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Error Preserving Correction: A Method for CP
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Anh-Huy Phan , Member, IEEE, Petr Tichavský , Senior Member, IEEE, and Andrzej Cichocki , Fellow, IEEE

Abstract—In CANDECOMP/PARAFAC tensor decomposition,
degeneracy often occurs in some difficult scenarios, especially,
when the rank exceeds the tensor dimension, or when the load-
ing components are highly collinear in several or all modes, or
when CPD does not have an optimal solution. In such cases, norms
of some rank-1 tensors become significantly large and cancel each
other. This makes algorithms getting stuck in local minima while
running a huge number of iterations does not improve the decom-
position. In this paper, we propose an error preservation correction
method to deal with such problem. Our aim is to seek an alterna-
tive tensor, which preserves the approximation error, but norms of
rank-1 tensor components of the new tensor are minimized. Alter-
nating and all-at-once correction algorithms have been developed
for the problem. In addition, we propose a novel CPD with a bound
constraint on the norm of the rank-one tensors. The method can
be useful for decomposing tensors that cannot be performed by
traditional algorithms. Finally, we demonstrate an application of
the proposed method in image denoising and decomposition of the
weight tensors in convolutional neural networks.

Index Terms—Canonical polyadic decomposition (CPD),
bounded CPD, degeneracy, PARAFAC, tensor decomposition for
ill conditioned problems.

I. INTRODUCTION

IN THIS paper, we consider the CANDECOMP/PARAFAC
tensor decomposition, which approximates a tensor Y by a

sum of rank-1 tensors in the form of

Y ≈ Ŷ =
R∑

r=1

ηr u(1)
r ◦ u(2)

r ◦ · · · ◦ u(N )
r , (1)

where U(n) = [u(n)
1 , . . . ,u

(n)
R ] are factor matrices of size

In ×R. The tensor Y is of size I1 × I2 × · · · × IN , and its
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approximated tensor, Ŷ, is of rank-R. This decomposition has
found numerous applications in identification of independent
components, signals retrieval in CDMA telecommunications,
extraction of hidden components from neural data, image com-
pletion and various tracking scenarios [1], [2].

When the loading components u
(n)
r are assumed to be unit-

length vectors, the weight, ηr , represents the Frobenius norm of
the r-th rank-one tensor

‖ηr u(1)
r ◦ u(2)

r ◦ · · · ◦ u(N )
r ‖2F = η2

r ‖u(1)
r ‖2‖u(2)

r ‖2 · · ·‖u(N )
r ‖2

= η2
r .

In some difficult decomposition scenarios, the norms of some
rank-1 terms become significantly large and cancel each other.
This is often observed when the rank exceeds the tensor di-
mension, or when the loading components are highly collinear
in several or all modes (swamps) [3]. Moreover, it may happen
that the CP decomposition does not have an optimal solution [4],
[5], because the tensor can be arbitrarily well approximated by
tensors of lower ranks. Recently, the CPD of the parameters in
the convolutional and fully connected layers has shown a novel
application in acceleration of the inference process of convolu-
tional neural networks [6], [7]. The tensors in practice do not
have balance dimensions, but often need the approximation with
relatively high rank, e.g., 200. The dimensions corresponding
to the filter sizes are often small, while the other dimensions,
representing the number of inputs and outputs of the layers are
often high. Our observation is that decomposition of such ten-
sors using the alternating or nonlinear least squares algorithm
often encounters degeneracy. Many rank-1 tensor components
have very high Frobenius norms, while some other ones are
with low intensity. Such degeneracy causes difficulty with fine-
tuning the network, selection of a good set of parameters and
stability in the entire network.

The degeneracy phenomenon is widely reported in the litera-
ture, e.g., in [1], [3], [8]–[18]. Some efforts have been made to
improve stability and convergence for such cases [11], [19]. For
example, additional constraints can be imposed on the factor
loadings, e.g., column-wise orthogonality [4], [17]–[19], pos-
itivity or nonnegativity [10], [20]. An alternative approach is
to improve convergence of CP decomposition techniques, e.g.,
the Alternating Least Squares (ALS), through a regularization.
For example, a Tikhonov regularization alters the optimization
problem to

min
1
2
‖Y− Ŷ‖2F +

μ

2

∑

n

‖U(n)‖2F . (2)
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In (2), columns of the factor matrices U(n) are not normalized,
but the scaling ηr are equally distributed in them. The penalty
parameter μ is adaptively adjusted and should converge to zero.
Another possibility is to employ an iterated Tikhonov regular-
ization [21] represented in a sequence optimization

min
1
2
‖Y− Ŷ[i]‖2F +

μ

2

∑

n

‖U(n)
[i] −U(n)

[i−1]‖2F , (3)

where U(n)
[i] is an estimate of U(n) in iteration i and Ŷ[i] is

a tensor represented by {U(n)
[i] }. The parameter μ controls the

convergence speed. In practice, an update with a slower conver-
gence is often more stable.

In some applications, we seek an exact CP representation for
a data. Decomposition of tensors corresponding to the matrix
multiplication is an example. The task is to find a minimum
number of scalar multiplications to compute a product of two
matrices of given sizes. This is one of the main challenging
problems of the theory of complexity. In [22], we minimise the
first term in (2) and constrain the second term to a constant.

min ‖Y− Ŷ‖2F s.t.
∑

n

‖U(n)‖2F ≤ c .

In this way, it is possible to find an exact decomposition of the
matrix multiplication tensors for certain matrix sizes and avoid
convergence to singular “solutions” where the norm of some
factor matrices converges to infinity.

Although the above-mentioned methods may help in certain
situations, we propose a more direct approach to the problem
of the diverging components. Different from the existing algo-
rithms for this kind of tensor decomposition, our aim is to correct
the rank-1 tensors if their norm is observed to be relatively high
during the tensor approximation process. More specifically, we
seek a new tensor, Ŷ, whose norms of rank-1 tensor components
are minimal or relatively small, while it is still possible to ex-
plain Y at the current level of approximation error. Continuing
the decomposition with a new tensor which has a lower norm
prevents CP algorithms from degeneracy and thereby improves
their convergence. This can be achieved by solving the following
constrained CP tensor approximation

min f(θ) = ‖η‖22 =
R∑

r=1

η2
r

s.t. c(θ) = ‖Y− Ŷ(θ)‖2F ≤ δ2 , (4)

where θ represents a vector of all model parameters and Ŷ(θ)
or Ŷ represents the estimated tensor of Y constructed from θ.
We call this the Error Preserving Correction (EPC) method.

In Section II, we derive algorithms for the above constrained
nonlinear optimization problem: an alternating EPC algorithm
and another one based on the Sequential Quadratic Program-
ming (SQP) method to update all the parameters at a time. In
the alternating algorithm, we reformulate the optimization in
(4) as linear regression sub-problems with a bound constraint
for the factor matrices, which in turn can be solved in closed-
form through the Spherical Constrained Quadratic Program-
ming (SCQP). For the SQP algorithm, we derive a fast inverse
of the Hessian matrix.

TABLE I
NOTATION AND ABBREVIATIONS USED IN THE PAPER

Other optimization methods can be applied to solve the above
optimization problem. For large-scale data, we can apply the
sketching or randomized sampling method [23]–[25]. A random
selection of the sketches (parts of data used in optimization) is
reported to have a positive influence on the convergence.

In the second part of the paper, together with the EPC for
CPD, we propose a novel CP decomposition with a constraint
on the norm of rank-1 tensors

min ‖Y− Ŷ‖2F s.t. ‖η‖22 ≤ ε2 . (5)

Note that the optimization problem (5) is dual to that in (4) and
vice versa. This method is similar but not identical to the one in
[22] with a bound on the sum of squared Frobenius norm of the
factor matrices. A novel ALS algorithm and an SQP algorithm
are then derived for the bounded norm CPD.

