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Gradient Algorithms for Complex Non-Gaussian
Independent Component/Vector Extraction,

Question of Convergence
Zbyněk Koldovský , Senior Member, IEEE, and Petr Tichavský , Senior Member, IEEE

Abstract—We revise the problem of extracting one independent
component from an instantaneous linear mixture of signals. The
mixing matrix is parameterized by two vectors: one column of the
mixing matrix, and one row of the demixing matrix. The separa-
tion is based on the non-Gaussianity of the source of interest, while
the remaining background signals are assumed to be Gaussian.
Three gradient-based estimation algorithms are derived using the
maximum likelihood principle and are compared with the Natu-
ral Gradient algorithm for Independent Component Analysis and
with One-Unit FastICA based on negentropy maximization. The
ideas and algorithms are also generalized to the extraction of a
vector component when the extraction proceeds jointly from a set
of instantaneous mixtures. Throughout this paper, we address the
problem concerning the size of the region of convergence for which
the algorithms guarantee the extraction of the desired source. We
show that the size is influenced by the signal-to-interference ratio
on the input channels. Simulations comparing several algorithms
confirm this observation. They show a different size of the region
of convergence under a scenario in which the source of interest is
dominant or weak. Here, our proposed modificationsof the gradi-
ent methods, taking into account the dominance/weakness of the
source, show improved global convergence.

Index Terms—Blind source separation, blind source extraction,
independent component analysis, independent vector analysis.

I. INTRODUCTION

A. Independent Component Analysis

INDEPENDENT Component Analysis (ICA) has been a pop-
ular method proposed for Blind Source Separation (BSS)

since the 1990s [1]–[4]. In the basic ICA model, signals
observed on d sensors are assumed to be linear mixtures of
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Z. Koldovský is with the Acoustic Signal Analysis and Processing Group, Fac-
ulty of Mechatronics, Informatics, and Interdisciplinary Studies, Technical Uni-
versity of Liberec, Liberec 46117, Czech Republic (e-mail:,zbynek.koldovsky@
tul.cz).
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d “original” signals, which are mutually independent in the sta-
tistical sense. The mixing model is given by

x(n) = Au(n), (1)

where x(n) is a d× 1 vector of the mixed signals; A is a d× d
nonsingular mixing matrix; u(n) is a d× 1 vector of the original
signals; andn denotes the sample index. In the non-Gaussianity-
based ICA, the jth original signal uj (n) (the jth element of
u(n)) is modeled as an independently and identically distributed
(i.i.d.) sequence of random variables with the probability density
function (pdf) pj (·). The goal is to estimate A−1 using x(n),
n = 1, . . . , N , through finding a square de-mixing matrix W
such that Wx(n) are independent or as close to independent as
possible. In the discussion that follows, we will omit the sample
index n for the sake of brevity, except where it is required.

While our focus in this paper is on complex-valued signals
and parameters, our conclusions are valid for the real-valued
case as well.

B. Blind Extraction of One Independent Source

This work addresses the problem of extraction (separation)
of one independent component, which is often sufficient in ap-
plications such as speaker source enhancement, passive radar
and sonar, or in biomedical signal processing. The complete
decomposition performed by ICA can be computationally very
demanding and superfluous. This is especially remarkable when
there is a large number of sensors (say, 10 or more), or when
a large number of mixtures (say, 128 or more) are separated in
parallel, as in the Frequency-Domain ICA (FD-ICA) [5]. The
idea of extracting only one source can also be applied in joint
BSS [6]–[8], especially in Independent Vector Analysis (IVA)
[9]. Here, the “source” is represented by a vector of separated
components from the mixtures that are mutually dependent (but
independent of the other vector components).

BSS involves the indeterminacy of order of the original sig-
nals in the mixture [2], [10], and therefore certain partial knowl-
edge about the source to be extracted must be available to deter-
mine which independent component is the one of our interest.
For example, the prior knowledge could be an expected direc-
tion of arrival (DOA) of the source, location of the source within
a confined area [11], a property such as dominance within an
angular range [12] or temporal structure [13], and so forth.
Throughout this paper, we will assume that such knowledge
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is available in the form of an initial value of the (de)mixing
parameter. The wanted signal will be referred to as source of
interest (SOI) while the rest of the mixture will be referred to as
background.

The theoretical part of this paper will be constrained to the
determined case, which means that the background is assumed
to be a mixture of d− 1 latent variables, or, in other words,
the whole mixture obeys the determined mixing as in (1). This
assumption need not be overly restrictive when only one source
should be extracted. Indeed, when the mixture x consists of
more than d sources (underdetermined case), algorithms based
on the determined model can still be used provided that they are
sufficiently robust against mismodeling and noise. However,
these issues would go beyond the scope of this paper.

C. State-of-the-Art

The blind separation of one particular non-Gaussian source
has already been studied in several contexts and some authors
refer to it as Blind Signal Extraction (BSE) [13]–[15]. Projection
pursuit [16], a technique used for exploratory data analysis, aims
at finding “interesting” projections, including 1-D signals. This
“interestingness” is defined through various measures reflecting
the distance of the projected signal’s pdf from the Gaussian
distribution [2], [17]. Various criteria of the interestingness were
also derived in other contexts. For example, kurtosis appears in
methods for blind adaptive beamforming or as a higher-order
cumulant-based contrast; see, e.g., [18]–[20].

This framework was unified under ICA based on information
theory [21]. Namely, the independence of signals can be mea-
sured using mutual information, which is the Kullback-Leibler
divergence between the joint density of signals and the product
of their marginal densities. The signals are independent if and
only if that mutual information equals zero. Provided that the
elements of y(n) are not correlated, the mutual information of
y(n) is equal to the sum of entropies of y1(n), . . . , yd(n), up
to a constant. Hence, it follows that an independent component
can be sought through minimizing the entropy of the separated
signal under the constraint E[|wHx|2 ] = 1; here E[·] stands for
the expectation operator; and wH is a de-mixing vector (a row of
the de-mixing matrix W). The fact that entropy is a measure of
non-Gaussianity reveals the connection between the ICA-based
separation of one signal and the contrast-based BSE techniques
[2], [22].

In fact, many ICA methods apply d BSE estimators sequen-
tially [23] or in parallel [24] to find all independent components
in the mixture. The orthogonal constraint, which requires that
the sample correlation between separated signals be equal to
zero, is imposed on the BSE outputs in order to prevent the al-
gorithms from finding any components twice. For example, the
well-known FastICA algorithm has three basic variants: One-
Unit FastICA is a BSE method optimizing the component’s
non-Gaussianity [25]; Deflation FastICA applies the one-unit
version sequentially [26]; Symmetric FastICA runs d one-unit
algorithms simultaneously [26], [27].

The separation accuracy of the above methods is known
to be limited [28]. One-unit FastICA exploits only the non-

Gaussianity of SOI and does not use the non-Gaussianity of the
background [29]. The accuracy levels of deflation and symmet-
ric FastICA are limited due to the orthogonal constraint [30].
While the latter limitation can be overcome, as shown, e.g., in
[31], the limited accuracy of the one-unit approach poses an
open problem, unless the BSE is done through the complete
ICA. By comparing the performance analyses from [28], [29],
[32] and the Cramér-Rao bound for ICA [31], it follows that
one-unit methods can approach the optimum performance only
when the background is Gaussian, but not otherwise.

