is determined by the arithmetic 
mean of parental trait values tp1, tp2, . . . , tpM  for 
M  number parents, and an ‘error’ term, ε, so that 
t = µ

(
tp1, tp2, . . . , tpM

)
+ ε; ε ∼ N

(
0,η2) ,

where N
(
τ, ς 2) denotes normal distribution 

with a mean, τ, and standard deviation, ς, and 
µ
(
tp1, tp2, . . . , tpM

)
 is the average of parental values 

tp1, tp2, . . . , tpM, that is,

µ
(
tp1, tp2, . . . , tpM

)
=

1
M

M∑
j=1

tpj.

The error term is to be viewed as a random phenotypic 
mutation and η as a mutation standard deviation. In 
this model, the probability distribution of offspring 
trait values is characterized by a constant standard 
deviation. Cavalli-Sforza & Feldman (1981) specified 
all non-particulate models as biparental (i.e. M = 2). 
We follow this numerical approach in most of our 
computer simulations (see Material and Methods) 
but define the formulas for any M so as to allow for a 
possible generalization to multi-parental inheritance.
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To the best of our knowledge, there are no 
experimental data available that would support 
this form of mutation standard deviation described 
above in cultural inheritance. It is an inheritance 
model based on Galton’s observations of genetically 
determined traits, such as sweet pea seed size and 
human height (Stanton, 2001), which were later shown 
to be determined directly by Mendelian inheritance 
of continuous quantitative traits regulated by many 
genes with additive effects (Fisher, 1918). Thus, 
although useful in population genetics, the power of the 
Galton–Pearson model might be limited when it comes 
to models of cultural evolution, because quantitative 
cultural traits are not stored in distinct, mutually 
exclusive particles. With a constant error term, two 
identical parents are assumed to have offspring as 
variable as very diverse parents. This makes the 
model rather artificial and inaccurate when it comes to 
approximating social learning, which is heuristic and 
error prone. The outcome of homogeneous inputs ought 
to differ from the outcome of heterogeneous inputs, 
but the Galton–Pearson model implicitly assumes 
that it is equally easy to estimate the intermediate 
value for any set of cultural influences, irrespective 
of their variability. The distribution of offspring trait 
values might be approximated more accurately by an 
error term that scales according to the distribution of 
parental trait values (see Fig. 1).

We propose an alternative, a Parental Variability-
Dependent Inheritance model (PVDI), where the error 
term, ε, defined below is not constant but depends on 
the variability of parental values, σ, given by

σ2 (tp1, tp2, . . . , tpM
)
=

1
M

M∑
j=1

[
tpj − µ

(
tp1, tp2, . . . , tpM

)]2.

In this case, the probability distribution of offspring 
trait values is given by

t = µ
(
tp1, tp2, . . . , tpM

)
+ ε;

ε ∼ N
(
0,ν2σ2 (tp1, tp2, . . . , tpM

))
,

where ν > 0 is a constant representing relative 
offspring variability; we chose the expression ν2σ2(…) 
mainly for simplicity. In this model, the greater the 
dissimilarity of parents with respect to a certain 
trait, the more variable in absolute values is the 
offspring they produce. In systems built around social 
learning (Hoppit & Laland, 2013), this is a reasonable 
assumption. When an individual learns from two 
different ‘parents’, it is reasonable to expect that 
individual to differ more (in absolute values) from the 
parental range. Unlike the Galton–Pearson model, the 
PVDI model predicts that the parental range is always 
exceeded by the same proportion of offspring. Both 
models are outlined briefly in flowcharts in Figure 1.

In the following, we use computer simulations to study 
the evolutionary dynamics in non-particulate PVDI 
systems. Each simulation starts with a homogeneous 
population far from the set optimum. This should help 
us to distinguish between directional and stabilizing 
selection (Phillips & Arnold, 1989). We observe that in 
PVDI models, the variability loss noted by Fleeming 
Jenkin and successful adaptation demonstrated by 
Cavalli-Sforza & Feldman (1981) are complemented 
by a third possible outcome, namely variability 
explosion. The probability of an outcome is influenced 
by the population size, N, proportion of surviving 
individuals, s, and relative offspring variability, ν. We 
also show that despite its simplicity, the PVDI model 
can generate punctuated evolutionary patterns. We 
complement these results with identical conclusions 
yielded by mathematical analysis of limiting cases in 
systems with Galton–Paerson inheritance and PVDI.

MATERIAL AND METHODS

We built a model of a population that is undergoing 
natural selection. To avoid population dynamics that 
could obscure the effect of the studied concept, the 
population size is held constant across generations 
in each simulation run. Population Pi is therefore 
represented by a vector of length N  as

Pi =
Ä
ti
1, ti

2, . . . , ti
N

ä
∈ RN

where i denotes the number of the generation and real 
number ti

j corresponds to the value of a hypothetical 
quantitative trait of j-th individual in i-th generation. 
To describe the process of generating the (i + 1)-th 
generation, we need the following set of parameters: 
(1) topt is the optimal trait value, i.e. any individual 
characterized by this trait value has the highest 
possible chance of survival; 0 < s ≤ 1 is the relative 
proportion of surviving individuals, low s therefore 
corresponds to strong selection; and 0 < ν is the relative 
offspring variability.

