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ABSTRACT

Independent Vector Extraction aims at the joint blind source ex-
traction of K dependent signals of interest (SOI) from K mixtures
(one signal from one mixture). Similarly to Independent Compo-
nent/Vector Analysis (ICA/IVA), the SOIs are assumed to be inde-
pendent of the other signals in the mixture. Compared to IVA, the
(de-)mixing IVE model is reduced in the number of parameters for
the extraction problem. The SOIs are assumed to be non-Gaussian or
noncircular Gaussian, while the other signals are modeled as circular
Gaussian. In this paper, a Cramér-Rao-Induced Bound (CRIB) for
the achievable Interference-to-Signal Ratio (ISR) is derived for IVE.
The bound is compared with similar bounds for ICA, IVA, and Inde-
pendent Component Extraction (ICE). Numerical simulations show
a good correspondence between the empirical results and the theory.

Index Terms— Blind Source Extraction, Independent Compo-
nent Analysis, Independent Vector Analysis, Cramér-Rao Bound

1. INTRODUCTION

Independent Vector Analysis (IVA) aims at simultaneous separation
of K > 1 linear mixtures of independent signals [1]. It is a gen-
eralization of Independent Component Analysis (ICA) where only
one mixture of scalar sources (components) is separated [2]. IVA is
formulated so that vector components are separated where a vector
component is formed from K scalar, possibly dependent, sources,
one source from each mixture. The key assumption for the separa-
bility is the mutual independence of the (vector) components [3, 4].

Specifically, let the kth mixture, k = 1, . . . ,K, be described
by xk = Aksk where sk ∈ Cd×1 is the vector of indepen-
dent complex-valued source signals (scalar random variables),
Ak ∈ Cd×d is the unknown mixing matrix, and xk ∈ Rd×1 is
the vector of the observed signals. The joint IVA mixing model
can be written as x = As̃, where s̃ = [s1; . . . ; sK ] ∈ CdK×1,
x = [x1; . . . ;xK ], and A is block-diagonal with the kth diagonal
block equal to Ak.

The jth vector component, j = 1, . . . , d, is sj = [s1
j ; . . . ; s

K
j ]T ∈

RK×1. The elements within each sj can be dependent, however,
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elements from different vector components are assumed to be mu-
tually independent. Here, we will focus on the IVA problem where
the elements of the vector components are uncorrelated, so only
higher-order dependencies among them can exist [5]. Separation of
vector components with internal correlations can be based on using
second-order statistics only; see, e.g., [6, 7, 8].

This paper is focused on bounds for the achievable separation ac-
curacy. In particular, we consider a Blind Source Extraction (BSE)
problem where only one vector component should be extracted. We
consider BSE performed through the approach referred to as Inde-
pendent Vector Extraction (IVE), which is generalization of Inde-
pendent Component Extraction (ICE) [9, 10]. In ICE/IVE, the mix-
ing models xk = Aksk are re-parameterized for BSE. The mixing
matrices are structured where each one is parameterized only by two
(mixing and separating) vectors. It was shown that algorithms de-
rived based on ICE/IVE are closely related to previous well-known
BSE methods such as One-unit FastICA [11] or to the Natural Gradi-
ent algorithm [12, 1]. Moreover, Cramér-Rao Lower Bound (CRLB)
for ICE (the real-valued case studied in [13]) shows that the achiev-
able accuracy through ICE is in agreement with the asymptotic ac-
curacy of One-unit FastICA [14, 15]. Consequently, the reduction of
the mixing model does not cause any performance limitations and is
therefore useful for further development of BSE methods.

In this paper, we analyze the accuracy limitations for the
complex-valued IVE problem. A novel CRLB-based bound for
the achievable Interference-to-Signal Ratio (ISR) is derived. The
vector source of interest (SOI) is assumed to have non-Gaussian or
Gaussian non-circular elements while the other interfering sources
(referred to as background) are assumed to be circular Gaussian. The
bound is verified by simulations and compared with that derived for
IVA [4], where all sources are assumed to be non-Gaussian. A
related bound for ICE is also compared, showing clear advantage of
the joint extraction compared to the non-joint one.