D. Contribution

In this paper, we revisit the BSE problem by considering it
explicitly: the goal is to extract one component from the in-
stantaneous mixture that is as close to being independent of the
background as possible; we refer to this approach as Indepen-
dent Component Extraction (ICE). A re-parameterization of the
mixing model is introduced, in which the number of parameters
is minimal for the BSE problem (the mixing and the separating
vectors related to the SOI). Then, a statistical model is adopted
from ICA where the background is assumed to be jointly Gaus-
sian. The classical maximum likelihood estimation of the mixing
parameters is considered, by which simplistic gradient-based es-
timation algorithms are derived.1 The ICE approach provides a
deeper insight into the BSE problem. In particular, it points
out the role of the orthogonal constraint and the fact that the
constraint is inherently applied within One-Unit FastICA. This
approach also reveals the role of the model of the background’s
pdf.

It is worth pointing out here that similar mixing and statis-
tical models have been considered in the methods that were
designed for Cosmic Microwave Background extraction from
the Wilkinson Microwave Anisotropy Probe (WMAP) data or
from the more recent Planck Mission data [34]. However, there
is one important difference, namely, the mixing vector related
to the SOI is assumed to be known. These methods are known
under the name of Internal Linear Combination (ILC) [35], [36];
see also [37].

For the practical output of this paper, we focus on the ability of
BSE algorithms to ensure that the desired SOI is being extracted,
not a different source.2 This is a crucial aspect in BSE, which has
little been studied previously. When the extraction of the SOI is
not guaranteed, it is necessary to extract all sources and to find
the desired one afterwards; this way, however, the advantage of
performing only one BSE task is lost. Another motivation is that
the permutation ambiguity can impair on-line separation. For
example, a sudden change in the region of convergence (ROC)
due to dynamic signals and/or mixing conditions can cause
the current mixing vector estimate to occur within the ROC of
a different source. The given algorithm then performs several

1In this paper, an algorithm estimating the separating vector is introduced,
compared to [33], where only the variant for estimating the mixing vector is
described.

2We do not focus on the algorithms’ accuracy as this is already a well-studied
problem. The accuracy of BSE methods is fundamentally limited by the Cramér-
Rao bound, which is asymptotically attainable, e.g., by One-Unit FastICA [28];
cf. the last paragraph in Section I-C; see also [38].
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“diverging” steps, during which the separated sources are being
permuted; the separation is poor in between. Therefore, the size
of the ROC is studied in this paper. Let us emphasize the fact
that the ROC is algorithm-dependent and is highly influenced by
the Signal-to-Interference ratio in the channels of the observed
mixture. Our experiments show that the ROC can depend on
whether the optimization proceeds in the mixing or de-mixing
parameters. Based on this fact, we propose novel variants for
the gradient algorithms where the optimization parameters are
selected automatically.

Next, our ideas are generalized to the extraction of a vector
component, the so-called Independent Vector Extraction (IVE).
Here, the problem defines several instantaneous mixtures to be
treated simultaneously, using joint statistical models. The goal
is to extract one independent component per mixture where
the extracted components should be as dependent as possible.
IVE is an extension of ICE similar to that of ICA to IVA [39],
[40]. A gradient algorithm with the automatic selection of the
optimization parameters is derived, similarly to that utilized in
ICE. Our experiments show that the convergence of the proposed
IVE algorithm is superior to that of ICE because the improved
convergence within several mixtures has a positive influence
on the convergence within the other mixtures; the effect of the
automatic selection is thus multiplied.

The rest of this paper is organized as follows. Section II in-
troduces algebraic and statistical models for ICE. Section III is
devoted to gradient-based ICE algorithms. The ideas and algo-
rithms are generalized to the extraction of vector components
in Section IV. Section V presents results of simulations, and
Section VI concludes the paper.

II. INDEPENDENT COMPONENT EXTRACTION

Nomenclature: The following notation will be used through-
out the article. Plain letters denote scalars, bold lower-case let-
ters denote vectors, and bold capital letters denote matrices. The
Matlab conventions for matrix/vector concatenation and index-
ing will be used, e.g., [1; g] = [1, gT ]T , and (A)j,: is the jth
row ofA. Next,gT ,g, andgH denote the transpose, the complex
conjugate value and the conjugate transpose of g, respectively.
Symbolic scalar and vector random variables will be denoted by
lower-case letters, e.g., s and x, while the quantities collecting
their N samples will be denoted by bold (capital) letters, e.g.,
s and X. Estimated values of signals will be denoted by hats,
e.g., ŝ. For simplicity, the hat will be omitted in the case of
estimated values of parameters, e.g., w, unless it is necessary to
distinguish between its estimated and true values.

A. Mixing Model Parameterization

Without any loss of generality, let the SOI be s = u1 and a be
the first column of A, so it can be partitioned as A = [a, A2 ].
Then, x can be written in the form

x = as+ y, (2)

where y = A2u2 and u2 = [u2 , . . . , ud ]T . The single-target de-
scription (2) has been widely studied in array processing litera-
ture [41]. Here, the fact that y = A2u2 means that we restrain

our considerations to the determined scenario (the mixture con-
sists of the same number of sources as that of the sensors).

Let the new mixing matrix for ICE and its inverse matrix be
denoted by AICE and WICE , respectively. In ICE, the identifi-
cation of A2 or the decomposition of y into independent signals
is not the goal. Therefore, the structure of the mixing matrix is
AICE = [a, Q] where Q is, for now, arbitrary.

Then, (2) can be written as

x = AICEv, (3)

where v = [s; z], and y = Qz. It holds that z spans the same
subspace as that spanned by u2 .

To complete the mixing model definition, we look at the
inverse matrix WICE = A−1

ICE . Let a and WICE be partitioned,
respectively, as

a =
(

γ
g

)

(4)

and

WICE =
(

wH

B

)

. (5)

B is required to be orthogonal to a, i.e., Ba = 0, which ensures
that the signals separated by the lower part of WICE , namely,
by Bx, do not contain any contribution of s. A useful selection
is

B =
(

g − γId−1
)

, (6)

where Id denotes the d× d identity matrix. Let w be partitioned
as

w =
(

β
h

)

. (7)

The de-mixing matrix then has the structure

WICE =
(

wH

B

)

=
(

β hH

g −γId−1

)

, (8)

and from A−1
ICE = WICE it follows that

AICE =
(

a Q
)

=

(

γ hH

g 1
γ

(

ghH − Id−1
)

)

, (9)

where β and γ are linked through

βγ = 1− hH g. (10)

The latter equation can also be written in the form wH a = 1,
which is known as the distortionless response constraint; see
page 515 in [41]. The parameterization of the mixing and de-
mixing matrices is similar to the one used in ILC [36], [37].

It is worth mentioning here that ICE and Multidimensional
ICA [42] are similar to each other; the latter is also known as
Independent Subspace Analysis (ISA) [43]. In ISA, the goal is to
separate subspaces of components that are mutually independent
while components inside of the subspaces can be dependent.
The goal to separate one independent component thus could be
formulated as a special case of ISA where u is divided into two
subspaces of dimensions 1 and d− 1, respectively. What makes
ICE different is that the separation of the background subspace
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from the SOI is not as ambiguous as in ISA, which is ensured
by the structure of the de-mixing matrix.3

The free variables in the ICE mixing model are the elements
of g and h, and one of the parameters β or γ. In total, there
are 2d− 1 free (real or complex) parameters. The role of a,
as follows from (2), is the mixing vector related to s, which
is in beamforming literature also sometimes referred to as the
steering vector. Next, w is the separating vector as s = wHx.
For the background signal z, it holds that

z = Bx = By = BA2u2 . (11)

Note that A2 is not identified in the model, so the relationship
between z and u2 remains unknown after performing ICE. The
components of z are independent after the extraction only when
d = 2 or, for d > 2, in very special cases that BA2 = ΛP; Λ
denotes a diagonal (scaling) matrix with non-zero elements on
the main diagonal, and P denotes a permutation matrix.