Let us split the description of the model into two 
parts. First, we establish the model we used for the 
computer simulation; and second, we discuss possible 
ways of generalizing this model. The production of 
the (i + 1)-th generation from the i-th generation is 
composed of the following steps.

 1. Handicaps of all individuals in the population are 
computed as square distances of their trait value 
from the optimum:

hand (t) = (t − topt)
2.

 2. Truncation selection is used, i.e. only the fittest 
individuals survive and produce a new generation. The 
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number of surviving individuals is S = round(sN). 
For the sake of simplicity, let us assume that S is an 
even number and N is thus divisible by S/2. Then we 
find S individuals of Pi with the smallest handicap 
hand (tj) and pair them at random. This leaves us 
with S/2 random pairs of the S fittest individuals.

 3. Each of the S/2 pairs generates an equal number of 
offspring, thus the size N of the original population 
is restored (each pair generates 2N/S individuals). 
We can now describe the generation of one of these 
offspring, the j-th member of a future (i + 1)-th 

generation. Let us denote the parents of the j-th 
individual of any generation by p1 ( j) and p2 ( j) . 
The trait value ti+1

j  is then given by

ti+1
j = µ ti

p1( j), ti
p2( j) + N 0,ν2σ2 ti

p1( j), ti
p2( j) ,

where μ and σ are the mean and standard de-
viation functions specified above. In this case, 
where an individual has exactly two parents, σ is 
equal to half of the parental span, i.e.

Figure 1. A flowchart of selection and reproduction in models of non-particulate inheritance. The colour shade of 
an individual represents a heritable quantitative trait. The Galton–Pearson and the Parental Variability-Dependent 
Inheritance model (PVDI) model differ with respect to the procreation step.
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σ
(
tp1( j), tp2( j)

)
=

1
2
∣∣tp1( j) − tp2( j)

∣∣ .

 4. The offspring generated in the previous step then 
forms a new (i + 1)-th generation, again represented 
by a vector

Pi+1 =
Ä
ti+1
1 , ti+1

2 , . . . , ti+1
N

ä
∈ RN .

Note that the result of this procedure is independent of 
the order in which individuals were originally sorted 
in vector Pi. A flowchart of this iterative algorithm can 
be found in Figure 1 (PVDI part). Editable script for 
an individual simulation run is available at https://
github.com/costlysignalling/PVDI_python.

Where N is not divisible by S/2, we need to specify 
an additional process of offspring generation in order 
to keep the population size constant. In our numerical 
computations, we generate the remaining offspring 
using the parent pairing obtained in the previous part 
of offspring generation.

The initial conditions in our numerical simulations 
were chosen to resemble Jenkin’s original example 
with a uniform population and an individual with 
exceptional and advantageous mutation (the ‘sport’). 
The simulation starts with a uniform population of 
size N , where N − 1 individuals have a trait value 10, 
one individual (the ‘sport’) has trait value 11, and the 
optimum is set at topt = 120. These values, although 
arbitrarily chosen, do not jeopardize the generality of 
our findings, because we are free to alter the scale of 
measurement of trait values (Boyd & Richerson, 2005). 
The range of constants N, s and ν was chosen based 
on a preliminary analysis in order to demonstrate 
important transitions between systems with different 
frequencies of successful and unsuccessful adaptations. 
We worked with 400 ≤ N ≤ 25 600, 0.1 ≤ s ≤ 0.9 and 
0.6 ≤ ν ≤ 1.4.

By successful adaptation at the i-th generation, we 
mean a situation where variability measured by the 
coefficient of variation (CV) is smaller than a threshold, 
ε1, and the mean trait value of the population is at 
most ε2 from the optimum, i.e.

σ (Pi) /µ (Pi) < ε1 and |µ (Pi)− topt| < ε2.

By unsuccessful adaptation, we mean a situation 
where variability measured by the CV is smaller 
than the threshold, ε1, and the mean trait value of the 
population is more than ε2 from the optimum, i.e.

σ (Pi) /µ (Pi) < ε1 and |µ (Pi)− topt| > ε2

In numerical simulations, the condition of vanished 
variability is realized by checking whether variability 
rounded to four decimal digits is zero. We chose 
ε2 = 0.1.

We also marked the number of generations needed 
for the first individual to reach or rise above the 
optimum in each of the simulation runs. This measure 
is a better indicator of adaptation speed than the 
number of generations needed until stabilization 
around an optimum is reached, because variability 
loss is much slower in simulation runs where the ratio 
of surviving individuals, s, is large. This analysis was 
supplemented with an additional set of simulation 
runs, where 200 ≤ N ≤ 51 200, and 0.001 ≤ ν ≤ 4.0 
varied beyond the original interval. Our aim here 
was to show all three possible outcomes (successful 
adaptation, variability loss and variability explosion) 
in a single three-dimensional parameter space.