We also present relations between the alternating EPC and the
ordinary ALS algorithm, between the new ALS for CPD with a
bound constraint and the ALS with the Tikhonov regularization
given in (2).

In Section IV, we present examples of utilization of the pro-
posed algorithms and methods in decomposing artificially con-
structed tensors, tensors corresponding to the matrix multipli-
cation, a tensor of real-world TV rating data [8], a fourth-order
tensor for time-frequency representation of Event-related EEG
[26], a weight tensor in the Alexnet convolutional neural net-
work, and an example for image denoising.

II. ERROR PRESERVING CORRECTION ALGORITHMS

For convenience, we summarize notations and abbreviations
in Table I. We note that the constraint function in the opti-
mization (4) is nonlinear in all the factor matrices, but linear
in parameters in a single factor matrix, or in non-overlapping
partitions of different factor matrices [27], [28]. A simple ap-
proach to handle this kind of constrained nonlinear optimization
is to rewrite the objective function and especially the constraint
function in a linear form. This can be achieved using the alter-
nating update scheme or the Sequential Quadratic Programming
method [29], [30].

A. The Alternating Correction Method

In this section, we present an application of the linear regres-
sion in (39) in a tensor decomposition.
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At each iteration, we seek a new estimate of the factor matrix
U(n) which reduces the objective function, while preserving the
approximation error. Note that by absorbing η into the factor
matrix U(n) to give U(n)

η = U(n) diag(η), while keeping the
other factor matrices U(k) fixed, k �= n, the objective function
becomes

‖η‖2 = ‖U(n) diag(η)‖2F = ‖U(n)
η ‖2F .

The constraint is rewritten for the factor matrix U(n)
η as

‖Y− Ŷ‖2F = ‖Y(n) −U(n)
η TT

n ‖2F
= ‖Y‖2F + tr(U(n)

η TT
n TnU(n)T

η )− 2 tr(Y(n) Tn U(n)T
η )

= tr(U(n)
η Γ−n U(n)T

η )− 2 tr(Gn U(n)T
η ) + ‖Y‖2F

= ‖GnVnΣ
−1
2 −U(n)

η VnΣ
1
2 ‖2F + ‖Y‖2F − ‖GnVnΣ

−1
2 ‖2F ,

(6)

where Tn = �k �=n U(k) , Gn = Y(n) Tn is of size In ×R, and
Γ−n = TT

n Tn = �k �=n (U(k)T U(k)) is of size R×R.
We assume that the matrix Γ−n is positive definite, and denote

its Eigen-Value Decomposition (EVD) by Γ−n = VnΣVT
n ,

where Vn is an orthonormal matrix of eigenvectors, and
Σ = diag(σ1 ≥ · · · ≥ σR > 0) is a diagonal matrix of positive
eigenvalues. Note that the matrix Vn comprises right singular

vectors associated with the singular values σ
1
2
r of Tn .

Let Fn = GnVn . The optimization problem (4) becomes the
linear regression with the bounded error constraint

min ‖U(n)
η ‖2F

s.t. ‖FnΣ
−1
2 −U(n)

η VnΣ
1
2 ‖2F ≤ δ2

n , (7)

where δ2
n = δ2 + ‖FnΣ

−1
2 ‖2F − ‖Y‖2F . According to Lemma 2

in Appendix A, we can replace the inequality constraint by an
equality constraint, and solve the equivalent problem in closed
form after replacing U(n)

η by its vectorization and formulating it
as a Spherical Constrained QP (SCQP) in (43) for InR param-
eters. An alternative method is that we apply the conversion for
matrix variate in Appendix C, and formulate an SCQP for only
R parameters. To this end, we perform a reparameterization

Zn =
1
δn

(FnΣ
−1
2 −U(n)

η VnΣ
1
2 ), (8)

U(n)
η = (FnΣ

−1
2 − δn Zn )Σ

−1
2 VT

n , (9)

and represent the Frobenius norm of U(n)
η as

‖U(n)
η ‖2F = ‖FnΣ−1‖2F + δ2

n tr(Zn Σ−1 ZT
n )

− 2δn tr(FnΣ
−3
2 ZT

n ).

The matrix Zn of the size In ×R is a minimizer of an SCQP
for matrix-variate

min δn tr(Zn Σ−1 ZT
n )− 2 tr(FnΣ

−3
2 ZT

n )

s.t. ‖Zn‖2F = 1, (10)

According to Lemma 3 in Appendix B and the SCQP for matrix
variate in Appendix C, the minimizer Z�

n can be derived from the

minimizer z� = [z�
1 , . . . , z�

R ]T which can be found in a closed-
form of an SCQP of a smaller scale

min δnzT Σ−1 zT − 2cT z s.t. zT z = 1, (11)

where c = [. . . , σ
−3
2

r ‖f (n)
r ‖, . . .].

For a non zero cr , the r-th column of Z�
n is the r-th column

of Fn scaled by a factor of z�
r

‖f (n )
r ‖

z(n)�
r =

z�
r

‖f (n)
r ‖

f (n)
r .

Otherwise, for a zero cr = 0, z
(n)�
r can be any vector of length

‖z(n)�
r ‖2 = (z�

r )2 . It can also be shown that if cr = 0 for r > 1,
then z�

r = 0 [31], hence z
(n)�
r is a zero vector. Replacing Zn in

(9) by Z�
n yields a new update of U(n)

η .

At each iteration, we update U(n)
η by a new matrix having

a smaller Frobenius norm, while preserving the approximation
error ‖Y− Ŷ‖2F = δ2 . The new estimates of ηr and u

(n)
r are

respectively the �2 -norm of the vector u
(n)
η ,r and its �2-normalised

version

ηr = ‖u(n)
η ,r ‖ ,u(n)

r =
u

(n)
η ,r

ηr
.

Similarly, in the next iteration, we update U(n+1)
η , then nor-

malise it to obtain new estimates of U(n+1) and η. The algo-
rithm sequentially updates all U(n) and stops when there is no
significant improvement in η. The Alternating Correction for
Error Preservation (ACEP) is summarized in Algorithm 1. Sim-
ilar to the ordinary ALS algorithm, the most expensive step in
ACEP is the computation of N matrices Gn . However, we need
not compute these terms explicitly as in Step 2, but through
a progressive computation of CP gradients [32]. In the case
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of decomposition of a tensor of the size I × I × · · · × I , the
computation of the gradient has a cost of O(RIN ).

B. Relation Between ACEP and ALS

Consider the case when the first column of Fn is non-
zero, i.e., c1 �= 0, hence, z�

1 �= 0, and the matrix Z�
n can be

expressed as

Z�
n = F̄n diag([. . . , z�

r , . . .]) , (12)

where columns of F̄n are f
(n )
r

‖f (n )
r ‖ for non zero columns f (n)

r , and

zero vectors elsewhere.
Since f

(n)
1 is non-zero, the minimizer z� of the SCQP in (11)

is given in closed-form as

z�
r =

cr

‖c‖(sr − λ)
=
‖f r (n)‖σ −3

2
r

‖c‖(sr − λ)
, (13)

where sr = 1 + δn

‖c‖ (σ
−1
r − σ−1

1 ), and λ is a unique root in [0, 1)
of a secular function

∑
r (z�

r )2 = 1 [31], [33].
From (9), (12), (13) and the definition of c, the new update

of U(n)
η can be expressed in a compact form as

U(n)
η = (FnΣ

−1
2 − δn F̄n diag([. . . , z�

r , . . .]))Σ
−1
2 VT

n

= Fn diag
(

1− δn

‖c‖√σr (sr − λ)

)
Σ−1VT

n . (14)

Observe that only when δn = 0, the above update (14) boils
down to the ordinary ALS update for CPD

U(n)
η = Y(n)TnΓ−1

−n .