B. Indeterminacies

Similarly to ICA, the scales of s and of a are ambiguous in
the sense that, in (2) they can be replaced, respectively, by αs
and α−1a where α �= 0. The scaling ambiguity can be avoided
by fixing β or γ. A specific case occurs when γ = 1 [33], since
then s corresponds to the so-called spatial image of the SOI on
the first sensor [44]–[46]. This can be useful for modeling the
pdf of s, as the physical meaning of that scale is often known.
By contrast, when no such knowledge is given, it might be better
to keep γ (or β) free.

The second ambiguity is that the role of s = u1 is inter-
changeable with any independent component of x, that is, with
any ui , i = 2, . . . , d. This fact follows from the indeterminacy
of the order of original components in the mixture [22], which
causes the permutation problem in joint BSS; see, e.g., [47]. As
was already stated, in this work we assume that an initial guess
of either a or w is given.

C. Statistical Model

The main principle of ICE is the same as that of ICA. We
make the assumption that s and z are independent, and ICE is
formulated as follows:

Find vectors a and w such that wT x and Bx are independent (or
as close to independent as possible).

Let the pdf of s and of z be, respectively, denoted by ps(ξ1)
and pz(ξ2); ξ1 and ξ2 denote free variables of appropriate di-
mensions. The joint pdf of s and z is, owing to their mutual
independence,

ps(ξ) = ps(ξ1) · pz(ξ2), (12)

3The fact that the structure of the de-mixing matrix is fixed makes ICE
different from ISA (i.e., it is a different approach to the same problem). We do
not claim, though, that ICE and ISA necessarily lead to different results.

where ξ = [ξ1 ; ξ2 ]. From (8), the joint pdf of the mixed signals
x = AICEv is

px(ξ) = ps(wH ξ) · pz(Bξ) · |detWICE |2 (13)

= ps(βξ1 + hH ξ2) · pz(ξ1g − γξ2) · |γ|2(d−2) , (14)

where the identity

detWICE = (−1)d−1γd−2 (15)

= (−1)d−1β−(d−2)(1− hH g)d−2 , (16)

was used, which can easily be verified from (8) using (10).
The log-likelihood function of N signal samples depends on

a and w; hence it is

L(a,w) =
1
N

log
N
∏

n=1

px(a,w|x(n)) (17)

=
1
N

N
∑

n=1

log ps(wHx(n)) +
1
N

N
∑

n=1

log pz(Bx(n))

+ (d− 2) log |γ|2 . (18)

D. Gaussian Background

As previously explained in Section II-A, the background sig-
nals are highly probable to remain mixed after ICE, unless
d = 2. This opens the problem of modeling the pdf of z. A
straightforward choice is that the components of z have the
circularly symmetric Gaussian distribution with zero mean and
covarianceCz , i.e., z ∼ CN (0,Cz). This choice can be justified
by the fact that the said components are mixed and correlated;
moreover, from the Central Limit Theorem it follows that their
distribution is close to Gaussian [22]. The covariance matrix
Cz = E[zzH ] is a nuisance parameter.

In this paper, we restrain our considerations to this Gaussian
background model, noting that other choices are worthy of future
investigation [48]. It is a simplifying assumption, which means
that only second-order statistics of the background are used. This
model should also work for non-Gaussian background signals
as long as their second-order statistics exist. Now, (18) takes the
form

L(a,w) =
1
N

N
∑

n=1

log ps(wHx(n))

− 1
N

N
∑

n=1

x(n)HBHC−1
z Bx(n) + (d− 2) log |γ|2

− log detCz − d log π. (19)

E. Orthogonal Constraint

By inspecting (18) and (19), it can be seen that the link
between a and w, which are both related to the SOI, is rather
“weak”. Indeed, the first term on the right-hand side of (18)
depends purely on w, while the second and the third terms
depend purely on a. The only link between a and w is thus
expressed in (10). Consequently, the log-likelihood function can



1054 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 4, FEBRUARY, 15 2019

have spurious maxima where a and w do not jointly correspond
to the SOI.

Many ICA algorithms impose the orthogonal constraint (OG)
[30], which decreases the number of unknown parameters in the
mixing model. This constraint can be used to avoid spurious
solutions in ICE and to stabilize the convergence of algorithms.
Let now WICE denote an ICE de-mixing matrix estimate and

̂V =
(

ŝ
̂Z

)

= WICEX (20)

be the estimated de-mixed signals, that is, ŝ be the 1×N row
vector of samples of the extracted SOI, and ̂Z be the (d− 1)×
N matrix of samples of the background signals. The OG means
that

1
N

ŝ · ̂ZH =
1
N

wHXXHBH = wH
̂CxBH = 0, (21)

where ̂Cx = XXH /N is the sample-based estimate of Cx =
E[xxH ].

The OG introduces a link between a and w, so WICE is a
function of either a or w. The dependencies, whose derivations
are given in Appendix A, are

w =
̂Cx
−1

a

aH ̂Cx
−1

a
, (22)

when a is the dependent variable, and

a =
̂Cxw

wH ̂Cxw
, (23)

when the dependent variable is w.
Interestingly, the coupling (22) corresponds to the approxi-

mation of

wH
MPDRx =

aHC−1
x

aHC−1
x a

x, (24)

which is the minimum-power distortionless (MPDR) beam-
former steered in the direction given by a, the well-known opti-
mum beamformer in array processing theory [41]; see also [33].
In Appendix B, it is shown that if a is equal to its true value,
then

wH
MPDRx = s. (25)

The advantage of (23) is that the computation of a does not
involve the inverse of ̂Cx .

III. GRADIENT-BASED ICE ALGORITHMS

In this section, we derive gradient ICE algorithms aiming at
the maximum likelihood estimation through searching for the
maximum of (19). Since ps and Cz in (19) are not known, we
propose a contrast function replacing the true one where ps
and Cz are approximated in a certain way. This is sometimes
referred to as the quasi-maximum likelihood approach; see, e.g.,
[49].