2. PROBLEM FORMULATION

2.1. Reduced Mixing Model

In general, the kth mixture can be described as xk = aksk + yk,
where sk, ak, and yk is the SOI, the mixing vector corresponding
to the SOI, and the background sources, respectively. This model is
suitable when only the SOI should be extracted. However, to derive
the CRLB for the extraction problem, the mixing model must be
invertible so that the probability density of xk can be expressed.
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Therefore, we proceed by defining the inverse of the mixing sys-
tem as follows. Let wk be the separating vector such that sk =
(wk)Hxk. Then, the de-mixing matrix can have the form

Wk
ICE =

(
wkH

Bk

)
=

(
βk
∗

hk
H

gk −γkId−1

)
, (1)

where γk and gk denote the upper and lower parts of ak, respec-
tively, i.e., ak = [γk;gk], and similarly wk = [βk;hk]. Wk

ICE

separates xk into two components vk = Wkxk = [sk; zk] where
zk = Bkxk does not contain sk, because Bkak = 0. Hence, the
mixing model is

xk = Ak
ICEv

k, (2)

where Ak
ICE = (Wk

ICE)−1. By taking into account (1),

Ak
ICE = [ak, Qk] =

(
γk hk

H

gk 1
γk

(
gkhk

H − Id−1

)) , (3)

where βk and γk satisfy βkγk = 1− hk
H
gk.

Compared to the original ICA mixing model xk = Aksk with
the fully parametrized Ak, Ak

ICE depends purely on wk and ak,
where ak corresponds to any column of Ak (depending on which
source in sk is the SOI). Without any loss of generality, let the SOI
be the first source, i.e., sk = sk1 ; the vector source of interest corre-
sponds to s = s1.

Also, (2) corresponds with the description xk = aksk + yk

provided that yk = Qkzk. This means that in (2) it is inherently
assumed that yk is generated from d− 1 latent sources zk.

The joint mixture model for the extraction of s1 can be written
as x = AIVEv, where v = [v1; . . . ;vK ] and AIVE is block di-
agonal with the kth block equal to Ak

ICE. One goal of this paper is
to show that this parameter-reduced model is suitable for the BSE
problem and does not bring any restriction compared to the fully
parameterized ICA model.

2.2. Independence-based probability model with circularly
Gaussian background

Similarly to IVA, the fundamental assumption is that s and z =
[z1; . . . ; zK ] are mutually independent, so their joint pdf is a product
of the pdf of the target signal, ps(s), and the pdf of the background
pz(z). The fact that the pdfs of s and z are not further factorized
into products of marginals enables the internal dependence, which is
the main IVE concept adopted from IVA. Now, by exploiting (1), the
joint pdf of the observation vector x reads

p(x|a,w) = ps({wkHxk}Kk=1)pz({Bkxk}Kk=1)| detA−1
IVE|

2

(4)
This paper is focused on the particular case when z are circular
Gaussian, i.e. z ∼ CN (0,Cz), where Cz = E

[
zzH

]
. Since

z1, . . . , zK are assumed to be uncorrelated, Cz is block diagonal
with the kth diagonal block equal to Ck

z = E[zkzk
H

]; let’s denote
Rk = Ck

z
−1

.
The scaling ambiguity can be fixed by putting γk = 1, and then

det(Wk
ICE) = 1. The remaining free parameters of the model are

represented by gk and hk, k = 1, . . . ,K, and the log-pdf of the

observed data takes the form

L(X|g,h) = log ps({wkHxk}Kk=1) +

K∑
k=1

log(detRk)−

−
K∑
k=1

xk
H
BkHRkBkxk −K(d− 1) log(2π). (5)

3. CRLB FOR IVE

In the following, we will use the CRLB definition for complex-
valued parameters from [16, 17]. Let θk = [gk;hk] denote the
parameter vector for the kth mixture, θ = [θ1; . . . ;θK ], and θ̃ =

[θ;θ∗]. For any unbiased estimator of θ̃, it holds that [17]

cov
(
θ̃
)
� J−1(θ̃) = CRLB(θ̃), (6)

where C � D means that C−D is positive semi-definite, andJ (θ̃)
is the Fisher information matrix (FIM) defined (in a block structure)
as

J (θ̃) =

(
F P
P∗ F∗

)
= E

[
∂L
∂θ

(
∂L
∂θ

)H]
, (7)

where

F = E

[
∂L
∂θ∗

(
∂L
∂θ∗

)H]
, P = E

[
∂L
∂θ∗

(
∂L
∂θ∗

)T]
, (8)

The derivatives with respect to θ∗ are defined according to the
Wirtinger calculus [16, 18].