In another part of the analysis, we investigated 
the punctuality of evolution in this non-particulate 
inheritance system. We counted how many 
transgenerational changes in the population mean 
are responsible for the majority (50 and 80%) of 
evolutionary transition from the populational mean in 
the first generation to the optimum. Using Pearson’s 
product–moment correlation, we investigated how 
well the magnitude of transgenerational change 
between the i-th and the (i + 1)-th generation predicts 
the magnitude of transgenerational change in the 
subsequent generation. The proportion of influential 
intergenerational changes is a measure of punctuality 
in general, and the correlation between the size 
of subsequent changes measures the clustering of 
influential intergenerational changes and periods 
of evolutionary stasis. In this part of the analysis, 
we used only those simulation runs that resulted 
in a successful adaptation. We omitted the end of 
each simulation run, i.e. the stage after optimum 
was achieved by the populational mean. We also 
investigated the correlation between populational 
variability, measured by the CV, and a subsequent 
change in population mean in the same subsample of 
intergenerational changes.

For the purpose of further analysis, we differentiated 
between directional and stabilizing selection. The part 
of the evolutionary process where the distribution of 
individuals does not reach above the optimum was 
viewed as a period of directional selection:

Pi =
Ä
ti
1, ti

2, . . . , ti
N

ä
; for all j ∈ [1, N] : ti−1

j < topt

and ti
j < topt.

We can be certain during directional evolution that 
the distribution is truncated only at one tail. If the 
distribution reaches above the optimum, we speak of 
a stabilizing selection:

Pi =
Ä
ti
1, ti

2, . . . , ti
N

ä
; for all j ∈ [1, N] : ti−1

j < topt

and for some k ∈ [1, N] : ti
k ≥ topt.
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A total of 5000 independent runs were executed for 
every possible combination of the abovementioned 
parameters, N, s and ν. All agent-based models 
were created in the Python programming language 
(van Rossum, 1995). Python v.2.7 was used with the 
packages NumPy (van der Walt et al., 2011) and SciPy 
(Jones et al., 2001). Visualizations were created mostly 
with the help of Matplotlib (Hunter, 2007), and some 
parts of the analysis and data visualization were also 
conducted in R 3.3.1.

Analytical results were obtained for the limiting case 
where M = S. This left out the random pairing and 
N → ∞, which by the law of large numbers allowed 
us to work with normal distribution functions instead 

of vectors of trait values. The initial distribution of the 
population was assumed to be normal.

RESULTS

Results of the computer simulations (for a summary, 
see Fig. 2) show that runs with a large population size, 
reasonably high offspring variability and a medium 
ratio of surviving individuals almost invariably 
resulted in successful adaptation (Fig. 3A). In smaller 
populations, where relative offspring variability was 
small and the ratio of surviving individuals either large 
or small, the population frequently stopped developing 

Figure 2. The probability of a successful adaptation (left) is determined by interactions between posterity variability, ν, 
the ratio of surviving individuals, s, and the population size, N (a logarithmic scale is used for more intelligible graphical 
representation of the population size effect). The mean number of generations needed until the first optimum is reached 
(right) has a slightly different relationship to the abovementioned variables. For each combination of parameters, 5000 
simulations were run. Hatching distinguishes the area where zero simulation runs ended in a successful adaptation from 
the pale area where a small (e.g. 0.01%) but non-zero proportion was recorded. Logarithmic colouring is used. An equivalent 
summary for the Galton–Pearson model can be found in the Supporting Information (Fig. S1.1).
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at a suboptimal level, because initial variability had 
vanished and selection with no variability could not 
transform the populational mean (Fig. 3C). In such 
cases, offspring variability was too small to resist 
the loss of variability attributable to averaging and 
selection.

In other configurations of parameters where 
adaptation was not successful, offspring variability 
was too large to be manageable either by averaging or 
by selection. The total population variability therefore 
increased throughout the whole simulation run, and 
the absolute value of fluctuation of the populational 
mean over time grew (Fig. 3B).

At the edge of the area where successful adaptation 
was universal, both successful and unsuccessful 
adaptations are possible, and stochastic mechanisms 

(random pairing and offspring generation) decide 
whether a simulation run ends with a successful 
adaptation or with variability loss (Fig. 3C, D).