A. Optimization in w

For the optimization in w, given the coupling (23), β is se-
lected as a free variable while γ is dependent. Following (19)
where the last two terms are neglected as they are constant, the
contrast function is defined as

C(a,w) =
1
N

N
∑

n=1

{

log f(wHx(n))

− x(n)HBHRBx(n)
}

+ (d− 2) log |γ|2 , (26)

where f(·) is the model pdf of the target signal (replacing ps),
and R is a weighting positive definite matrix (replacing C−1

z ).
Using the Wirtinger calculus [50], [51], we derive in

Appendix C that the gradient of C with respect to wH , under
the coupling (23), equals

∂C
∂wH

∣

∣

∣

∣

w.r.t. (23)

= − 1
N

Xφ(wHX)T + 2a tr(R̂Cz)

− (wH
̂Cxw)−1(

̂CxEHR̂Czh− tr(RB̂CxEH )̂Cxe1
)

− 2(d− 2)a + γ−1(d− 2)(wH
̂Cxw)−1

̂Cxe1 , (27)

where tr(·) denotes the trace; E = [0 Id−1 ]; e1 denotes the
first column of Id ; and

φ(ξ) = −∂ log f(ξ)
∂ξ

(28)

is the score function of the model pdf f(·).
Now, we put R = ̂C−1

z ; this is a choice for which the deriva-
tive of (19) with respect to the unknown parameter Cz is equal
to zero. Then, the following identities can be applied in (27).

tr(̂C−1
z

̂Cz) = tr(Id−1) = d− 1, (29)

EHh + βe1 = w, (30)

̂C−1
z B̂Cx = ̂C−1

z BXXH /N

= ̂C−1
z

̂Z[̂sH ̂ZH ]AH
ICE = EAH

ICE (31)

tr(̂C−1
z B̂CxEH ) = tr(EAH

ICEEH )

= γ−1tr(hgH − Id−1)

= −β − (d− 2)γ−1 , (32)

where we used (20) and (21); (27) is now simplified to

∂C
∂wH

∣

∣

∣

∣

w.r.t. (23)

= a− 1
N

Xφ(wHX)T . (33)

In fact, R = ̂C−1
z depends on the current value of w since

̂Cz = B̂CxBH . It means that, with any estimate of w, the
distribution of ̂Z = BX is assumed to be CN (0, ̂Cz), which
obviously introduces little (or no) information into the contrast
function. ̂Cz is close to the true covariance Cz only when a is
close to its true value.

For N → +∞, (33) takes on the form

∂C
∂wH

= a− E[xφ(wHx)]. (34)
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When w is the ideal separating vector, that is, when wHx = s,
then from (2) it follows that

∂C
∂wH

= (1− E[sφ(s)])a. (35)

This shows us that the true separating vector is a stationary point
of the contrast function only if φ(·) satisfies the condition

E[sφ(s)] = 1. (36)

Based on this observation, we propose a method whose steps
are described in Algorithm 1. In every step, it iterates in the
direction of the steepest ascent of C where R = ̂C−1

z (step 9),
and φ(·) is normalized so that condition (36) is satisfied for
the current target signal estimate ŝ = wHx, that is, φ(ŝ)←
φ(ŝ)/(ŝφ(ŝ)T /N) (see steps 7 and 8). This is repeated until the
norm of the gradient is smaller than tol; μ is the step length
parameter; and wini is the initial guess. We call this method
OGICEw .

In fact, (34) coincides with the gradient of a heuristic criterion
derived from mutual information in [32] (page 870, Eq. 4). The
author, D.-T. Pham, called this approach “Blind Partial Separa-
tion”. Our derivation provides a deeper insight into this result
by showing its connection with maximum likelihood estimation.
Most importantly, it is seen that (33) follows from a particular
parameterization of the (de)-mixing model, it imposes the OG
between a and w, and it relies on the Gaussian modeling of the
background signals whose covariance is estimated as ̂Cz .

B. Optimization in a

The gradient with respect to a when w is dependent through
(22) and when γ = 1 has been derived in [33]. Treating γ as a
free variable, and by putting R = ̂C−1

z , the gradient reads

∂C
∂aH

∣

∣

∣

∣

w.r.t. (22)

= w − λa

N
̂C−1

x Xφ(wHX)T , (37)

where λa = (aH ̂C−1
x a)−1 . ForN → +∞, the true mixing vec-

tor is a stationary point only if (36) is fulfilled. The correspond-
ing algorithm, similar to that proposed in [33] but leaving γ free,
will be referred to as OGICEa .

C. Preconditioning

The multiplicative form of the mixing model (3) allows us to
consider the gradient computed according to transformed input
signals U = DX, where D is a preconditioning non-singular
matrix. We will consider the preconditioning applied within
OGICEw since this will help us reveal the connection between
OGICEw and the three well-known ICA/BSE algorithms.

Let wx and wu be the separating vectors operating on X
and U, respectively, giving the same extracted signal, i.e., ŝ =
wH

x X = wH
u U. It follows thatwx = DHwu . Consider now the

gradient (33) when the input data is U and the initial vector is
wu . Let that gradient be denoted by Δu . The sample covariance
matrix of U is ̂Cu = D̂CxDH , so the right-hand side of (33)
provides

Δu =
̂Cuwu

wH
u

̂Cuwu
− 1
N

Uφ(ŝ)T

=
D̂CxDHwu

wH
u D̂CxDHwu

− 1
N

DXφ(ŝ)T

= D

(

̂Cxwx

wH
x

̂Cxwx
− 1
N

Xφ(ŝ)T
)

= DΔx , (38)

where Δx denotes the “normal” gradient, that is, when the input
data is X and the initial vector is wx . Note that (38) remains
valid when the normalization of φ (dividing by ν) is taken into
account, because ν is only a function of ŝ.

After updating wu by wnew
u = wu + μΔu , the extracted sig-

nal is equal to

(wnew
u )HU = (wu + μΔu)H U

=
(

D−Hwx + μDΔx
)H

DX

=
(

wx + μDHDΔx
)H

X. (39)

It follows that the gradient update computed on the precondi-
tioned data U corresponds to a modified update rule for wx

given by

wx ← wx + μDHDΔx . (40)

For D = Id , the modified update rule obviously coincides
with the original one. In the following subsection, we will con-
sider other special choices of D and compare the modified
OGICEw with other ICA/BSE methods known in the literature.

D. Relation to Gradient and Natural Gradient ICA Methods

Here, OGICEw is compared with the method by Bell and
Sejnowski [52] for ICA and with its popular modification known
as Amari’s Natural Gradient (NG) algorithm [53]; see also [54]
and [51] for the complex-valued variant. In each step of Bell
and Sejnowski’s method (BS), the whole de-mixing matrix is
updated as

ΔW←W−H − φ(WX)XH /N. (41)
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After taking the conjugate transpose on both sides, and denoting
W−1 = A, this update can be re-written as

ΔWH ← A−Xφ(WX)T /N. (42)

Now, the right-hand side of (33) corresponds to any row on the
right-hand side of (42).

The de-mixing matrix update in NG is obtained when the
right-hand side of (42) is multiplied by WHW from the left,
which implies

ΔWH ←WH
(

Id −WXφ(WX)T /N
)

. (43)

OGICEw becomes similar to NG when considering it with the
modified update (40) where the precondition matrix is D =
WICE . This choice corresponds to the update when the input
data are pre-separated by the current de-mixing matrix prior to
each iteration, and the starting point w is equal to the unit vector
(the first column of Id ).

The main difference between OGICEw and the respective
ICA algorithms thus resides in the feature of BS and NG per-
forming updates of the whole de-mixing matrix, while OGICEw

updates only its first row (the separating vector) under the or-
thogonal constraint. Next, the nonlinearity in OGICEw is nor-
malized according to (36), while neither BS nor NG makes use
of any normalization.

E. Relation to One-Unit FastICA

One-unit FastICA (FICA) was derived as a fixed-point algo-
rithm that minimizes the entropy of the extracted signal under
the unit scale constraint. The FICA update for the separating
vector can be written as [25]

w← w − (

̂C−1
x Xψ(ŝ)T /N − νw)

/(ρ− ν), (44)

w← w/
√

wH ̂Cxw, (45)

where ν = ŝψ(ŝ)T /N and ρ = ψ′(ŝ)1N /N , where ψ′ is the
derivative of ψ, and 1N denotes the column vector consisting
of ones with a length of N . Note that (45) corresponds to the
normalization of w so that the scale of the extracted signal
equals one.