C. Sequential Quadratic Programming for EPC

1) An “all-at-once” algorithm: Similar to the ALS algo-
rithm for CPD, the ACEP algorithm updates one factor ma-
trix per iteration and may require many iterations to converge.
Hence, it might be useful to consider an “all-at-once” algorithm
for the EPC, which would be analog to the nonlinear algo-
rithms for CPD. The algorithm follows the idea of the sequen-
tial quadratic programming [29], [30]. The objective function
which represents the sum of Frobenius norms of rank-1 tensors
is rewritten as

f(θ) =
R∑

r=1

‖u(1)
r ◦ u(2)

r ◦ · · · ◦ u(N )
r ‖2F

=
R∑

r=1

N∏

n=1

(u(n)T
r u(n)

r ), (15)

and the optimization problem in (4) is stated as

min f(θ) s.t. c(θ) = ‖Y− Ŷ(θ)‖2F ≤ δ2 , (16)

where θ = [vec
(
U(1)

)T
, vec

(
U(2)

)T
, . . . , vec

(
U(N )

)T
]T .

As the derivation of the ACEP algorithm, we solve a minisa-
tion problem with an equality constraint

min f(θ) s.t. c(θ) = ‖Y− Ŷ(θ)‖22 = δ2 . (17)

In order to perform this optimization, we first construct the
Lagrangian function

L(θ, λ) = f(θ) + λ (c(θ)− δ2), (18)

then approximate L(θ(k) + dθ , λ
(k) + dλ) by a second order

Taylor expansion around (θ(k) , λ(k))

L(θ(k) + dθ , λ
(k) + dλ) ≈

L(θ(k) , λ(k)) + (∇L(θ(k) , λ(k)))T d

+
1
2

dT [∇2L(θ(k) , λ(k))]d,

where d =
[
dT

θ , dλ

]T
represents the vector of increment. This

gives an approximation to the gradient

∇L(θ(k) + dθ , λ
(k) + dλ)

≈ ∇L(θ(k) , λ(k)) + [∇2L(θ(k) , λ(k))]d.

By setting the gradient to zero, we obtain the Newton iteration
update as the solution to the following linear equation

[∇2L(θ(k) , λ(k))]d = −∇L(θ(k) , λ(k))

or more explicitly
[
Hλ(k ) (θ(k)) gc(θ

(k))
gT

c (θ(k)) 0

] [
dθ

dλ

]

= −
[

gf (θ(k)) + λ(k)gc(θ
(k))

c(θ(k))− δ2

]
, (19)

where gf (θ) and gc(θ) are gradients of the objective and con-

straint functions with respect to θ. The Hessian Hλ(k ) (θ(k)) is
computed as

Hλ(k ) (θ(k)) = ∇2f(θ(k)) + λ(k) ∇2c(θ(k)). (20)

The solution in (19) is also a minimizer of the following QP
subproblem

min
1
2
dT

θ Hλ(k ) (θ(k))dθ + gT
f (θ(k))dθ

s.t. c(θ(k)) + gT
c (θ(k))dθ = δ2 . (21)

Solving either (19) or the QP in (21) gives us the new
search direction, θ(k+1) = θ(k) + δθ , and the Lagrange mul-
tiplier, λ(k+1) = λ(k) + δλ. However, the Hessian is of size
R(

∑
n In )×R(

∑
n In ), and its inverse is computationally de-

manding if the tensor dimensions are large. This makes the SQP
algorithm impractical. Further details regarding the SQP method
can be found in [29], [30].

We next derive the Hessian and gradient of the Lagrangian,
and then apply a similar method for fast inversion of the Hessian
used in [34], [35] to solve the linear system in (19).

2) Fast Inversion of the Hessian: Following (48) in
Appendix D and (49) in Appendix E, the Hessian Hλ can be
expressed as a rank-R2 adjustment form as

Hλ = Hf + λHc

= G̃ + Z̃Ψλ Z̃T ,
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where Ψλ = PR,R dvec(Γλ), G̃ is a block diagonal matrix of
square matrices, G̃n , of size InR× InR

G̃n = Γ(−n)
λ ⊗ IIn

− Z̃n Ψλ Z̃T
n ,

and Γλ and Γ(−n)
λ are square matrices of size R×R respectively

adjusted from the matrices Γ and Γ−n as

Γ(−n)
λ (r, s) =

{
λΓ−n (r, s), r �= s,

(λ + 1)Γ−n (r, r), r = s ,
(22)

Γλ(r, s) =

{
λΓ(r, s), r �= s,

(λ + 2)Γ(r, r), r = s.
(23)

With the condition R <
∑

n In , the matrix Z̃ is a tall matrix of
size R(

∑
n In )×R2 . G̃ is a block diagonal matrix, its inverse is

efficiently computed through the inverses of its block matrices
G̃n . However, since the Hessian matrix is rank-deficient, we
suggest increasing its diagonal by a sufficiently large μ to make
the smallest eigenvalue positive. This is similar to adding the
penalty term μ‖θ‖2F into the objective function f(θ)

min f(θ) + μ‖θ‖22 s.t. c(θ) ≤ δ2 ,

or equivalently minimising the problem (16) with an additional
constraint ‖θ‖22 ≤ α2

min f(θ) s.t. c(θ) ≤ δ2 , ‖θ‖22 ≤ α2 .

Since shifting eigenvalues does not change the low-rank ad-
justment structure of the Hessian, following [34], [35], we can
invert the damped Hessian Hλ,μ = Hλ + μI as follows

H−1
λ,μ = (G̃μ + Z̃Ψλ Z̃T )−1

= G̃−1
μ − G̃−1

μ Z̃ (Ψ−1
λ + Z̃T G̃−1

μ Z̃)−1 Z̃T G̃−1
μ , (24)

where the block diagonal matrix G̃μ = G̃ + μI and

G̃−1
μ = blkdiag(. . . , (G̃n + μI)−1 , . . .),

(G̃n + μI)−1 = ((Γ(−n)
λ + μI) ⊗ IIn

− Z̃n Ψλ Z̃T
n )−1 . (25)

If R < In , the matrices Z̃n are tall and of size RIn ×R2 ,
the inversion (G̃n + μI)−1 can be performed even more
efficiently as

(G̃n + μI)−1

= Φn ⊗ IIn
− (Φn ⊗ IIn

) Z̃n (Ψ−1
λ + Z̃T

n (Φn ⊗ IIn
) Z̃n )−1

Z̃T
n (Φn ⊗ IIn

)

= Φn ⊗ IIn
− (Φn ⊗U(n)) dvec(1� Γn )

(Ψ−1
λ + dvec(1� Γn )(Φn ⊗ Γn ) dvec(1� Γn ))−1

dvec(1� Γn ) (Φn ⊗U(n)T )

= Φn ⊗ IIn
− (Φn ⊗U(n))

(PR,R dvec(Γ2
n � Γλ) + Φn ⊗ Γn )−1(Φn ⊗U(n)T ),

(26)

where Φn = (Γ(−n)
λ + μI)−1 . The last expression is obtained

using the following identity

PR,R dvec(Γn ) = dvec(Γn )PR,R .

Now, by exploiting the rank-1 expansion and replacing Hλ by
the damped Hλ,μ , the inverse of the Hessian ∇2L in (19) can
be expressed as
[
Hλ,μ gc

gc 0

]−1

=
[
H−1

λ,μ

0

]

− 1
gT

c H−1
λ,μgc

[
H−1

λ,μgc

−1

] [
gT

c H−1
λ,μ −1

]

then we apply the inversion in (24) with (25) or with (26) to
compute the inverse of the Hessian.

From (19), new estimates of the Lagrange multiplier λ(k+1)

and search direction dθ are given by

λ(k+1) =
c(θ(k))− δ2 − gT

c (θ(k))H−1
λ,μ(θ(k))gf (θ(k))

gT
c (θ(k))H−1

λ,μ(θ(k)) gc(θ
(k))

,

dθ = −H−1
λ,μ(θ(k))(gf (θ(k)) + λ(k+1) gc(θ

(k))) .

