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Abstrakt: V příspěvku jsou studovány modely pro analýzu životnosti se-
stavené jako kombinace několika jednoduchých rizikových funkcí. Užitečnost
takových modelů je ukázána na příkladech s umělými i reálnými daty.
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Abstract: The objective of this contribution is to present and explore some
methods of construction and estimation of models based on mixtures of haz-
ard rates. The goal is to demonstrate their usefulness and applicability with
the aid of both artificial and real examples.
Keywords: hazard rate, Weibull distribution, reliability analysis.

1. Introduction, models based on mixtures
Distributions of probability constructed as mixtures of two or more simple
distributions are used frequently in many fields of application, in cases when
no simple model describes the data sufficiently. Such mixtures are based on
the convex combination of probability densities or distribution functions, in
order to ensure that the final function is also a density (or distribution func-
tion). The most popular model is composed from a set of normal densities.
The simplest example is the following:

f(x) = p1 · f1(x) + p2 · f2(x). (1)

Interpretation (used also in cluster analysis) could be such that with proba-
bility p1 an item belongs to first group having distribution with density f1,
with probability p2 to the second group. It is also the way how data repre-
senting mixture (1) could be generated. Further, probability densities (and
normal densities in particular) are used also as components for the construc-
tion of regression models, in the same way as regression splines. For instance
a combination (now it need not be convex) of gaussians (in this context called
also “radial basis functions”) is used to create a curve or surface.
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In the statistical reliability analysis, when modeling the time to failure,
one of often used characteristics is the hazard rate (HR) h(t) or its integrated
version, the cumulative hazard rate (CHR) H(t) =

∫ t

0
h(z) dz. Let us denote

F (t) the distribution function and S(t) = 1− F (t) the survival or reliability
function, then H(t) = − ln(S(t)). The use of hazard rate as one of basic
characteristics suggests that the mixture models in reliability could be based
as well on mixtures of hazard rates instead on mixtures of distributions.

The first step, namely the linear failure rate model h(t) = a + bt was
proposed already in Kodlin [5], polynomial failure rate models have then
been studied in Bain [1], advanced computation methods also in Pandey et
al. [7]. Nonlinear (and no polynomial) models h(t) = a + btγ , a, b, γ > 0
and methods of estimation have, naturally, also been examined, for instance
in Salem [9]. Some systematic recent investigation is also due Tien Thanh
Thach from the Technical University in Ostrava, see for instance Briš and
Thach [3]. Essentially, there is no problem to extend the methods to deal
with more than two components. A question arises, however, whether and
when it is reasonable, improving the fit of model to data significantly. In
fact, both examples used in the present paper are of such a kind, in both it
is shown that two components of additive hazard rate do not suffice.

The next section introduces hazard mixture models in more details. Then,
a comparison of two examples illustrates the difference among mixtures of
distributions and of hazard rates. Section 4 solves an artificial example leading
to the bath-tube shaped hazard rate, and, finally, Sections 5 and 6 solve a real
data case, except a plain sum of hazard rate considering also an incremental
model, i.e. a variant of model with change points.

2. Mixtures of hazard rates

In practical survival data analysis, rather frequently the hazard rate during
the lifetime (not only of a technical device, but also of a biological object)
may have a “bath-tube” shape, decreasing in the first short lifetime period,
then being approximately constant for the most of lifetime, finally increasing
as the object is ageing. This could be a reason for considering a mixture of
three simple hazard rates (see an example in Figure 2 below). Notice that the
mixture of hazard rates need not be convex, as hazard rate is not standardized
(in the sense as the density function is, i.e. that the integral from density
function equals one). Notice also a special property of Weibull distribution:
When its hazard rate is multiplied by a constant, we obtain the hazard rate
of another Weibull distribution. Recall that the Weibull cumulative hazard
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rate can have two forms,

H(x) = a xβ or H(x) =
(x

α

)β

.

Hence

cH(x) = c a xβ = a∗ xβ or H(x) =
( x

α∗

)β

, α∗ = α/c1/β . (2)

I shall use mostly the second notation, as it corresponds to the notation in
Matlab (and in Excel, too). From above it is seen that the mixture of two
Weibull hazard rates is equivalent to a simple sum h = h1+h2 of other Weibull
hazard rates, parameters of would-be combination are not identifiable.

However, other distribution types have not such property, hence it has a
sense to consider a model – combination (possibly convex) of hazard rates.
What is an interpretation of such a model? The sum of hazard rates h =

∑
hj

corresponds to the hazard rate of a serial system composed from independent
items with hj , the survival time of the system then to minimum of survival
times of components. Multiplication h∗ = c ·h then corresponds to a propor-
tional change of hazard rate (it is actually the first step to the “proportional
hazard regression model” or to frailty models), then S∗ = Sc.

Immediately a question arises when one should prefer the model based
on density function or on hazard rate. Naturally, each approach has its ad-
vantages and also specific tools, model fitting methods and procedures. In
general, in both cases the model estimation often uses iterative methods of
optimization of a criterion based for instance on the maximal likelihood, on
Bayes estimation (nowadays often connected with the Markov chain Monte
Carlo method, MCMC), or on some other distance. For instance, one of tra-
ditional methods how to fit the Weibull distribution is based on the least
squares and linear regression. Namely, let theoretical Weibull cumulative haz-
ard rate be H(t) = a · tβ , data Ti, i = 1, . . . , N, estimated CHR Ĥ(t). Then,
after further logarithmization, we obtain the relation

ln Ĥ(Ti) ∼ ln(a) + β · ln(Ti).