FICA is better known when it operates on pre-whitened data
X, which means that it is normalized prior to the optimization
so that its sample covariance matrix is Id . This corresponds
to the choice of the preconditioning matrix in Section III-C as
D = F̂C−1/2

x , where ̂C−1/2
x denotes the inverse matrix square

root of ̂Cx , and F is an arbitrary unitary matrix. It then holds that
DHD = ̂C−1

x , and we can compare the modified update rule of
OGICEw with (44). Specifically, the OGICEw update modified
according to (40) together with the nonlinearity normalization
can be written as

w← w + μ

(

w

wH ̂Cxw
− ν−1 1

N
̂C−1

x Xφ(ŝ)T
)

(46)

where μ is the step length parameter. By comparing (44)
and (46), the updates coincide when μ = ν

ρ−ν , provided that

wH
̂Cxw = 1.

In conclusion, FICA and OGICEw correspond to the same
method when (a) the input data are pre-whitened (directly or
through the preconditioning matrix and the modified update);
(b) the step length in OGICEw is selected adaptively as μ =
ν

ρ−ν ; and (c) OGICEw is forced to operate on the unit-scale
sphere, which can be achieved through normalizing w after
each iteration as in (45). These results extend the analysis done
in [55].

F. Switched Optimization

When all sources should be separated, as in ICA, it is less
important which source is extracted in which output channel
because all sources are separated in the end. However, when
only one source should be extracted (based on the initial value
of the mixing/separating vector), the size of the ROC becomes
essential.

The ROC depends on the surface of the objective function for
the given algorithm. This is influenced by all properties of the
observed signals, namely, by the signals’ distributions and their
initial Signal-to-Interference Ratio (SIR) values. The SIR value
of any signal that can be expressed as y = qHu is defined by

SIRy =
|q1 |2E[|u1 |2 ]

∑d
k=2 |qk |2E[|uk |2 ]

=
|q1 |2E[|s|2 ]

∑d
k=2 |qk |2E[|uk |2 ]

, (47)

where the expectation values are replaced by their sample-based
averages when considering a finite number of samples. For ex-
ample, the SIR value for the extracted signal corresponds to
qH = wHA; the SIR value in the kth input channel xk cor-
responds to qH = (A)k,: . It is seen that the initial SIR value
on the kth channel is a function of the original signals’ scales
and of the mixing matrix. Its influence on the ROC is, however,
difficult to analyze as it is different on each input channel.

Nevertheless, we can restrict our considerations to situations
where the initial SIR value is approximately the same on all
channels. This happens, for example, when the mutual distances
of sensors are small compared to the distances of the sources
from the sensor array. For now, let us assume that the magnitude
of each element in the mixing matrix is approximately equal to
a constant, so the initial SIR values are mainly influenced by
the scales of the sources. It is then meaningful to introduce the
so-called Scales Ratio (SR) related to the SOI by

SR =
E[|s|2 ]

1
d−1

∑d
i=2 E[|ui |2 ]

. (48)

The following example shows how the ROC of the OGICE
algorithms can be influenced by SR.

Consider a situation where the SOI is a “weak” signal, i.e.,
SR� 0 dB. The mixing vector a is then “hard” to find while
the background subspace can be identified “easily”. For the de-
mixing matrix, the problem is reciprocal. The estimation of B in
(8) is inaccurate as B purely depends on a, while the estimation
of w yields a low variance.

Fig. 1 shows the objective function in the case of a real-
valued mixture of two Laplacean components where one plays
the role of the SOI and the other one is the background source
(but the roles can be interchanged); the number of samples is
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Fig. 1. Examples of the contrast function (26) as it depends on a = [1; a] and
w = [1;w], respectively, when SR is 0 dB and −20 dB.

N = 1000; the mixing matrix is A = ( 1
−1

1
1 ); SR is considered

in two settings: 0 dB and −20 dB, respectively. The function
(26) is shown , as well as the way in which it depends on a and
w, respectively, where the mixing vector is a = [1; a] and the
separating vector is w = [1;w], respectively. The nonlinearity
is log f(x) = − log | cosh(x/σx)| where σ2

x is the variance of
the input. The perfect extraction of the SOI is achieved for
a = −1 and w = −1, while a = 1 and w = 1 correspond to the
extraction of the background source.

For SR = 0 dB, the surface of the contrast function as it
depends on a or w, respectively, is almost the same. The local
maxima are slightly distant from perfect solutions, and the sizes
of ROC related to the maxima are approximately equal for both
sources.

For SR = −20 dB, the background source dominates the mix-
ture. Here, the maximum of C(a) corresponding to the mixing
vector of the SOI is significantly distant from its ideal value, the
function is almost flat in the vicinity of that maximum, and the
corresponding ROC is wide. The separating vector for SOI is
precisely localized by a sharp local maximum of C(w), which
has a narrow ROC. The exact opposite is true for the maxima
corresponding to the dominating background source.

In this example, OGICEw is more advantageous when SR	
0 dB in the sense that the ROC corresponding to the SOI is
wide. Even when the initialization of OGICEw is significantly
deviated, the probability of the successful convergence is high.
Similarly, OGICEa is advantageous when SR� 0 dB.

We have been working under the assumption that the elements
of the mixing matrix have approximately the same magnitude.
However, when this condition is not satisfied or once the input
data are modified by a preconditioning matrix as considered in
Section III-C, the initial SIR values can be different on different
channels. Then, the analysis of influence of SR on ROC would be
more difficult, although similar conclusions could be expected.

Nevertheless, the above observations suggest a practical al-
gorithm for situations where the SIR value is approximately
the same on all channels. It is based on an heuristic selection
between the optimization in a and w.

Let a be the current estimate of the mixing vector. Since
the sequence of vectors ̂Cxa, ̂C2

xa, ̂C3
xa,...(after each vector is

normalized) quickly converges to the eigenvector of ̂Cx corre-
sponding to the largest eigenvalue (for almost any initial value
of a),

b = ̂Cxa (49)

can be viewed as the first-order approximation of that eigenvec-
tor. The largest eigenvalue is therefore approximately equal to
λb = b1/a1 , and, consequently,

∥

∥a/a1 − b/λb
∥

∥ is small when
a is close to the dominant eigenvector.

Next, to assess the dominance of that eigenvector, that is,
whether it is significantly larger compared to the other eigen-
vectors, we propose to compute the ratio of norms of matrices
̂Cx − λbbbH /‖b‖2 and ̂Cx . The ratio is small when b is a
dominant eigenvector of ̂Cx . The criterion of “proximity and
dominance” is therefore defined as

B(a) =
∥

∥a/a1 − b/λb
∥

∥

∥

∥

∥

̂Cx − λbbbH /‖b‖2
∥

∥

∥

F

‖̂Cx‖F
. (50)

The proposed algorithm, referred to as OGICEs , selects the
optimization parameter based on the current value of B(a).
When B(a) < τ , the optimization in w is selected; otherwise,
the optimization proceeds in a. Normally, we select τ = 0.1.
To lower the computational load, the criterion is recomputed
only once after Q iterations (Q = 10). The stopping condition
of OGICEs is the same as that in OGICEw or OGICEa ; see the
summary in Algorithm 2.

IV. INDEPENDENT VECTOR EXTRACTION

A. Definition

In this section, we extend the ideas of the previous sections,
which were derived for a single mixture, to joint extraction of
an independent vector component from a set ofK instantaneous
mixtures.
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Independent Vector Analysis (IVA) is defined as the goal to
jointly separate K mixtures xk = Akuk , k = 1, . . . ,K, where
each mixture is defined as in (1). Compared to ICA, in IVA it
is assumed that K-tuples of original sources, where each tuple
contains one source from each mixture, are mutually indepen-
dent but their elements can be dependent; the tuples are referred
to as vector components [39].