Hence, a new estimate of the parameters would be θ(k+1) =
θ(k) + dθ . In addition, the loading components of rank-1 tensors
are then normalised to have an equal norm, i.e.,

u(n)
r ← u(n)

r

η
1/N
r

‖u(n)
r ‖

,

where ηr =
∏

n ‖u(n)
r ‖.

D. Implementation

Algorithm 2 shows a practical implementation of CPD with
EPC. A requirement for EPC is that the initial point is feasible,
i.e., obeys the constraint ‖Y−X[k ]‖F ≤ δ. In practice, we first
fit the tensor by a standard CP model, then verify the norm
of rank-1 tensor components. If it exceeds a bound, we apply
the correction method as in Step 3, otherwise, continue the CP
decomposition in Step 5. Following this, the estimated tensor
is a feasible point and the bound δ = ‖Y−X[k−1]‖F is the
current approximation error. Since the ACEP algorithm solves
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sub-problems in closed-form, the new update points are always
in a feasible region, i.e., c(θ) ≤ δ2 , while the objective function
decreases sequentially or at least is kept to not increase.

Unlike the ACEP, the SQP algorithm solves the approximate
problems. Even if an initial feasible point is provided, the up-
date points may not reside in the feasible region in some first
iterations. In practice, we can first execute the ACEP for a small
number of iterations, then switch to the SQP or Interior Point
(ITP) algorithm.

In addition, one can gradually increase the bound, δ, e.g., by a
factor of 1.1, until the norm of rank-1 tensors attains the desired
value.

E. EPC – A Tool for Decomposition at a Target Error Bound
and Denoising

When the data tensor Y is corrupted by e.g., additive Gaussian
noise with a zero mean and variance σ2 , the constraint error
bound, δ, in the decomposition in (4), plays the role of the
Frobenius norm of the noise tensor E with i.i.d. N(0, σ) entries,
i.e., δ2 = ‖E‖2F . In practice, the noise level σ might be unknown,
but it can be determined by inspecting the coefficients of the data
(images, signals) in the high frequency bands.

Assume now that Ŷ
�

is a tensor with the smallest rank R� such
that ‖Y− Ŷ

�‖2F = δ2 . Decomposition of a noisy data tensor
following the CP, Tucker or Tensor-train model, tends to explain
the noise when the estimated rank exceeds the true trank R� .
The higher the estimated tensor rank, the more noise the tensor Ŷ

will explain from the data Y. Consequently, the decomposition
deteriorates the overall noise reduction result.

When the noise is relatively high and dominant to the data,
the tensor Ŷ

�
which best approximates the noisy tensor Y at the

noise level, i.e., ‖Y− Ŷ‖2F ≈ ‖E‖2F , usually has a lower rank
than the true rank of the original tensor. Hence a tensor which
approximates Y with its true rank often yields an overestimate,
and therefore, the conventional low-rank tensor approximation
methods are not well-suited to the noise removal.

Different from the existing tensor decompositions, the con-
strained decomposition in (4) can maintain the approximation
at a target error bound, i.e., ‖Y− Ŷ‖2F = δ2 , with an estimated
rank R ≥ R� . It is then straightforward to determine a tensor
Ŷ with a minimal rank R for which the constraint is satisfied.

When the approximation error in EPC does not reach the
bound, the approximated tensor Ŷ was set up with a relatively
low rank. We should try another decomposition with a higher
rank. When EPC attains the error bound, it is possible that the
rank of Ŷ is not minimal. One can start another decomposi-
tion with a smaller estimated rank to reduce the number of
parameters or to obtain the optimal low-rank tensor approxi-
mation. However, it might not be necessary for the denoising
application.

Fig. 2 illustrates the approximation errors for tensors which
are of rank-10 but corrupted by Gaussian noise. EPC maintains
the approximation error at the target bounds when the rank
of the decomposition exceeds the true tensor rank. Another
important observation is that the overall norm of rank-1 tensors
increases with the increasing of the rank R, then decreases

Fig. 1. EPC for order-3 tensors of the dimension I = 50 and rank R = 10
corrupted by Gaussian noise at SNRs = 0, 10 and 20 dB. Solid and dashed lines,
respectively, show the relative errors and norms of rank-1 tensors for various
ranks of the approximated tensors.

Fig. 2. EPC for order-3 tensors of various dimensions I = 10, 20, . . . , 50
corrupted by Gaussian noise at SNR = 10dB. Solid and dashed lines respectively
show the relative errors and norms of rank-1 tensors for various ranks of the
approximated tensors.

when the estimated rank exceeds the true tensor rank. This
is quite straightforward since the decomposition yields several
highly collinear rank-1 tensors, which finally tend to be nearly
identical after the norm miminization. These results are further
confirmed in Fig. 2 for decomposition of tensors of various sizes
I = 10, 20, . . . , 50.

III. CANONICAL POLYADIC TENSOR DECOMPOSITION WITH

BOUND ON NORM OF RANK-1 TENSORS

In contrast to the tensor approximation with a minimal norm
of rank-1 tensors, in this section, we consider a constrained
CPD, in which the norm of rank-1 tensors is bounded

min ‖Y− Ŷ‖2F s.t. ‖η‖22 ≤ ε2 . (27)

A. Alternating Update Algorithm

Similar to the previous section, we can absorb η into a factor
matrix U(n) and rewrite the above optimization problem as

min ‖Y− Ŷ‖2F s.t. ‖U(n)
η ‖2F ≤ ε2 , (28)
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or equivalently as a Quadratic programming with a bounded
norm for U(n)

η

min tr(U(n)
η Γ−nU(n)T

η )− 2 tr(Gn U(n)T
η )

s.t. ‖U(n)
η ‖2F ≤ ε2 . (29)

The above expression follows the expansion of the Frobenius
norm in (6). Next, we convert the above matrix-variate QP to
the one for a vector of length R× 1.

Let Γ−n = VnΣVT
n be the eigenvalue decomposition of

Γ−n . Then denote Fn = GnVn and Zn = U(n)
η Vn . The opti-

mization in (29) is transformed into

min tr(ZnΣZT
n )− 2 tr(Fn ZT

n )

s.t. ‖Zn‖2F ≤ ε2 . (30)

Similar to (10) and according to Lemma 3 in Appendix B, the
minimizer Z�

n to the matrix-variate QP in (30) can be derived
from the minimizer z� of the following constrained QP

min zT Σz − 2cT z s.t. zT z ≤ ε2 , (31)

where the vector c = [. . . , ‖f (n)
r ‖2 , . . .]T comprises the norm

of columns of Fn . We note that the above QP problem with an
inequality constraint can be solved in closed-form.

If
∑R

r=1
c2

r

σ 2
r
≤ ε2 , the minimizer of (31) can be simply ex-

pressed as

z� = c� σ . (32)

This case often occurs when the current parameter point is in a
feasible set, and the bound is set to a relatively high value.

Otherwise, z� is a minimizer of the QP over a sphere which
again can also be solved in closed-form [31]

min zT Σz − 2cT z s.t. zT z = ε2 . (33)

Finally, we obtain Zn = Fn diag(z � c) and the new update of
U(n)

η

U(n)
η = ZnVT

n = GnVn diag(z � c)VT
n . (34)

The proposed algorithm works in the same manner as the or-
dinary ALS algorithm. We call this the BALS algorithm and
summarize it in Algorithm 3.

B. Relation Between BALS and ALS with Smoothness
Constraint

We consider the case when the last column of Fn is non
zero, i.e., cR �= 0. Assuming that the eigenvalues of Γ−n are
ordered in the descending order, i.e., σ1 ≥ σ2 ≥ · · · ≥ σR > 0,
the SCQP in (33) has a minimizer given in form

z� =
[
. . . ,

cr

σr − λ̃
, . . .

]
,

where λ̃ is a unique solution of the following secular equation
in [σR − ‖c‖, σR − ‖c‖(1− 1/ε)]

z�T z� =
∑

r

c2
r

(σr − λ̃)2
= ε2 .