3.1. Lower Bound for Interference-to-Signal Ratio

Let ŵk denote an estimated separating vector for the kth mixture.
The Interference-to-Signal Ratio (ISR) achieved by the estimator is
defined as the variance of the interference divided by the variance of
the SOI

ISR(ŵk) =
(ŵk)HCk

yŵ
k

σ2
sk
|(ŵk)Hak|2 =

(q̂k2)HCk
z q̂

k
2

|q̂k1 |2σ2
sk

≈ (q̂k2)HCk
z q̂

k
2

σ2
sk

,

(9)
where Ck

y = E[ykyk]H , (q̂k)T = [q̂k1 , (q̂k2)T ] = (ŵk)HAk
ICE =[

(ŵk)Hak, (ŵk)HQk
]
. The last approximation in (9) assumes

“small” errors, i.e. (q̂k1 )2 ≈ 1 and q̂k ≈ e1 (the unit vector). Then,
the mean ISR value reads

E[ISR(ŵk)] ≈
E
[
(q̂k2)HCk

z q̂
k
2

]
σ2
sk

=
tr
(
Ck

zE[q̂k2(q̂k2)H ]
)

σ2
sk

. (10)

Owing to the equivariance property of the BSE problem [2], we can
consider the special case when h = 0. Then, q̂k2 = ĥk, and

E[ISR(ŵk)] ≈
tr
(
Ck

zcov(q̂k2)
)

σ2
sk

=
tr
(
Ck

zcov(ĥk)
)

σ2
sk

, (11)

then
E[ISR(ŵk)] ≥ σ−2

sk
tr
(
Ck

zCRLB(hk)
)
, (12)
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where CRLB(hk) denotes the kth diagonal block of J−1(θ̃) corre-
sponding to the parameter hk. As shown in Appendix A, the FIM
(7) is equal to

J (θ̃) =

(
F O
O F∗

)
, where F =

(
Fg,g −Id−1

−Id−1 Fh,h

)
.

(13)
Using the block-structure of (13) for computing J−1(θ̃), the CRLB
reads

CRLB(hk) = Rk σ2
sk

κkIVEσ
2
sk
− 1

. (14)

Using (12) and (14), and by consideringN observations, the CRLB-
induced bound for ISR for the kth mixture is

E[ISR(ŵk)] ≥ 1

N

d− 1

κkIVEσ
2
sk
− 1

. (15)

It can be shown, that κkIVEσ
2
sk = κ̃kIVE, where κ̃kIVE corresponds

to the same pdf as κkIVE but scaled to the unit variance. Thus, the
resulting bound does not depend on the variance of original signals.

3.2. Resulting bound vs. known bounds for ICA/IVA

Now, we compare the result (15) with previous known bounds for
IVA, ICA and ICE.

The CRIB for IVA derived in [4] (only the real-valued case) says
that the ISR for the mth component satisfies

E[ISR(ŵk
m)] ≥

d∑
n=1
n 6=m

1

N

((
νm,n − ν−1

n,m

)−1
)
kk
, (16)

where νm,n = E[ψm(sm)ψTm(sm)] � E
[
sns

T
n

]
, n,m = 1, . . . d,

and ψm(sm) = −∂ log pm(sm)/∂sm; � denotes the Hadamard
(element-wise) product. To compare (16) with (15), consider
m = 1. Next, the elements of vector components are assumed
to be uncorrelated, so E

[
sns

T
n

]
and consequently νm,n are di-

agonal. Moreover, when the nth vector component is Gaussian,
νn,1 =

(
E
[
sns

T
n

])−1 � E
[
s1s

T
1

]
. Using these simplifications,

it can be verified that (16) coincides with (15) when all but the
first vector components are Gaussian, which corresponds with the
assumption introduced in Section 2.2.

However, the IVA mixing model is not identifiable under the
assumption of Gaussian background [4], consequently, the corre-
sponding CRLB formally does not exist. By contrast, the CRLB
for IVE exists, and (15) corresponds with the asymptotic value of
(16) for m = 1. In conclusion, the reduced mixing model in Sec-
tion 2.1 does not limit the achievable accuracy by IVE compared to
IVA. Only when the background signals are non-Gaussian, (16) can
be lower than (15). Similar conclusions hold when comparing ICE
with ICA [13].