In IVE, we re-parameterize each mixing matrix as in ICE in
order to extract only one independent vector component. Let
K instantaneous mixtures, each of the same dimension,4 be
described by

xk = Ak
ICEvk , k = 1, . . . ,K, (51)

where Ak
ICE obeys the same structure as (3), and vk = [sk ; zk ].

A joint mixture model can be written as

x = AIVEv. (52)

The double-striked font will be used to denote con-
catenated variables or parameters from K mixtures, e.g.,
x = [x1 ; . . . ;xK ]. The joint mixing matrix obeys AIVE =
bdiag(A1

ICE , . . . ,A
K
ICE), where bdiag(·) denotes a block-

diagonal matrix with the arguments on the main block-diagonal.
Similar to (12), the joint statistical model is given by

pv(v) = ps(s)pz(z). (53)

In this model, s and z are independent but the elements inside
of them can be dependent. Like in the previous section, we con-
strain our considerations to the Gaussian background modeling;
so it is assumed that

z ∼ CN (0,Cz), (54)

where Cz = E[zzH ] whose ijth block of dimension (d− 1)×
(d− 1) is Cij

z = E[zizj H ]; similarly Cx as well as the sample-
based counterparts ̂Cz and ̂Cx are defined.

Similar to (26), the quasi-likelihood contrast function follow-
ing from (53) (for one signal sample), is

J (w, a) = log f
(

ŝ1 , . . . , ŝK
)

−
K

∑

i=1

K
∑

j=1

xi
H
Bj HRijBjxj +

K
∑

k=1

log |detWk
ICE |2 , (55)

where ŝk = (wk )Hxk , and Rij is a weighting matrix substitut-
ing the ijth block of the unknown C−1

z .

B. Gradient of the Contrast Function

After a lengthy computation, which follows steps similar to
those described in Appendix C (we skip the details to save
space), the derivative of J with respect to (wk )H under the
constraints (similar to (23))

ak =
̂Ckk

x wk

wkH ̂Ckk
x wk

, k = 1, . . . ,K, (56)

4IVE can be formulated such that each mixture involves a different number
of original signals. However, we consider equal dimension for all K mixtures
to simplify the exposition.

and when Rk� is selected as the k�th block of ̂C−1
z , reads

∂J
∂wkH

= ak − 1
N

Xkφk
(

ŝ1 , . . . , ŝK
)T

+
1

wkH ̂Ckk
x wk

̂Ckk
x BkH εk . (57)

Here, ŝk = (wk )HXk ,

φk (ξ1 , . . . , ξK ) = −∂ log f(ξ1 , . . . , ξK )
∂ξk

, (58)

is the score function related to the model joint density f(·) of s

with respect to the kth variable, and

εk =
K

∑

�=1

Rk�θ�k , where θ�k = ̂Z�(ŝk )H /N. (59)

By comparing (33) with (57), the latter differs only in that the
nonlinearity φk (·) is dependent on the SOIs separated from all
K mixtures, plus the third term that does not occur in (33).

θ�k is the sample correlation between the estimated SOI in
the kth mixture and the separated background in the �th mixture,
and can also be written as θ�k = B�

̂C�k
x wk . For k = 1, . . . ,K,

θkk = 0 due to the OG, but, for k �= �, θ�k is non-zero in
general. Therefore, the third term in (57) vanishes only when
Rk� = 0 for k �= �, � = 1, . . . ,K.

Here, a special case is worth considering in which Cx =
bdiag(C11

x , . . . ,C
KK
x ); in other words, the mixtures (51) are

uncorrelated (to each other), and there are only higher-order
dependencies, if any. Then, Cz has the same block-diagonal
structure as Cx, so it is reasonable to select Rk� = 0 for k �= �,
although the sample covariances ̂Ck�

z are not exactly zero. In
that case, (57) is simplified to (compare with (33))

∂J
∂wkH

= ak − 1
N

Xkφk
(

ŝ1 , . . . , ŝK
)T
. (60)

This observation is in agreement with the literature. The joint
separation of correlated mixtures can be achieved using second-
order statistics only [6], [56]. Uncorrelated mixtures arise, for in-
stance, in the frequency-domain separation of convolutive mix-
tures. Here, the non-Gaussianity and higher-order moments are
necessary for separating the mixtures [9], [57].

C. Gradient Algorithms for IVE

The constrained gradient can, similarly to (60) and (37), be
computed with respect to (ak )H , which gives (we skip the de-
tailed computation)

∂J
∂akH

= wk − λka
N

(̂Ckk
x )−1Xkφk

(

ŝ1 , . . . , ŝK
)T
, (61)

where λka = (akH (̂Ckk
x )−1ak )−1 . Now, the gradient optimiza-

tion algorithms for IVE (considering only sets of uncorrelated
instantaneous mixtures) can proceed in the same way as those
for ICE with the following differences:

1) In each iteration, wk or ak are updated by adding a step
in the direction of the gradient (60) or (61), respectively,
for each k = 1, . . . ,K.
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2) The nonlinear functions φk , k = 1, . . . ,K, depend on the
current outputs of all K iterative algorithms, which fact
makes them mutually dependent.

We will refer to these algorithms as to OGIVEw and
OGIVEa , respectively; for illustration, OGIVEw is described in
Algorithm 3.

Finally, we introduce a method referred to as OGIVEs , where
the idea presented in Section III-F is applied within each mix-
ture. The parameter in which the gradient optimization proceeds
is selected based on the heuristic criterion (50). It is important
to note that the selection can be different for each mixture.

In fact, this approach inherently assumes that the behavior
of the optimization process within any mixture is similar to
the case of ICE. The behavior can be different in the case of
IVE as the parallel extraction algorithms influence each other.
The advantage of this feature is that the dependence can bring
a synergic effect: When most initial separating/mixing vectors
lie in the ROC of the SOI, the convergence within the other
mixtures can be enforced.

V. SIMULATIONS

In simulations,5 we focus on the sensitivity of the proposed
ICE and IVE algorithms with respect to the initialization and
compare them with other methods. In one simulated trial, K
instantaneous mixtures are generated with random mixing ma-
trices Ak , k = 1, . . . ,K. The SOIs for these mixtures are ob-
tained as K signals drawn independently from the Laplacean
distribution and mixed by a random unitary matrix; hence, they
are uncorrelated and dependent. The background is obtained by
generating independent components uk2 , . . . , u

k
d from the Gaus-

5Matlab codes and results of the experiment are available at [58].

sian or Laplacean distribution, k = 1, . . . ,K; all the distribu-
tions are circular.

For each mixture, the SR is selected randomly, either −10
or 10 dB. The mixing matrices are drawn from the uniform
distribution; the real part in [1; 2] and the imaginary part in [0, 1].
This choice helps us keep the initial SIR values approximately
equal across all input channels, that is, less dependent on the
mixing matrix while mostly dependent on the SR.