This equation can be solved in closed-form [31], [33]. The
minimizer in (32) is a particular case of the above when λ̃ = 0.
Hence, from the conversion of the QP for matrix-variate in
Appendix C and Lemma 3, we can write Z�

n as

Z�
n = Fn diag(. . . , (σr − λ̃)−1 , . . .) .

Replacing this into U(n)
η , we obtain a simple update rule

U(n)
η = Gn Vn diag(. . . , (σr − λ̃)−1 , . . .)VT

n

= Gn (Γ−n − λ̃ IR )−1 . (35)

The update rule (35) is indeed similar to the ALS update rule
derived for the objective function in (2) with μ = −λ̃. Here,
we show a relation between the regularization parameter μ and
the bound ε. In the decomposition in (2), the regularisation or
damping parameter μ can be fixed or adaptively adjusted to
keep the cost function non-increasing. In our algorithm, the
parameter λ̃ is a root of the secular equation and is updated in
each iteration.

C. Sequential Quadratic Programming Method

Similar to the SQP algorithm for the optimization problem in
(16), we relax the unit-length constraints of the loading compo-
nents and develop an SQP algorithm for the CPD with a bounded
rank-1 tensor norm

min c(θ) s.t. f(θ) ≤ ε2 , (36)

where the functions f(θ) and c(θ) exchange their roles in the
optimization problem (16). The Lagrangian to the above con-
strained optimization problem is given by

L(θ, λ) = c(θ) + λ (f(θ)− ε2) .

Similar to the Lagrangian in (18), the new search direction is a
minimizer of the QP subproblem

min
1
2
dT

θ H̃λ(k ) (θ(k))dθ + gT
λ(k ) (θ(k))dθ

s.t. f(θ(k)) + gT
f (θ(k))dθ ≤ ε2 , (37)
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TABLE II
PERFORMANCE COMPARISON FOR ALGORITHMS IN EXAMPLE 1

where

H̃λ(θ) = ∇2c(θ) + λ∇2f(θ) ,

gλ(θ) = gc(θ) + λgf (θ) .

If the non-constrained solution, i.e.,−H̃−1
λ gλ, is in the feasible

set, then it is the minimizer and dλ = 0. Otherwise, we need to
solve the QP with an equality constraint. Similar to (21) it leads
to finding the solution to a system of linear equations

[
H̃λ gf

gT
f 0

] [
dθ

dλ

]
= −

[
gc + λgf

f − ε2

]
, (38)

where the Hessian H̃λ = λH1/λ shares the low-rank adjustment
structure of Hλ. This finally leads to the compact update rules
for the Lagrange multiplier and the search direction

λ(k+1) =
f(θ(k))− ε2 − gT

f (θ(k)) H̃−1
λ,μ(θ(k))gc(θ

(k))

gT
f (θ(k)) H̃−1

λ,μ(θ(k)) gf (θ(k))
,

dθ = −H̃−1
λ,μ(θ(k))(gc(θ

(k)) + λ(k+1) gf (θ(k))) .

IV. NUMERICAL RESULTS

In this section, we illustrate the efficiency of the proposed
EPC method and the bounded norm CPD in some hard scenarios
for decomposition of synthesized tensors and tensors of real-
world data.

Example 1 (Decomposition of the convolutional tensor in
the Alexnet convolutional neural network): In this example, we
show the efficiency of the proposed algorithm over the alter-
nating least squares (ALS) with a simple line search and non-
linear least squares (NLS) algorithms for low-rank approxima-
tion of the convolutional kernel at the 10th layer in the pretrained
Alexnet convolutional neural network [36]. This decomposition
aims in acceleration of the inference process of convolutional
neural networks [6], [7]. However, this is out of scope of the
paper, and we compare only the approximation errors of the con-
sidered algorithms. The tensor had a size of 256× 384× 3× 3,
but was reshaped to the dimension of 256× 384× 9, then ap-
proximated by a CPD with a rank R = 200. Decomposition of
such tensors using the ALS[37] or the NLS algorithm [38] of-
ten encountered degeneracy. The ratio between the largest and
smallest norms even exceeded 600, and the total squared norms
of the estimated rank-1 tensors on average were 2.08× 108 and
4.75× 108 after 5000 iterations using ALS and NLS, respec-
tively. Such degeneracy caused the entire network instability in
fine-tuning [7]. The results are compared in Table II.

We applied EPC after running the ALS update 1000 iter-
ations, then executed the ALS again or the BALS algorithm.

Fig. 3. Both ALS and NLS in Example II converged slowly because of the
high norm of rank-1 tensors. After the EPC, ALS and BALS quickly attained
significantly lower approximation error.

Fig. 3 illustrates the mean relative errors of the four algorithms
over the iterations. The curves were computed from 100 inde-
pendent runs. It is clear that the ALS quickly attained the lower
approximation error after the correction, whereas the BALS
even achieved better performances than ALS+EPC. In general
the NLS algorithm achieved lower approximation errors than
ALS, but these two algorithms converged slowly to suboptimal
results because of degeneracy. For completeness, we provide
the running time of the considered algorithms. ALS without
line search ran 1000 iterations within 20.5 seconds, while EPC
completed the rank-1 tensor correction in 188.3 seconds. After
the correction, ALS convereged quickly in 74.6 seconds.

Example 2 (The case when factor matrices have highly
collinear columns): In this example, we decomposed cubic
tensors with size and rank, respectively, given by In = 4 and
R = 5, In = 7 and R = 10, In = 12 and R = 15. We generated
the factor matrices such that their first In loading components
were highly correlated using the subroutine “gen_matrix” in
the TENSORBOX [37]. The results consistently confirmed for
150 independent runs, and for each run, the parameteres were
initialalized randomly.

Results for the noise-free cases are compared in Fig. 4. Suc-
cess ratio at a specific error, e.g., 10−6 , is the percentage of
independent runs in which approximation error achieved by an
algorithm differs from the best error by less than 10−6 . For
these hard decomposition scenarios, the fLM algorithm could
explain the tensors with a relative error of 10−6 in about 57%
of independent runs for the tensors of size 5× 5× 5, but in less
than 30% of the runs for the tensors of bigger sizes 7× 7× 7
and 12× 12× 12. In most of the tests, the fLM algorithm got
stuck in local minima with a relative error of around 10−3 . How-
ever, when using either with ACEP or with the SQP method for
ECP (SCEP), the success ratios were dramatically improved and
exceeded 96% for the relative error of 10−6 .

For the same tensors, we applied algorithms for the bounded
CPD. The bound of the norm of rank-1 tensors was adjusted
during the iteration process. The BALS achieved higher success
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Fig. 4. Decomposition of the noise-free tensors in Example 2. (top) Success ratios of the considered algorithms. A relative error of 10−6 is considered perfect
for decomposition of a noise-free tensor. (bottom) Numbers of iterations of algorithms needed to attain the best relative error.

ratios than fLM for tensors with dimension In = 7 and In = 12.
It could explain the tensors with a relative error of 10−5 in
60–70% of the runs. The BSPQ achieved a much higher success
ratio than the BALS.

In another assessment, we compared the number of iterations
of algorithms needed to achieve the best relative error. For exam-
ple, in order to achieve a performance near the best relative error
with an error of 10−6 , the fLM algorithm might need a thousand
of iterations, while with ACEP or SCEP, this algorithm needed
respectively on average only 72 and 122 iterations. BSQP re-
quired 400 iterations as shown in Fig. 4(a) for decomposition of
tensors of size 4× 4× 4. This is because the algorithm iterated
to adjust the bound of the norm of rank-1 tensors.

As seen in Fig. 4, when the algorithms reached the approxi-
mation error of 10−4 , they quickly attained the approximation
error of 10−8 . In total, the number of iterations of the three algo-
rithms, fLM+ACEP, fLM+SCEP and BSQP, were on the same
order and comparable. In summary, the BSQP, Interior Point
method for bounded norm constrained CPD (BITP) and fLM
with EPC explained the noise-free tensors with a nearly perfect
accuracy in less than 300 iterations.