Probabilities of the three possible outcomes 
specified above divided the three-diensional space of 
model parameters into three distinct areas: a zone of 
adaptation (Fig. 3A); a zone of variability explosion 
(Fig. 3B); and a zone of variability loss (Fig. 3C), 
which was the most likely outcome. These areas are 
outlined in a parameter space in Figure 4. Variability 
loss can also arise in the zone of variability explosion, 
because in the simulation runs described above there 
is at the outset only one exceptional individual. In 
principle, all her descendants could score lower than 
the homogeneous offspring of average population 
members. The likelihood of this happening at least 

Figure 3. Exemplars of individual simulation runs. Every population is homogeneous at the beginning, and one sport 
is introduced in generation 1. Model parameters (stated in top left corner of each panel) in panels C and D are equal. 
Differences between exemplars in panels C and D are attributable to the stochastic nature of the model. The coefficient 
of variation (CV) is a relative variability measure: CV = σ/μ. Equivalent simulations for the Galton–Pearson model can be 
found in the Supporting Information (Fig. S1.2).
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once in the first few generations after the introduction 
of this ‘sport’ increases in relationship to the growth 
of offspring variability (ν ) and the ratio of surviving 
individuals (s), which also lowers the number of 
offspring an individual can have. When we substituted 
the initial conditions with a homogeneous population 
containing a sport for a population of variable 
individuals (such that t1

j ∼ N
(
τ, ς 2) ; ς �= 0), then 

in the zone of variability explosion a chaotic outcome 
became almost universal. It should be noted that 
sudden variability loss owing to a universal production 
of inferior offspring from promising individuals can 
also take place in the zone of adaptation (especially 
with growing ν).

The longest time until the first individual reaches 
the optimum is not associated with the combination 
of parameters that has the lowest probability of 
successful adaptation. The peak of this measure 
copies the border of an area where the optimum can 
be achieved but remains inside this border if the 
population size is small and evolution is therefore 
less predictable (Fig. 2). Where successful adaptation 
is unlikely, only individuals in runs where variability 
increases quickly tend to reach the optimum. If the 
parameter configuration is more favourable to a 
successful adaptation, even individuals in ‘less lucky’ 
runs, where a considerable amount of time is required 

to reach the populational optimum owing to stochastic 
processes acting against adaptation (averaging, weak 
selection), eventually reach the optimum.

Multi-parental inheritance, M > 2, conforms to all 
the abovementioned conclusions. Only with higher M, 
simulations become more deterministic and the zone 
of adaptation is more restricted by growing regions 
of adverse outcomes associated with variability 
loss or variability explosion. Adaptation either ends 
abruptly as a result of swamping of higher variability, 
attributable to averaging in larger parental sets, 
or the positive feedback of growing variability in 
already variable parental sets does not allow the 
populational mean to stabilize around the optimum. 
Graphical summaries for Mequal to four, eight and 40, 
equivalent to Figures 2–4, can be found in Supporting 
Information, S2.

Analysis of the individual runs has revealed that 
in our model, evolution tends to follow a punctuated 
pattern, in which adaptation consists of periods of 
relative stasis and rapid change. On average, 27.9% 
(SD = 9.3%) of transgenerational changes in the 
populational mean were responsible for 80% of the 
total transition from the initial populational mean to 
the optimum. And although the punctuated character 
of the evolution was most apparent in simulation 
runs with large population size, weak selection 
and variable offspring (for complete results, see 
Supporting Information, S3), it was present in the 
whole domain of studied parameter combinations. 
In the vast majority (97.5%) of all simulation runs 
ending in a successful adaptation, the proportion of 
transgenerational changes responsible for 80% of 
total transitions was < 50%.

T r a n s g e n e r a t i o n a l  c h a n g e  b e t w e e n  t h e 
populational mean in generation i, µ(Pi), and 
the population mean in generation i + 1, µ(Pi+1),  
predicted the magnitude of transgenerational 
change between µ(Pi+1) and µ(Pi+2) rather well. The 
average correlation between subsequent changes in 
the populational mean was 0.92 (SD = 0.08; 95% of 
all simulation runs scored between 0.70 and 0.99). 
In other words, large and small intergenerational 
changes in the populational mean tended to cluster. 
The examples in Figure 3A, D illustrate possible 
dynamics. At the outset, variability is small (note 
that the initial population is almost homogeneous) 
and selection cannot significantly affect the 
populational mean, but as variability grows, 
selection can lead to a substantial shift within a few 
generations. Populational variability (measured by 
CV) is well correlated with the subsequent change in 
the populational mean (average correlation was 0.75 
with SD = 0.11; 95% of runs were between 0.49 and 
0.91). For a depiction of how these values change in 
a parameter space, see Supporting Information, S3.

Figure 4. Zones of variability loss, adaptation and 
variability explosion in a parameter space outlined by ν, 
s and N (N is shown on a logarithmic scale). The colours 
outline areas where the outcomes in question are the most 
likely. Gradual overlaps (shown in Fig. 2) are neglected for 
the sake of clarity.
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An interesting difference was found between 
the phases of directional and stabilizing selection 
(described in the Material and Methods). During 
stabilizing selection, variability declined, which was 
expected, but during directional selection it grew. 
These tendencies were more pronounced when the 
relative offspring variability, ν, was larger. The overall 
relationship is visualized in Figure 5. An interesting 
pattern of points appears in the graphical depiction 
of directional selection in certain configurations of 
parameters (especially when selection is strong, e.g. 
with s = 0.2). It suggests the emergence of a systematic 

boost in variability that leads to adaptation within 
several generations. This discontinuity can serve 
as a hallmark of punctuated evolution in stochastic 
simulations of PVDI systems.