ICE differs from IVE in that each mixture is treated separately.
Then, the CRIB for the kth mixture has the form [13]

E[ISR(ŵk)] ≥ 1

N

d− 1

κkICEσ
2
sk
− 1

, (17)

where κkICE = E[(∂pk(sk)/∂sk)2], and pk(sk) stands for the
marginal pdf of sk.

By comparing, (17) and (15) differ only in that κk depends on
the score function of sk derived from its marginal and joint pdf, re-
spectively.

Proposition 1. Let p(s1, . . . , sK) denote the joint pdf of s1, . . . , sK ,
and pk(sk) be the marginal pdf of sk, k = 1, . . . ,K. Then,
κkIVE ≥ κkICE, and the equality when sk is independent of the
other random variables, or, equivalently, when p(s1, . . . , sK) =
pk(sk)p(s1, . . . , s

k−1, sk+1, . . . , sK).

The Proposition 1 (see Appendix B for the proof) shows that the
CRIB for ICE is always greater than for IVE. Once sk is independent
of the other elements of s, the CRIBs are the same. It holds that
κkICA = κkIVA if and only if sk is independent of the other elements
of s. IVE thus takes advantage compared to ICE only when there
are dependencies inside the vector component s. The equality in
comparison of ICA vs. ICE and IVA vs. IVE holds when all but
one signals in a mixture are Gaussian. Finally, Table 1 provides a
summary of inequalities between the CRIBs.

ICA ICE IVA IVE
ICA = ≤ ≥ n/a
ICE ≥ = n/a ≥
IVA ≤ n/a = ≤
IVE n/a ≤ ≥ =

Table 1. Comparison of CRIBs for E[ISR(ŵk)].

4. SIMULATIONS

In simulations, we compare the bounds for ICE and IVE with empir-
ical mean ISR achieved by the OGICE (Orthogonally Constrained
ICE) algorithm from [9], and by OGIVE performing IVE [10].
Both algorithms are based on maximum likelihood principle, so
they might achieve the CRIB asymptotically when initialized in the
region of convergence to the SOI, and when the true score function
is used as the internal nonlinear function. For simplicity we assume
real-valued signals and mixing matrix.

In one trial, K = 3 mixtures of d = 5 independent signals are
generated. The background signals in mixtures are Gaussian with
zero mean and unit variance. The SOIs (one SOI per mixture) are
mutually dependent, drawn according to the joint pdf given by

p(s1, . . . , sK) ∝ exp

(
−

(
λ

K∑
i=1

|si|2
)α)

(18)

where λ > 0, and α 6= 1 (for α = 1, the pdf is Gaussian). To scale
the marginal pdf of the SOI for K = 3 mixtures to the unit variance

we set λ =
Γ( 5

2α )
3Γ( 3

2α )
. The SOIs are generated by using the Markov

Chain Monte Carlo sampler [19]. All signals are mixed by a random
mixing matrix.

For K = 3, the marginal pdf of the kth SOI (assuming zero
mean and unit variance) is given by

pk(sk) = D2

∫
(λ|sk|2)α

t
1
α
−1e−tdt = D2Γ

(
(λ|sk|2)α,

1

α

)
,

(19)
where D2 =

√
λ

2Γ( 3
2α

)
, Γ(y, a) denotes the incomplete Gamma func-

tion. In OGIVE, the nonlinearity is the true score function derived
from the joint pdf (18), i.e.,

ψkIVE = −∂ log p(s1, . . . , sK)

∂sk
= 2αλαsk

(
3∑
i=1

|si|2
)α−1

,

(20)
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while, in OGICE, the score function corresponding to the marginal
pdf (19) is used, that is,

ψkICE = −∂ log pk(sk)

∂sk
=

2αλsk exp
(
−(λ|sk|2)α

)
Γ
(
(λ|sk|2)α, 1

α

) . (21)

It holds that

κkIVE = E
[
ψkIVE

2
]

=
4

3
λα2 Γ(2 + 1

2α
)

Γ( 3
2α

)
. (22)