For the test cases with noisy tensors, we added some small
perturbation to the noise-free tensors. Fig. 5 illustrates the suc-
cess ratio and the number of iterations to achieve the best relative
error. The fLM algorithm attained a relative error which differs
from the best by less than 10−6 in 47% and 18% of indepen-
dent runs for the tensors with dimension of In = 4 and In = 7,
respectively, while BSQP met the same accuracy level in 67%
and 20% of the runs. The results confirm that the EPC method,
either ACEP or SCEP, gained the success ratio of the fLM up
to 79% and 42%, respectively, while this algorithm demanded
a lower number of iterations than fLM.

Example 3 (Decomposition of block tensors): This example
was inspired by the block-term decomposition [39] of the ten-
sors which had rank exceeding the dimensions, and highly
collinear loading components. We constructed the tensors from
two blocks of size 6× 6× 6, each of rank 6, and collinearity
degrees among the loading components were within a range of
[0.95, 0.999]

Y = I×1 U1,1 ×2 U1,2 ×3 U1,3

+ I×1 U2,1 ×2 U2,2 ×3 U2,3 ,

where I represents the diagonal tensor. Our experience is that
such tensors are challenging for most existing CP techniques.
We ran the fastALS algorithm in 10 iterations to generate initial
values.

The fLM did not complete the decomposition for the noise-
free tensors within the error range of 10−6 even after 3000
iterations as seen in Fig. 6 (bottom). The reason is that the norm
of estimated rank-1 tensors increased to relatively large values,
on average around 3994.3. Using the EPC methods, i.e., ACEP
or SCEP, we reduced the norm to 11.8. By this way, the fLM
algorithm converged in a few hundreds of iterations as illustrated
in Fig. 6 (bottom) for one run of the decomposition. Similar to
the fLM algorithm, RALS [21] and NLS [38] algorithms failed
for this data even with 10000 iterations. Due to this, we did not
consider these two algorithms for further analysis.

In Fig. 6(top), “fLM+SCEP+fLM” represents the process of
three stages: running fLM until it stopped, then applying SCEP
to correct the rank-1 tensors, and finally running the fLM again.

The results confirm that the proposed correction method
worked efficiently. When using EPC, the fLM could complete
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Fig. 5. Performance of CPD of the noisy tensors in Example 2. (top) Success ratios of the considered algorithms. (bottom) Numbers of iterations of algorithms
to attain the best relative error.

Fig. 6. (top) Success ratios of the fLM algorithm with and without EPC in
Example 3. (bottom) Relative errors in one run of the decomposition.

the decomposition in more than 80% of the runs. The results
were reported over 130 independent runs.

Example 4 (Decomposition of tensor for multiplication of
two matrices of size 3× 3): In this example, we compare the
performance of algorithms for CPD with and without EPC and

Fig. 7. Comparison of the approximation errors for various CPD algorithms
for the multiplicative tensors of size 9 × 9 × 9 which has rank of R = 23.

algorithms for CPD with a bounded rank-1 tensor norm. The
tensor considered in this example is the multiplication tensor
in the case of two matrices of size 3× 3. This tensor is of size
9× 9× 9, contains only zeros and ones, and obeys

vec (AB) = Y×1 vec
(
AT

)T ×2 vec
(
BT

)T
,

where A and B are of size 3× 3. The tensor is considered of
rank-R = 23. In [22], we developed an LM algorithm to update
the vector of parameters which is assumed to be on a ball with
a prescribed diameter.

Decomposition of such tensor using ALS or LM often gets
stuck in false local minima or requires a huge number of
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Fig. 8. (a) Comparison of the success ratios of the fLM algorithm with and without EPC in the decomposition of the TV-ratings data. (b) Illustration of the
changes of the relative errors in one run of the estimation. The fLM got stuck in a false local minimum after at most 100 iterations.

iterations. This is because the norm of estimated rank-1 ten-
sors is significantly large.

For this case, we first ran the standard ALS/fLM algorithm in
10 iterations, and used the outcome to initialize the BSQP and
BITP algorithm for the bounded CPD. The bound of the rank-1
tensor norm was set to ε = 15. The results show that the two
algorithms converged after a few dozens of iterations. This is
much faster than running fLM without EPC.

In another comparison, we applied EPC to the tensors esti-
mated using the fLM algorithm. The corrected tensor was then
used to initalize the BSQP, BITP, and fLM algorithms [34].
The results are compared in Fig. 7. For this later test, the three
algorithms converged after only 10 iterations.

Example 5 (Decomposition of the TV-ratings data [8]): We
decomposed the TV-ratings data [8] which comprises 16 rating
scales × 15 American TV shows × 30 subjects. This data is
well known to illustrate the degeneracy in CPD for example
with the rank R = 2, 3 or 4 [13], [15]. Here, we compared the
fLM algorithm with and without the EPC for the decomposition
of rank-R = 10. We first ran the ALS algorithm in 100 itera-
tions to generate the initial parameters, then executed the fLM
algorithm. For the EPC method, the bound of the approxima-
tion error was set to 1.01 times the approximation error of the
initial point. The success ratios of the considered algorithms are
plotted in Fig. 8(a). In 74.6% of the runs, the relative errors
obtained by the fLM were very close to the best results, with a
difference of less than 10−6 . The success ratio of fLM was con-
siderably improved after executing the EPC either with ACEP
or SCEP (see Fig. 8(a)). In Fig. 8(b), we illustrate the relative
errors of algorithms as a function of the number of iterations
in one run. The fLM started with a lower error but got stuck
in a false local minimum after 100 iterations. Since the error
bound was set to higher than the approximation error, the fLM
with EPC started with a higher relative error, but in the final,
this algorithm achieved a lower approximation error as seen in
Fig. 8(b).

Example 6 (Factorization of time-frequency representation
of Event-related EEG): In this example, we decomposed a
fourth-order tensor consisting of 28 inter-trial phase coherence

Fig. 9. Relative errors of three algorithms in one run of the decomposition of
the IPTC tensor with a rank R = 15.

(ITPC) measurements of EEG signals for 14 subjects during a
proprioceptive pull of the left and right hands [26]. The ITPC
dataset was represented as a 4-way tensor of 28 measurements
× 61 frequency bins × 64 channels × 72 time frames.

We approximated the ITPC tensor by low-rank tensors of
ranks R = 10 and 15. Interpretation of the results can be found
in [26]. Algorithms used the same initial values and stopped

when differences of successive relative errors ε =
‖Y− Ŷ‖F
‖Y‖F

were lower than 10−8 , or until the maximum number of itera-
tions (5000) was achieved. For each run, we initialized the ALS
algorithm by 10 random tensors, and ran it in 10 iterations. The
estimated tensor yielding the smallest approximation error was
then used to initialize BALS and fLM+EPC. Similar to the pre-
vious example, we set the approximation error bound slightly
higher than the initial approximation error. This makes BALS
and fLM+EPC starting with higher approximation errors than
ALS, but these algorithms could find feasible points in a few
iterations.

Fig. 9 compares convergence behaviour of the considered al-
gorithms. The ALS got stuck in a false local minimum after
around 400 iterations, and failed to improve the approximation
error, while norms of estimated rank-1 tensors increased signif-
icantly to a value of 108 . Both BALS and fLM+EPC converged
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Fig. 10. Success ratios of the developed algorithm and other three algorithms in the decomposition of the fourth order ITPC tensor in Example 6.

to tensors with lower approximation errors. Similar results were
observed in more than 99% of the runs for the fLM+EPC. Sig-
nificantly higher success ratios of the developed algorithms were
confirmed over 200 independent runs as shown in Fig. 10. For
the decomposition with the rank of R = 10, the ALS algorithm
succeeded in 69.2% of the runs, i.e., the difference between
relative approximation errors achieved by this algorithm and
the best lower than 10−6 . With controlling the bound of rank-1
tensors, the BALS algorithm had a higher success ratio of 94%,
while the fLM with EPC achieved a nearly perfect success ratio
of 99.3%.