A mathematical analysis of limiting cases without 
any stochastic component leads to equivalent 
conclusions. In PVDI systems, the mean trait value 
and variance grow exponentially during a directional 
selection, or variance decreases until the populational 
mean halts at a certain suboptimal value. We can 
identify an exact analytical criterion, which is 
dependent on ν and s and distinguishes between these 

Figure 5. Stabilizing and directional selection have different impacts on the growth of variability. During directional 
selection the variability increases, whereas during stabilizing selection it declines. Moreover, directional selection seems to 
generate two rather distinct clusters of points at certain parameter configurations (e.g. ν = 1.1, s = 0.2, N = 6400). This figure 
is based on 50 simulation runs ending in a successful adaptation for each parameter combination. Not available replace the 
subplot for parameter combinations where successful adaptation was not observed within all 5000 simulation runs. A dark 
grey line marks the ratio of CVs in subsequent generations equal to one. All points above this line indicate variability 
growth, whereas all points below indicate a decline of variability.
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two cases. Selection in the Galton–Pearson model 
always results in a linear growth of mean trait value 
while variance remains constant. A complete analysis, 
with additional observations concerning the difference 
between an optimum in infinity and a real optimum, 
criterion of variability explosion, and the limiting case 
with absence of selection pressure, can be found in the 
Supporting Information, S4.

DISCUSSION

Previous studies of cultural evolution tended to rely 
on the Galton–Pearson model of inheritance, which 
assumes a constant offspring variability (Cavalli-
Sforza & Feldman, 1981). This model, although 
originally meant to be non-particulate, was based 
on measurements influenced by the assumption of 
an underlying particulate structure of genes with 
additive effects (Fisher, 1918). For non-particulate 
cultural inheritance, as noted above, this assumption 
is rather unrealistic. We therefore proposed a model 
of non-particulate systems with PVDI. We managed 
to demonstrate that a minor modification in the 
mechanism of inheritance leads to a substantial boost in 
the complexity of evolutionary dynamics. Simulations 
based on this model show that once we introduce 
the stochasticity of random pairing and offspring 
generation, the same initial conditions can lead to either 
successful adaptation or loss of variability. These two 
previously contrasted outcomes are accompanied by a 
variability explosion, causing increasing fluctuations 
of the populational mean that dominates a substantial 
part of the investigated parameter space.

Earlier studies, with the aim of mathematical 
analysis of genetic variation and its phenotype 
realization across generations, modelled the variance 
of the offspring generation as a function of the 
variance of the parental generation (Cavalli-Sforza 
& Feldman, 1976, 1978; Lande, 1976; Feldman & 
Cavalli-Sforza, 1979). Inspired by Fisher (1918), these 
models postulate a large number of loci with additive 
effects, which after an independent selection of specific 
parental trait values results in a proportionality 
between the genotypic variance of progeny and one 
half of genotypic variance (plus a contribution of 
mutation to the within-family variance) in the parental 
population. This model can be expressed as

ti+1
j = µ

Ä
ti
p1( j), ti

p2( j)

ä
+ N

Ç
mg,

σ2 (P∗
i )

2
+ Mg

å
,

where mg and Mg  are constants that represent the 
influence of random mutation on changes in the mean 
trait value and variance of progeny respectively, and 
P∗

i  is a population of parents after selection.

It has been shown that this model is an equivalent 
of the Galton–Pearson model for mg = 0, whereas the 
constant mutation standard deviation, η, depends 
on other constant terms that drive selection and 
mutation (Fisher, 1918; Cavalli-Sforza & Feldman, 
1976). Mathematical analyses of correlation between 
relatives use this model in order to be able to assume 
constant population variance over time (Lande, 
1976; Feldman & Cavalli-Sforza, 1979). In the PVDI 
model, in contrast, the variance of sibling trait values 
depends on specific parental trait values. This makes 
the proposed model distinct from all other models of 
continuous variation, both genetic and non-genetic. 
Under the assumptions adopted in the PVDI, constant 
population variance, which is the key assumption of all 
of the abovementioned models, is unlikely.

Predictions of the PVDI model for systems with 
non-particulate inheritance can be summarized in the 
following three main claims.

 1. Adaptive change is more probable and faster in 
larger populations with an intermediate ratio 
of surviving individuals and a higher, but not 
excessively high, relative offspring variability (Fig. 
2).