The values of κkICE were computed numerically.
Fig. 4 shows the CRIBs given by (15) and (17) together with the av-
erage ISR achieved by the algorithms in 100 trials, as functions of
α ∈ [0.2, 2]. The results confirm that the CRIB for IVE is smaller
than the CRIB for ICE when the SOIs are dependent. Also, the em-
pirical results by OGICE and OGIVE confirm that the latter achieves
lower ISR. The average ISRs are close to their respective CRIBs, but
they are always slightly greater.
The CRIBs and the average ISRs grow when α is close one, because
the pdf of the SOI is close to Gaussian. For the Gaussian case, the
mixing model is not identifiable. For α close to one, the estimator
seems to perform even slightly better than the CRLB, but it is only
because of its initialization in the true value of g.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

parameter 

-40

-30

-20

-10

0

10

IS
R

 (
dB

)

CRIB
IVE

CRIB
ICE

OGICE
OGIVE

Fig. 1. CRIBs and average ISRs achieved by the compared algo-
rithms for d = 5, N = 5000, K = 3.

5. CONCLUSIONS

The CRIB on ISR achieved by IVE derived in this paper has shown
that the structured (de-)mixing matrix model with a reduced num-
ber of parameters is not restrictive. The accuracy achievable by
IVE is, in comparison to IVA, asymptotically the same when the
background is Gaussian. The dependence between the SOIs in the
mixtures enable IVE to reach better accuracy than ICE, which treats
each mixture separately. Numerical simulations have confirmed the
validity of the CRIBs.

Appendix A: Fisher Information Matrix
Now, we complete the CRLB-induced bound for ISR by computing the FIM and its inverse. Let F defined in (8) be partitioned as

F =

(
Fg,g Fg,h

F∗g,h Fh,h

)
, where g = [g1; . . . ;gK ] and h = [h1; . . . ;hK ]. (23)

The derivatives of (5) read

∂L(x1 . . .xK |g,h)

∂gk
∣∣
h=0

= −skRkzk and
∂L(x1 . . .xK |g,h)

∂hk
∣∣
h=0

= ψk(s1, . . . , sK)zk, (24)

where ψk(s1, . . . , sK) = − ∂ log p(s1,...,sK)

∂sk
. The elements of the kth diagonal block of (23) are as follows (the off-diagonal blocks are zero

since zv , zu, u 6= v, are uncorrelated): (Fg,g)k = σ2
skR

k, (Fh,h)k = κkIVEC
k
z , (Fg,h)k = −Id−1, where κkIVE = E[|ψk(s)|2]. The other

sub-matrices of (7) can be partitioned similarly as (23). Then, by taking into account the circularity of zk, which means that E[zkzk
T

] = O,
it follows that (Pg,g)k = (Ph,h)k = (Pg,h)k = O.

Appendix B: Proof of κk
IVE ≥ κk

ICE
Proof: We start by computing the following auxiliary quantity:

κkMI = E

[(
∂

∂sk

(
log

p(s1, . . . , sK)∏K
i=1 pi(s

i)

))2]
= E

[(
∂ log p(s1, . . . , sK)

∂sk

)2
]

+ E


∂ log

(∏K
i=1 pi(s

i)
)

∂sk

2
−

2E

∂ log p(s1, . . . , sK)

∂sk

∂ log
(∏K

i=1 pi(s
i)
)

∂sk

 = κkIVE + κkICE − 2E

[
∂ log p(s1, . . . , sK)

∂sk
∂ log pk(sk)

∂sk

]
.

By unfolding the last term, we obtain∫
RK

1

p(s1, . . . , sK)

∂p(s1, . . . , sK)

∂sk
1

pk(sk)

∂pk(sk)

∂sk
p(s1, . . . , sK)ds1 . . . dsK =∫

R

1

pk(sk)

∂pk(sk)

∂sk

∫
RK−1

∂p(s1, . . . , sK)

∂sk
ds1 . . . dsK =

∫
R

1

pk(sk)

(
∂pk(sk)

∂sk

)2

dsk = κkICE.

The proof is completed as 0 ≤ κkMI = κkIVE − κkICE.
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constrained independent component extraction: Blind MPDR
beamforming,” in Proceedings of European Signal Processing
Conference, Sep. 2017, pp. 1195–1199.
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