The performance of the ALS was even worse when the de-
composition was with a higher rank (R = 15). Fig. 10(b) shows
that the algorithm succeeded in only 19.2% of the runs. In con-
trast, our BALS achieved a much better success ratio of 83%,
and the fLM+EPC still succeeded with a very high ratio of
98.74%. As in Examples 1 and 3, both RALS [21] and NLS[38]
achieved relatively low success ratios, comparable with those of
ALS and fLM. The performances were obtained after running
RALS 5000 iterations, and NLS 2000 iterations. By running
EPC after NLS, we improved the performance of NLS.

Example 7 [Image denoising.]: This example demonstrates
an application of the EPC method in image denoising. Given
that the intensities of pixels in a small window are highly
correlated, our method was able to learn hidden structures
which represent relations between small patches of pixels. For
a color image T degraded by additive Gaussian noise, we con-
structed 5-th order tensors at location-(r, c), Yr,c , of a size w ×
w × 3× (2d + 1)× (2d + 1), comprising (2d + 1)2 blocks,
Yr,c(:, :, :, d + 1 + i, d + 1 + j) = Tr+i,c+j , around the patch
of size w × w × 3 Tr,c = T(r : r + w − 1, c : c + w − 1, :),
where i, j = −d, . . . , 0, . . . , d, and d represents the neighbour
width. Each tensor Yr,c was then approximated by the decom-
position in (4) using the EPC method, where δ2 = 3σ2w2(2d +
1)2 , and σ the noise level. Finally, we used the approximated
tensors, Ŷr,c , to reconstruct the patches and the entire image.

Fig. 11 shows six benchmark color images of size 256×
256× 3 used in our simulations. We corrupted them by additive
white Gaussian noise at SNR = 10 dB. Block tensors were of
sizes 8× 8× 3 (w = 8) and the search area of width d = 3. We
applied the DCT spatial filtering as a preprocessing before the

Fig. 11. Six images of the size 256 × 256 are used in Example 7.

tensorization. We started the decomposition with the tensor rank
of 8, and adjusted it to attain the error bound.

For the constrained approximation problem of Yr,c , we ap-
plied several tensor decompositions, including the Tensor-Train
(TT-SVD) [40], the Tucker approximation (TKA) with a prede-
fined approximation error [41], and the Bayesian Robust tensor
factorisation (BRTF) for low-rank CP decomposition [42]. In
addition, we recovered the image with sparsity constraints us-
ing a dictionary of 256 atoms learnt by K-SVD [43]. For this
method, color image layers were flattened into an array of size
256× 768. The dictionary was learnt for patches of size 8× 8.

Multilinear ranks in TKA are determined based on inspecting
the singular values of projection matrices to keep the approx-
imation error within an error bound defined by the noise level
[41]. The TT-SVD also determined the ranks of the core ten-
sors based on the relevant singular values and their explained
variance. The BRTF is a CPD method which can prune out
irrelevant rank-1 tensors. We note that although these tensor de-
composition methods can determine appropriate models using
their own criteria, none of them can preserve the approximation
error at a prescribed error, which in the denoising application
is the noise level. Their approximated tensors can attain lower
approximation errors than the required level. This in practice
implies an overestimation, and thereby the reconstructed results
might be deteriorated.

Table III compares performances of the tensor-based decom-
position methods and K-SVD. In all the simulations, EPC out-
performed the noise removal methods based on the other tensor
decompositions and the dictionary learning method K-SVD. The
reconstructed images of some images are illustrated in Figs. 12
and 13. The closer inspection in Fig. 12 shows that the EPC-
based denoising method suppressed the noise but preserved the
complex structures in the reconstructed images.
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TABLE III
THE PERFORMANCE COMPARISON OF ALGORITHMS CONSIDERED IN

EXAMPLE 7 IN TERMS OF PSNR (dB) AND SSIM FOR IMAGE DENOISING

WHEN SNR = 10 dB

Fig. 12. The Lena image corrupted by noise at 10 dB SNR, and a closer
inspection of the reconstructed images in Example 7.

Fig. 13. The “Barbara” image corrupted by noise at 10 dB SNR, and a closer
inspection of the reconstructed images in Example 7.

V. CONCLUSIONS

For difficult scenarios of the CP tensor decomposition, when
large loading components may cancel each other, we propose to
seek new decompositions with the same approximation error but
with a minimum norm of the rank-one components. In particular,
we derive solutions to two constrained optimization problems,
one for the error preserving correction method, and another one
for the bounded CPD. The factor matrices in the two optimiza-
tion problems can be updated in closed-form expressions in
an alternating update scheme through solving Spherical Con-
strained Quadratic Programming. In addition, the SQP-based
all-at-once algorithms have been developed with a low com-
plexity for the inversion of the Hessian matrices. Moreover, we
presented a relation between the new alternating algorithms and
the standard ALS algorithm. In simulations, we confirmed the
efficiency of the proposed algorithms for the CD decomposition
of tensors with rank exceeding the tensor dimensions (multipli-
cation tensors) and on tensors with highly collinear rank-one
components. The EPC method is particularly suited for CPD
with a target error bound. Demonstration for image denoising
shows that the proposed method achieved better performances
than the method based on other tensor decompositions and the
K-SVD dictionary learning method. Finally, the proposed algo-
rithms are implemented in the Matlab package TENSORBOX
which is available online at website of the first author.

APPENDIX A
LINEAR REGRESSION WITH A BOUND CONSTRAINT

In this appendix, we summarize, for the sake of completeness,
a few known results on the linear regression with a quadratic
constraint. Proofs of the propositions can be found in [31], [44].

The linear regression problem with a constraint on the regres-
sion error is stated as

min
x

‖x‖2 s.t. ‖y −Ax‖ ≤ δ, (39)

where y is a vector of length I of dependent variables, A is a
regressor matrix of a size I ×K, and a nonnegative regression
bound δ.

It is obvious that if δ ≥ ‖y‖, then the zero vector x = 0 is a
minimizer of (39). Therefore, in order to achieve a meaningful
regression, the regression bound δ needs to be in a specific range
defined by Lemma 1.

Lemma 1 (Range of the bound δ): The problem (39) has a
minimizer of nonzero entries when

‖Π⊥A y‖ ≤ δ < ‖y‖, (40)

where Π⊥A is an orthogonal complement of the column space
of A.

For simplicity, we assume that A is a full rank matrix, other-
wise, we solve the problem with a compressed regressor matrix
with a smaller bound

min ‖x‖2 s.t. ‖ŷ − Âx‖ ≤ δ̂ (41)

where ŷ = UT y, Â = UT A, and δ̂2 = δ2 − ‖Π⊥A y‖2 .
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We show that the inequality sign in (39) can be replaced by
the equality sign.

Lemma 2: The minimizer of (39) is equivalent to the mini-
mizer of the following optimization problem

min
x

‖x‖2 s.t. ‖y −Ax‖ = δ. (42)

We present an algorithm when the matrix of regressors A is
of full column rank, K ≤ I .

Let A = Udiag(s)VT be an SVD of A, where V is an
orthonormal matrix of size K ×K, and s = [s1 , . . . , sK ] > 0.
Hence Π⊥A = I−UUT .

Let ŷ = UT y, δ̂ =
√

δ2 − ‖Π⊥A y‖2 and z =
1

δ̂
(ŷ −

diag(s)VT x), then

x = V diag(s−1)(ŷ − δ̂z)

‖x‖2F = (ŷ − δ̂z)T diag(s−2)(ŷ − δ̂z)

‖y −Ax‖2 = ‖UT y − diag(s)VT x‖2F + ‖Π⊥A y‖2

= δ̂2 ‖z‖2 + ‖Π⊥A y‖2 .