The comparison involves One-Unit FastICA (FICA) [59],
three variants of OGICE proposed in Section III, the Natural
Gradient algorithm (NG) [53] and its scaled version (scNG)
[60], which is frequently used in audio separation methods, as
well as three variants of OGIVE proposed in Section IV-C.
These algorithms are initialized by aini = a + eini , where a
is the true mixing vector, and eini is a random vector which is
orthogonal to a, and ‖eini‖2 = ε2 . The algorithms NG and scNG
are initialized by the de-mixing matrix whose first row is equal
to (22) where a = aini; the other rows are selected as in (8),
which means that the initial background subspace is orthogonal
to the initial SOI estimate.

Next, we also evaluate the SOI estimates obtained through
(22) for a equal to the true mixing vector (MPDR_oracle)
and for a = aini (MPDR_ini). While the performance of the
MPDR_oracle gives an upper bound, the performance of
MPDR_ini corresponds to a “do-nothing” solution purely re-
lying on the initialization.

ICE/ICA methods are applied to each mixture separately,
while IVE algorithms treat all K mixtures jointly.6 The nonlin-
earity φ(ξ) = tanh(ξ) is selected in the variants of OGICE and
NG. FICA is used with (1 + |ξ|2)−1 . For IVE algorithms, the
choice is

φk (ξ1 , . . . , ξK ) = tanh(ξk )/

√

∑K

�=1
|ξ� |2 . (62)

The problem of choosing an appropriate nonlinearity for the
given method would go beyond the scope of this paper; see,
e.g., [28], [49].

For the sake of completeness, we also include a semi-blind
variant of OGIVEs , which is modified in a way similar to that
proposed in [61]. Specifically, a “pilot” component p is assumed
to be available such that the SOIs within theK mixtures are de-
pendent on it (usually there are only higher-order dependencies;
see [9]). OGIVEs is modified only by adding the K + 1th vari-
able into (62), which is ξK+1 = p. In simulations, p is a random
mixture of the SOIs. This method will be referred to as “Piloted
OGIVEs”.

The detailed settings of the compared algorithms are shown in
Table I; these values were selected to ensure good performance
of the methods.

A. Results

The algorithms were tested in 1000 independent trials for d =
6, K = 4, and N = 1000. Each extracted signal was assessed

6IVE can take advantage of the dependence among SOIs from different
mixtures while ICA/ICE cannot. One goal of our experiment here is to evaluate
the improvement due to the joint extraction.
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Fig. 2. Histograms of the output SIR values (in dB) achieved by the blind algorithms in 1000 trials (4000 extractions) when the background is Laplacean.

TABLE I
DETAILED SETTINGS OF THE COMPARED METHODS

by the output SIR value (the ratio of powers of the SOI and of
the other signals within the extracted signal). In the experiment,
the achieved SIR values range from −50 to 50 dB depending
on whether the SOI was extracted or a different source, and the
SIR value also depends on the qualities of the given algorithm.
Complete results achieved by the methods, for the Laplacean
background, are shown as histograms in Fig. 2.

Since our primary focus is on the extraction of the SOI, the
results in Fig. 3 show the percentages of successful extractions of
the SOI (success rates) as functions of the initial error ‖eini‖2 =
ε2 . Here, each extraction is classed as successful if the output
SIR value is greater than 0 dB. We first discuss these results as
follows.

1) MPDR: MPDR oracle achieves a 100% success rate. The
success rate of MPDR_ini is decaying with growing ε2

as MPDR_ini yields the SIR value corresponding to the
extracted signal using the initial mixing vector. Its success
rate approaches 50% as ε2 → 1, which corresponds to the
fact that SR = 10 dB in about 50% of trials. The results
of MPDR_oracle and of MPDR_ini do not depend on the
signals’ distributions.

2) OGICEa/w : OGICEa and OGICEw achieve a success rate
of 20–50% almost independently of ε2 . This corresponds
to the fact that maximum 50% of trials are advantageous
for each method (SR = −10 dB for OGICEa and SR =
+10 dB for OGICEa ). The success rates are mostly lower
than 50%, which shows that the mixing matrix also has
an influence on the ROC of the SOI, so, for example,
SR = +10 dB does not always guarantee that OGICEw

converges to the SOI from almost any initial value.7 For

7It can be verified, by repeating this experiment, that with SR = ±15 dB,
OGICEa/w achieve a success rate of almost 50%. It means that, with a higher
range of SR, the influence of the mixing matrix (generated in the same way as
in this experiment) is lower.
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Fig. 3. Success rates as functions of the initial mean squared error, ε2 for d = 6,K = 4, andN = 1000. The experiment was repeated in 1000 trials (1000 ×K
mixtures). The SOI is generated from Laplace components while the background is Gaussian or Laplacean.

the Laplacean background, the success rate values are
lower than for the Gaussian background because there is
a higher probability that the methods are attracted by a
different non-Gaussian source.

3) OGIVEa/w : The IVE counterparts of OGICEa and
OGICEw perform similarly but their success rate values
are always closer to 50%. This is caused by the joint ex-
traction. OGIVEa and OGIVEw take advantage of the
dependence between the SOIs in K mixtures, which im-
proves the overall convergence.

4) Switched optimization: In terms of the success rate,
OGICEs and OGIVEs achieve significant improvements
compared to OGICEa/w and OGIVEa/w , respectively.
This indicates effectiveness of the decision rule based on
the criterion (50) and to the synergy of the joint separation
in the case of OGIVEs . It is worth pointing out that the
performances of OGICEs and OGIVEs slightly decrease
with growing ε2 . This is because for higher ε2 , the initial
mixing vector is more distant from the true value, so the
criterion (50) is less reliable for selecting the optimization
parameter. To avoid this drawback, a better decision rule
is needed.

5) NG and scNG: The success rate of these ICA algorithms
significantly depends on the initial error as well as on the
distribution of the background. The success rate is superior
for very small values of ε2 , but it rapidly drops with grow-
ing ε2 (scNG appears to be less sensitive than NG). The
results also show that very good convergence is achieved
for ε2 < 10−2 when the background is Laplacean. This
indicates that the ICA algorithms can take advantage of
the non-Gaussianity of background signals.

6) FICA shows excellent results when the background is
Gaussian. Since it is a fixed-point algorithm, it has a good
ability to avoid shallow extremes of the contrast function
that correspond to Gaussian components. Therefore, its
global convergence is very good when there are no non-
Gaussian components other than the SOI. For the same

reason, the success rate of FICA goes down with growing
ε2 when the background is Laplacean.

7) Piloted OGIVEs : This algorithm gives a higher success
rate than OGIVEs as it exploits the pilot-dependent com-
ponent to keep converging to the SOI. Its performance is
slightly decreasing when ε2 grows due to the shortage of
the criterion (50), as mentioned in Item 4 above.

Now we go back to the histograms of the output SIR values
(in dB) shown in Fig. 2. Typically, these values are concentrated
around two peaks with a central value of≈ ±20 dB. When more
values are concentrated around a positive SIR value for any
ε2 , the given method shows good robustness against the initial-
ization error as it mostly tends to keep converging to the SOI.
From this perspective, OGICEs , OGIVEs and Piloted OGIVEs

show the best results, as was already discussed above.
The variance of the SIR values around the peaks reflect the

ability of the method to avoid local extremes of the contrast func-
tion and/or its ability to converge before the maximum number
of iterations is reached. In this respect, scNG and FICA achieve
superior results as they rarely yield an output SIR value within
the range of [−10, 10] dB. It is worth pointing out that scNG
and FICA could be interpreted as gradient methods using spe-
cial preconditioning and adaptive step lengths, as discussed in
Sections III-C-III-E. The other compared algorithms, the vari-
ants of OGICE and of OGIVE, utilize constant step lengths
and do not apply any preconditioning. Their histograms are less
concentrated around the main peaks, which means that they
sometimes get stuck in a local extreme or converge too slowly
to achieve the desired extreme of the contrast function.