 2. The population mean can stabilize at a suboptimal 
level (Fig. 3C) or fluctuate chaotically (Fig. 3B) if 
relative offspring variability is either too small or 
too large with respect to other model parameters.

 3. Population variability declines during stabilizing 
selection and tends to increase during directional 
selection (Figs 3A, D, 5).

The fact that successful adaptation is more frequent 
in large populations is intriguing and contradicts 
some findings from biological systems. It has been 
suggested that in large non-fragmented populations, 
substantial adaptive change is almost impossible 
owing to complex epistatic interactions between 
genes, which are all maintained in the population by 
frequency-dependent selection (Flegr, 2010). For an 
adaptive change to take hold, the population ought to 
be relatively small, but large enough to provide the 
requisite variability (Wright, 1930). It has also been 
proposed that adaptation can be achieved easily in 
large interbreeding populations, because substantial 
changes to allele frequencies have been observed in 
large natural populations on a year-to-year basis. In 
contrast, structured populations with semi-isolated 
units are still thought to be the most favourable setting 
for fast evolution (Fisher & Ford, 1950).

In our model, however, we explain cultural 
adaptation in large populations by hypothetically 
positing a positive feedback; a population can be large 
because cultural traits are well adapted, and cultural 
traits can be well adapted because the population is 
large (Powell et al., 2009; Kempe & Mesoudi, 2014). 
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This might point to one of the fundamental differences 
between systems with particulate and non-particulate 
inheritance, because in particulate systems this 
positive feedback is absent.

Our findings are in line with assumed differences 
between changes in quickly and efficiently evolving 
cultural environments (such as contemporary complex 
societies), where many individuals participate in 
cultural transmission and innovation, and isolated 
traditional societies, which fit our description of 
simulated populations where variability loss is the 
most frequent outcome (small population size, small 
offspring variability). The case of the native Tasmanian 
population where massive loss of technological 
variability went hand in hand with absence of a 
constructive development also fits our findings 
(Henrich, 2004). However, the cultural decline of small 
and isolated societies can also be explainedwell by 
the notion of cultural drift (Richerson & Boyd, 2005), 
which relies on a particulate view of culture (Atkinson, 
2011). The importance of larger group size for the 
construction of high-performance cultural artefacts 
is further supported by experimental evidence in 
laboratory settings (Derex et al., 2013).

Predictions yielded by the PVDI model concur with 
a number of findings on cultural evolution that had no 
plausible explanation previously. Among other things, 
our simulations show that in cases of directional 
selection, variability begets variability. For instance, 
in the history of various technical inventions, it has 
been shown repeatedly that development starts with 
booming variability, which is followed by unification 
after the optimal design is reached (Klepper & Simons, 
2000; Lake & Venti, 2009). Similar patterns were 
also identified in experimental settings that aimed 
to emulate the development of complex technologies 
(Derex & Boyd, 2016), social transmission of hunting 
skills (Acerbi et al., 2016) and cooperation in groups 
(van den Berg et al., 2015). The S-shaped curve (sigmoid 
curve with shallow slopes at the beginning and end, 
and a steep slope in the middle) illustrating the 
process of technological innovation (Foster, 1986; Lake 
& Venti, 2009) resembles the pattern symptomatic for 
adaptation in a PVDI system.

The punctuated character of evolution in PVDI 
systems is one of the most interesting outcomes of 
our study. This pattern has been identified previously 
in biological systems and described as punctuated 
anagenesis (MacLeod, 1991) or punctuated gradualism 
(Malmgren et al., 1983). In such a scenario, evolution in 
a single non-fragmented population consists of periods 
of relative stasis and periods of rapid change, which are 
sometimes referred to as evolutionary ‘pulses’ or ‘jerks’ 
(Landis & Schraiber, 2017). Punctuated anagenesis 
should not be confused with the theory of punctuated 
equilibria, which requires lineage branching to explain 

apparent discontinuities in fossil records (Eldredge 
& Gould, 1972) and a variable rate of divergence 
(Levinthal, 1998; D’Huy, 2013).

Numerous studies report on the punctuated 
character of cultural evolution (Bar-Yosef, 2002; 
Grinin & Korotayev, 2009; Clark, 2011; d’Errico & 
Stringer, 2011; Kuhn, 2013; Lundgren et al., 2018). 
The results of our simulations are also well compatible 
with prehistoric patterns of long periods of stasis, with 
patchy evidence of cognitive potential for a complex 
culture followed by major technological transition 
accompanied by booming cultural variability (Brumm 
& Moore, 2005; Kuhn, 2012). Such patterns tended 
to be explained by recourse to a positive feedback 
between population size and technological innovation 
(Baker, 2007; Grinin & Korotayev, 2009; Dow & Reed, 
2011), but in the PVDI model they arise even if the 
population size is held constant.