By this reparameterization, the optimization problem (42) be-
comes a QP over a sphere which has a closed-form solution,
e.g., see [31], [33]

min
z

zT diag(δ̂s−2)z − 2 ŷT diag(s−2)z s.t. zT z = 1.

(43)

APPENDIX B
A SIMPLIFICATION METHOD FOR SCQP WITH

IDENTICAL EIGENVALUES

We consider a QP problem over a sphere

min
1
2

x̃T diag(s) x̃ + cT x̃ , s.t. x̃T x̃ = 1, (44)

where cT c = 1, and s = [s1 = 1 ≤ s2 ≤ · · · ≤ sK ].
We denote J the number of distinct eigenvalues, s̃ = [s̃1 =

1 < s̃2 < · · · < s̃J ], over a set of K eigenvalues, sk , in (44),
and classify c = [c1 , c2 , . . . , cJ ] into J sub-vectors, and each
cj consists of entries ck such that sk = s̃j , i.e., cj = [ck∈Ij ],
where Ij = {k : sk = s̃j}. In addition, we define a vector

c̃ = [‖c1‖, ‖c2‖, . . . , ‖cJ ‖] . (45)

Then the following relation holds.
Lemma 3: The minimizer of (44) can be deduced from the

minimizer of the SCQP with distinct eigenvalues

min
1
2

zT diag(s̃)z + c̃T z s.t. zT z = 1 ,

as follows
� For non zero c̃j , xIj = zj

c̃j
cj

� If c1 = 0 and d2 =
∑J

j=2

c̃2
j

(s̃j − 1)2 ≤ 1, xI1 can be ar-

bitrary vectors on the ball ‖xI1 ‖2 = 1− d2 ,
� Otherwise for zeros c̃j , xIj all are zeros.
Proof: We consider a simple case when some eigenvalues

are identical, e.g., s1 = s2 = · · · = sL < sL+1 < · · · < sK . If

c1:L are all zeros, the objective function is independent of
x̃1:L = [x̃1 , x̃2 . . . , x̃L ], hence, x̃1:L can be any point on the ball
‖x̃1:L‖2 = d2 = 1−∑K

k=L+1 x̃2
k . Otherwise, x̃1:L is a mini-

mizer to the constrained linear programming while fixing the
other parameters x̃L+1 , . . . , x̃K

min cT
1:L x̃1:L s.t. ‖x̃1:L‖ = d

which yields x̃1:L = −d
‖c1 :L ‖c1:L . For both cases, we can define

z = [−d, x̃L+1 , . . . , x̃K ],

c̃ = [‖c1:L‖, cL+1 , . . . , cK ],

s̃ = [s1 , sL+1 , . . . , sK ],

and perform a reparameterization to estimate z from a similar
constrained QP but with distinct eigenvalues s̃

min
1
2

zT diag(s̃)z + c̃T z s.t. zT z = 1 .

Similarly, we can convert (44) to a problem with s̃1 < s̃2 <
· · · < s̃J . Now based on the fact that for the zero coefficients
c̃j , the corresponding z�

j will also be zeros, except for only the
case c1 = 0 and 1 ≥ d2 [31]. This concludes the proof. �

APPENDIX C
SCQP WITH MATRIX-VARIATES

We consider an SCQP for a matrix-variate X of size I ×R
given in the form of

min f(X) =
1
2

tr(XT QX) + tr(BT X) s.t. ‖X‖2F = 1 ,

(46)

where Q is a positive semidefinite matrix of size I × I and B
is of size I ×R. The objective function can be rewritten in a
similar form to (44) as

f(X) =
1
2
xT (diag(σ)⊗ IR )x + vT x,

where x = vec
(
XT U

)
, v = vec

(
BT U

)
and Q =

Udiag(σ)UT is an EVD of Q. Due to the Kronecker
product, each eigenvalue σi , i = 1, . . . , I , is replicated R times.
Let z� of length I be a (unique) minimizer of an SCQP

min
1
2

zT diag(σ)z + cT z s.t. zT z = 1 , (47)

where c = [c1 , . . . , cI ], ci = ‖BT ui‖. According to Lemma 3,
for a nonzero coefficient ci , we have xi = zi

ci
BT ui , otherwise,

xi can be any vector on the ball xT
i xi = z2

i for a zero vector
BT ui .

APPENDIX D
GRADIENT AND HESSIAN OF THE OBJECTIVE FUNCTION f(θ)

IN (16)

Let βn = [u(n)T
1 u

(n)
1 , . . . ,u

(n)T
R u

(n)
R ] and β−n =

�k �=n βN
n=1 , β = �n βn . The gradient gf and Hessian
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Hf of the objective function w.r.t. to U(n) are given by

gf =

[
. . . , vec

(
∂f

∂U(n)

)T

, . . .

]T

=
[
. . . , vec

(
U(n) diag(β−n )

)T

, . . .

]T

Hf = ∇2f = D + 2VFVT ,

where F = [Fn,m ] is an N ×N partitioned matrix of matrices
Fn,m with Fn,n = 0 and Fn �=m = diag(β−(n,m )), and

D = diag([β−1 ⊗ 1I1 , . . . ,β−N ⊗ 1IN
]) ,

V = blkdiag(V1 , . . . ,VN ),

Vn = blkdiag(u(n)
1 , . . . ,u

(n)
R ).

The Hessian Hf can also be represented in an equivalent form
of a block diagonal matrix and a rank-R adjustment

Hf = blkdiag(. . . ,diag(β−n ⊗ 1In
)− 2 Ṽn diag(β) ṼT

n , . . .)

+ 2 Ṽ diag(β) ṼT , (48)

where Ṽn = Vn diag(1� βn ) and Ṽ = [ṼT
1 , . . . , ṼT

N ]T is of
size R(

∑
n In )×R.

APPENDIX E
GRADIENT AND HESSIAN OF THE CONSTRAINT FUNCTION c(θ)

IN (16)

According to Theorem 2 [34], the gradient and Hessian of the
constraint function c(θ) w.r.t θ are given by

gc =

[
. . . , vec

(
U(n)Γ−n −Y(n)

(
�

k �=n
U(n)

))T

, . . .

]T

Hc = G + ZKZT ,

where

G = blkdiag(Γ−n ⊗ IIn
) ,

Z = blkdiag(. . . , IR ⊗U(n) , . . .) ,

K = [Kn,m ],Kn,n = 0,Kn �=m = dvec(Γ−(n,m )) .

The Hessian Hc can also be expressed as [35]

Hc = blkdiag(Γ−n ⊗ IIn
− Z̃n ΨZ̃T

n ) + Z̃Ψ Z̃T (49)

where Z̃ = [Z̃n ], Z̃n = (IR ⊗U(n)) dvec(1� Γn ), Ψ =
PR,R dvec(Γ). Note that Ṽ = Z̃(:, [1, R + 1, . . . , R2 ]) and
β = diag(Γ), β−n = diag(Γ−n ).
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[37] A.-H. Phan, P. Tichavský, and A. Cichocki, TENSORBOX: A Mat-
lab package for tensor decomposition. 2012. [Online]. Available:
http://www.bsp.brain.riken.jp/ phan/tensorbox.php.

[38] N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De Lath-
auwer, Tensorlab v3.0. 2016. [Online]. Available: http://esat.kuleuven.
be/sista/tensorlab/, 2016.

[39] L. De Lathauwer, “Decompositions of a higher-order tensor in block terms
– Part I: Lemmas for partitioned matrices,” SIAM J. Matrix Anal. Appl.,
Special Issue on Tensor Decompositions and Applications, vol. 30, no. 3,
pp. 1022–1032, 2008.

[40] I.V. Oseledets, “Tensor-train decomposition,” SIAM J. Scientific Comput.,
vol. 33, no. 5, pp. 2295–2317, 2011.

[41] A.-H. Phan, A. Cichocki, A. Uschmajew, P. Tichavský, G. Luta, and D.
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