VI. CONCLUSIONS

We have revised the problem of blind source extraction of an
independent target source from background signals. The maxi-
mum likelihood approach where the mixing model is parameter-
ized for the extraction of one source and where the background
signals are modeled as a Gaussian mixture has been introduced
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as Independent Component Extraction (ICE). Similarly, Inde-
pendent Vector Extraction (IVE) has been introduced for the
joint extraction problem.

Several variants of gradient algorithms have been derived. Our
attention has been focused on their region of convergence related
to the source of interest. It was shown that the size of the ROC is
not only algorithm-dependent but it also strongly depends on the
ratio of scales of the sources within the mixture. In particular, we
have shown that the size of the ROC can be influenced through
the selection of optimization parameters. This was corroborated
by simulations where the methods endowed with the automatic
selection of optimization parameters achieved a high rate of
successful extractions of the SOI, almost independent of the
initialization. Matlab codes of algorithms proposed in this article
are available at [58].

The simulation study has also confirmed that the joint ex-
traction through IVE brings advantageous features compared to
ICE. In particular, the IVE methods with automatic selection
show synergistic convergence, by which we mean that simulta-
neous convergence of the SOIs within several mixtures helps us
enforce the convergence in the other mixtures as well.

Next, the gradient algorithms derived based on ICE have
been compared with the Natural Gradient-based methods for
ICA and with One-Unit FastICA. Close relationships between
these methods have been revealed, which sheds light on the
relation between ICE and the well-known blind source sep-
aration/extraction (BSS/BSE) methods. In particular, the im-
portance of the orthogonal constraint (the orthogonality of the
subspaces spanned by the SOI and the background signals)
and the Gaussian modeling of the background signals in ICE
methods has been shown. Therefore, future work should be fo-
cused on these aspects in order to improve overall properties
of ICE/IVE algorithms in non-Gaussian backgrounds and in
underdetermined scenarios.

APPENDIX A
PROOF OF (22) AND (23)

Since y = Qz = QBx, we can introduce the projection op-
erator Πy = QB, which is equal to

Πy = Id − awH . (63)

According to (21), the OC can be written as

̂ZH ŝ/N = B̂Cxw = 0. (64)

By multiplying the latter equation from the left by Q and using
(63), we arrive at

(Id − awH )̂Cxw = 0, (65)

w − ̂C−1
x a (wH

̂Cxw) = 0. (66)

Multiplying (66) from the left by aH gives

aHw − aH ̂C−1
x awH

̂Cxw = 0, (67)

and since aHw = 1, it holds that

aH ̂C−1
x a = (wH

̂Cxw)−1 . (68)

By putting (66) and (68) together, (22) and (23) follow. �

APPENDIX B
PROOF OF (25)

Assume that a is equal to its true value in (2) (hence A =
AICE and W = WICE ), and recall that, in the determined ICE
model, y = Qz holds. Then, wH

MPDRx = s+ wH
MPDRy. We

should show that aHC−1
x y = 0. It holds that

aHC−1
x y = aHC−1

x Qz (69)

= aH
(

ACvAH
)−1

Qz (70)

= aHWHC−1
v WQz, (71)

where Cv = E[vvH ]. Next, it holds that aHWH = [1, 0H ],
and WQ = [0, Id−1 ]H . By taking into account the block-
diagonal structure of Cv , i.e.,

Cv =
(

σ2
s 0H

0 Cz

)

, (72)

where σ2
s denotes the variance of s, (25) follows. �

APPENDIX C
COMPUTATION OF (27)

The following identities hold under the constraint (23).

g = Ea =
ÊCxw

wH ̂Cxw
, (73)

γ = eH1 a =
eH1 ̂Cxw

wH ̂Cxw
, (74)

1− hH g = βγ = β
eH1 ̂Cxw

wH ̂Cxw
. (75)

To derive (27), we proceed by computing the derivatives of the
three terms in (26). First, using (28), it follows that

∂

∂wH
log f(wHx) = −φ(wHx)x, (76)

so that

1
N

N
∑

n=1

−φ(

wHx(n)
)

x(n) = − 1
N

Xφ(wHX)T , (77)

where φ(·) is applied element-wise in case of the vector
argument.

Let x be partitioned as x = [x1 ;x2 ]. Under the constraint (23)
and using B = [g, −γId−1 ], the second term in (26) (where the
argument n is omitted) can be re-written as

xHBHRBx = (wH
̂Cxw)−1

× (|x1 |2wH
̂CxEHRÊCxw − x1wH

̂CxEH eH1 ̂CxwRx2

− x1wH
̂Cxe1xH2 RÊCxw + wH

̂Cxe1xH2 ReH1 ̂Cxwx2
)

.
(78)

By taking the derivative under the OG and after some
rearrangements,

∂

∂wH
xHBHRBx = −2axHBHRBx

+ (wH
̂Cxw)−1 × (

x1 ̂CxEHRBx− xH2 RBx̂Cxe1
)

. (79)
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By considering the averages of the above terms overN samples,
we arrive at the following chain of identities:

1
N

N
∑

n=1

x(n)HBHRBx(n) =
1
N

N
∑

n=1

tr
(

BHRBx(n)Hx(n)
)

= tr
(

RB̂CxBH
)

= tr
(

R̂Cz
)

.
(80)

Next,

1
N

N
∑

n=1

x1(n)̂CxEHRBx(n) = ̂CxEHRBXXH e1/N

= ̂CxEHR̂ZXH e1/N

= ̂CxEHR̂Z
(

ŝH ̂ZH
)

AH
ICEe1/N

= ̂CxEHR
(

0H
̂Cz

)

AH
ICEe1

= ̂CxEHR̂Czh, (81)

where we used (20) and (21). The last identity is

1
N

N
∑

n=1

xH2 RBx̂Cxe1 = tr
(

RB̂CxEH
)

̂Cxe1 . (82)

The derivative of the third term in (26) reads

(d− 2)
∂

∂wH
log |γ|2

= (d− 2)
∂

∂wH
(log |wH

̂Cxe1 |2 − log |wH
̂Cxw|2)

= (d− 2)
∂

∂wH
(log wH

̂Cxe1 − 2 log wH
̂Cxw)

= (d− 2)

(

̂Cxe1

wH ̂Cxe1
− 2

̂Cxw

wH ̂Cxw

)

= (d− 2)

(

γ−1
̂Cxe1

wH ̂Cxw
− 2a

)

. (83)

Now, (27) is obtained by putting together (77), (79), and (83)
using the identities (80), (81), and (82). �
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[28] P. Tichavský, Z. Koldovský, and E. Oja, “Performance analysis of the Fas-
tICA algorithm and Cramér-Rao bounds for linear independent compo-
nent analysis,” IEEE Trans. Signal Process., vol. 54, no. 4, pp. 1189–1203,
Apr. 2006.

[29] A. Hyvärinen, “One-unit contrast functions for independent component
analysis: A statistical analysis,” in Proc. IEEE Signal Process. Soc. Work-
shop Neural Netw. Signal Process. VII, Sep. 1997, pp. 388–397.

[30] J.-F. Cardoso, “On the performance of orthogonal source separation algo-
rithms,” in Proc. Eur. Signal Process. Conf., Sep. 1994, pp. 776–779.



1064 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 4, FEBRUARY, 15 2019
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