In the PVDI system, stochasticity plays a more 
significant role then in systems with other previously 
suggested inheritance algorithms. The ongoing debate 
over the causes of and differences in the timing of 
‘symbolic revolutions’ around the world might be 
beside the point (Bar-Yosef, 2002; Brumm & Moore, 
2005; Powell et al., 2009; Vaesen et al., 2016), because 
if cultural transmission behaves in accordance with a 
PVDI model, major cultural transitions might happen 
at a given moment ‘just because’. Although population 
size or density may influence the likelihood of occurrence 
of such an event, this model leaves a lot of space to 
contingency in the initiation of major cultural transitions. 
It may be impossible to identify any critical threshold in 
demographic parameters. It has also been hypothesized 
that punctuated anagenesis in cultural evolution is the 
result of abrupt ‘macroinventions’ (Mokyr, 1990) or the 
emergence of ‘institutional friction’ in large organizations 
(Lundgren et al., 2018). Our simulated populations 
express this pattern even without introducing any 
of the abovementioned mechanisms or complicated 
spatiotemporal dynamics of punctuated equilibria.

We want to argue that the PVDI model is as simple 
and parsimonious as the Galton–Pearson model, which 
contradicts the widespread notion that models with 
heterogeneous evolutionary dynamics require more 
parameters (Hunt, 2008). Our results are compatible 
with simulation studies that used particulate models 
of cultural revolution to investigate its punctuated 
character while focusing on the combinatorial nature 
of innovation (Kolodny et al., 2015). Both concepts 
might be deeply related. The number of possible new 
combinations increases with the number of existing 
‘parental’ technologies. Even in a combinatorial model, 
the variability of potential outputs s.l. depends on the 
variability of inputs.

We tried to keep our model as simple as possible and 
make sure that is directly comparable to alternative 
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systems that work with non-particulate inheritance, such 
as the paint-pot theory of inheritance or Galton–Pearson 
model. This is why we kept survival deterministic 
and focused on biparental offspring production. Our 
simulations show that similar findings can be obtained 
when multi-parental inheritance is adopted (for details, 
see Supporting Information, S2). Moreover, it should be 
noted that both the Galton–Pearson model and the PVDI 
model can be viewed as special cases of general non-
particulate inheritance models. Firstly, it would be easy 
to specify functions that would collapse the formulas 
describing these two models into a single, more general 
model, of which the Galton–Pearson and PVDI models 
are two special cases. Secondly, the parameters topt, s and ν 
can depend on time, in particular on, i, to capture possible 
time-dependent changes in the process. Thirdly, the 
requirement that N and M are constant could likewise 
be removed, in which case one would have to incorporate 
some functions that drive population dynamics. Fourthly, 
models that aspire to approximating the complexity of 
cultural transmission of a quantitative trait ought to 
contain certain randomness of survival (see Supporting 
Information, S5), inheritance with possible inequality of 
parental importance, and asynchronous generation of 
offspring.

There are other models of cultural evolution that 
abandoned the assumption of a normal distribution 
of offspring (Henrich, 2004; Powell et al., 2009). 
Nonetheless, they still use distributions characterized 
by constant terms. The goal of this line of research 
was to link changes in cultural complexity with 
changes in the populational mean (Henrich, 2004). 
This step was, however, recently identified as 
problematic because cultural adaptation does not 
require changes in cultural variability (Vaesen et al., 
2016). In PVDI models, during directional selection 
populational variance tends to grow together with the 
populational mean. Hendrich’s Gumbelian error term, 
characterized by constant α (bias away from optimum) 
and β (variability of offspring), might be generalized to 
a multi-parental inheritance, with β, and perhaps also 
α, depending on parental variance. This step would 
satisfy the abovementioned objections concerning 
constant populational variance.

Our simulations are based on a concept of cultural 
adaptation that includes a functional optimum value. 
Several recent studies on cultural evolution have used a 
related concept of adaptive landscape (i.e. local functional 
optima; Acerbi et al., 2016; Derex & Boyd, 2016) or even 
continuous directional evolution (Henrich, 2004). The 
concept of optimal solution appears to be meaningful 
in the case of technologies, and particular technological 
inventions frequently evolve by optimizing their 
function (Foster, 1986; Petroski, 1994; Van Nierop et al., 
1997; Klepper & Simons, 2000). In non-technological 
domains of culture, such as symbols, languages and 

myths, however, the usefulness of the concept of cultural 
optimum is still disputed (Scott-Phillips & Kirby, 2010; 
Tehrani, 2011, 2013; D’Huy, 2013).

It has been suggested (Kleisner & Tureček, 2017) 
that biological and cultural evolution should be 
viewed as two aspects of one process. In particular, 
when a traditional genocentric model of biological 
evolution is  enriched by other evolutionary 
processes, such as epigenetic inheritance, cognitively 
driven sexual selection or circular causations, non-
particulate inheritance might provide more reliable 
predictions than models relying on between-allele 
competition (Muller & Wagner, 1991; Vaneechoutte, 
1997; Lipkind & Tchernichovski, 2011; Jablonka 
et al., 2014).

Future empirical studies on cultural macroevolution 
and transmission mechanisms will doubtless provide 
empirical support for either the traditional Galton–
Pearson model or the alternative PVDI model. The 
PVDI model would be supported by findings of abrupt 
cultural changes preceded and accompanied by periods 
of increasing cultural variability. The Galton–Pearson 
model, on the contrary, would be supported by findings 
of gradual cultural changes and constant cultural 
variability. Likewise, if participants presented with a 
diverse set of cultural inputs (e.g. in a transmission 
chain) tend to deviate more from the mean input, then 
the PVDI model is supported, whereas a constant rate 
of innovation independent of input variability would 
provide support for the Galton–Pearson model of 
inheritance. We have conclusively demonstrated that 
if we want to describe and model cultural evolution 
faithfully, variation within culturally transmitted 
traits might be at least as important as their means. 
Computer models of cultural inheritance should 
consider the possibility of PVDI, because a failure 
to do so would lead to a neglect of a whole class of 
evolutionary dynamics stemming from the interaction 
between cultural variability, population size and 
innovation.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher's web-site:

S1. Simulation runs of a system with a Galton–Pearson model of inheritance equivalent to Parental Variability-
Dependent Inheritance model (PVDI) runs shown in Figures 2 and 3.
Figure S1.1. Under Galton–Pearson inheritance, the probability of successful adaptation (left) is 100%. The mean 
number of generations needed to reach the first optimum (right) depends on a constant posterity variability, η, and 
the ratio of surviving individuals, s, but not on the population size, N. For each combination of parameters, 5000 
simulations were run. The definition of adaptation had to be modified because in the Galton–Pearson inheritance 
framework, population variability never disappears completely. Sufficient condition of adaptation was defined as 
the achievement of the optimum by the populational mean and maintenance of a position sufficiently close to this 
optimum for the rest of the simulation run (2000 generations). Logarithmic colouring is used.
Figure S1.2. Examples of individual simulation runs in a system with a Galton–Pearson model of inheritance. 
All populations are homogeneous at the beginning, and one sport is introduced in generation 1. Model parameters 
(stated in the top left corner of each example) are equal in exemplars c and d. There is almost no difference 
between these two exemplars, because in the Galton–Pearson model, stochastic processes do not play a major role. 
The coefficient of variation (CV) is a measure of relative variability, CV = σ/µ .
S2. Parental variability-dependent inheritance model (PVDI): results of multi-parental inheritance.
Figure S2.1. The probability of a successful adaptation (left) and the mean number of generations required until 
the first optimum is reached (right) for M = 4.
Figure S2.2. The probability of a successful adaptation (left) and the mean number of generations required until 
the first optimum is reached (right) for M = 8.
Figure S2.3. The probability of a successful adaptation (left) and the mean number of generations required until 
the first optimum is reached (right) for M = 40.
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Figures S2.1–2.3. For each combination of parameters, 1000 simulations were run. Hatching distinguishes the 
area where no simulation runs ended in a successful adaptation from the pale area, where a small (e.g. 0.01%) but 
non-zero proportion was recorded. Logarithmic colouring is used.
Figure S2.4. Examples of individual simulation runs for M = 4.
Figure S2.5. Examples of individual simulation runs for M = 8.
Figure S2.6. Examples of individual simulation runs for M = 40.
Figures S2.4–2.6. Simulation parameters were modified for each value of M to match the patterns demonstrated 
for biparental inheritance in the main text. Exemplar a represents a successful adaptation; exemplar b represents 
variability explosion; and exemplars c and d demonstrate a parameter setting where the outcome alters between 
variability loss and successful adaptation owing to the stochastic nature of the model. The coefficient of variation 
(CV) is a measure of relative variability, CV = σ/µ . 
Figure S2.7. Zones of variability loss, adaptation and variability explosion in a parameter space outlined by 
ν, s and N (shown on a logarithmic scale) for M = 4, 8 and 40. The colours outline areas where the outcomes in 
question are the most likely ones. For each combination of parameters, 1000 simulations were run.
S3. Variation in average punctuality and variability dependence of evolution.
Figure S3.1. Population size = 400.
Figure S3.2. Population size = 1600.
Figure S3.4. Population size = 6400.
Figure S3.5. Population size = 25 600.
S4. Analytical comparison between a Parental Variability-Dependent Inheritance model (PVDI) and a Galton–
Pearson model of inheritance.
S4.1. Truncated normal distribution.
S4.2. Optimum in infinity.
S4.3. Real optimum.
S4.4. Variability explosion after achieving optimum.
S4.5. The case of no selection.
S5. Random factor in survival.

SHARED DATA

This article has no additional data. Computer script that generates one simulation run can be accessed at https://
github.com/costlysignalling/PVDI_python. Interested readers can use this script to generate the bulk of data 
statistically equivalent to those that was used in our analysis.
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