Or, when dealing with additive hazard rate composed from two Weibull haz-
ard rates, we can use the following:

Ĥ(Ti) ∼ a1 T
β1

i + a2 T
β2

i ,

which is linear at least w.r. to aj-s. The solution is found with the aid of
the least squares method, eventually weighted by the asymptotic variance
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of Ĥ. Other criteria can use distances of Kolmogorov-Smirnov and variants
(Cramér-Von Mises, Anderson-Darling) measuring departures of parametric
models from nonparametric estimates of S(t) or H(t).

3. Two examples of mixture models
The first example on Figure 1 shows a case of mixture of two probability den-
sities. Such a model is applicable for instance in the analysis of unemployment
duration, as, roughly, there are two types of people: one with certain quali-
fication and willingness to find a new employment, so called “movers”, here
represented by shorter distribution with density f1. The other type, called
“stayers”, however, have problems with finding a new job, their staying time
in unemployment is represented by density f2. Hence, considering these two
groups together and their proportions, the density of common distribution of
unemployment time is given by a mixture f = p · f1+(1− p) · f2. In Figure 1
f1 corresponds to Weibull distribution with α1 = 50, β1 = 1.5, f2 to Weibull
with α2 = 150, β2 = 3, p = 0.5.

The second example displayed in Figure 2 shows an instance of the hazard
rate having “bath-tube” shape. It was constructed by mixing a decreasing HR
of Weibull distribution with parameters α1 = 1, β1 = 0.5, constant HR (i.e. of
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Figure 1: Example of mixture of 2 densities representing “movers”, f1, and
“stayers”, f2, resulting f = (f1 + f2)/2 (thick curve).

4



Informační bulletin České statistické společnosti, 2/2018

exponential distribution, α2 = 30, β2 = 1) and an increasing HR of Weibull
distribution with α3 = 150, β3 = 5. The final hazard rate was obtained as
h = p1 h1 + p2 h2 + p3 h3 with p1 = 0.2, p2 = 0.5, p3 = 0.3. Results are
displayed in Figure 2. As it has already been said, the model is equivalent to
a simple additive one h = h∗

1 +h∗
2 +h∗

3, namely with α∗
1 = 25, α∗

2 = 60, α∗
3 =

190.8 and β-s the same as above.
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Figure 2: Example of “bath-tubed” hazard rate shape, a mixture of 3 hazard
rates.

4. Artificial data example
The data Xi, i = 1, . . . , N, N = 500, were generated from the model dis-
played on Figure 2. Hence, it was expected that its HR is given by the sum
of two Weibull and one exponential components. Figure 3 shows nonpara-
metric estimates of the CHR and survival function. The task is to estimate
parametric model. From several methods listed above the maximum likeli-
hood estimate (MLE) was chosen. It is possible, for given parameters, to
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Figure 3: Stepwise: empirical CHR and survival function, dotted are their
kernel-smoothed versions, dashed curves are based on the MLE.

evaluate both the log-likelihood as well as its derivatives. On the other hand,
parameters maximizing the log-likelihood are found just by a random search
(which is here computationally easier than for instance an iteration using the
derivatives repeatedly, like the Newton-Raphson algorithm). Therefore the
result is just approximate, as well the estimates of borders of 90% confidence
intervals. Dashed curves in Figure 3 correspond to the model using the MLE
of parameters, their values are listed in Table 1.

5. Real data example
The data used in this part are “Aircraft windshield failure data” taken from
Ruhi [8], they were analyzed also in several other papers, e.g. in Blischke et
al. [2]. They concern to the “damage or delamination of the nonstructural
outer ply or failure of its heating system”. These failures do not cause a
severe damage to the aircraft but lead to replacement of the windshield. The
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α1 α2 α3 β1 β3

MLE 18.0308 78.1834 197.4708 0.5047 3.6122
LCI 10.8970 42.4971 148.4805 0.4549 2.2910
UCI 25.1646 113.8697 246.4611 0.5545 4.9334

Table 1: ML estimates, LCI and UCI are the lower and upper bounds of
asymptotic 90% confidence intervals.

α1 α2 β1 β2

MLE 39.3812 3.5834 0.9571 2.9336
LCI 38.0081 2.9995 0.5560 1.9097
PCI 40.7543 4.1673 1.3582 3.9575

Table 2: ML estimates, LCI and UCI are again the lower and upper bounds
of asymptotic 90% confidence intervals.

data consist of 153 observations, from them 88 are times to failures, the
remaining 65 are censored times when no failure occurred during the time of
observation. It means that we deal with the random right-censoring scheme.
Hence the PLE (Product Limit Estimator) of Kaplan and Meier will be used
as nonparametric estimator of survival function, while cumulative hazard rate
will be estimated by the Nelson-Aalen Estimator (NAE), see e.g. Kalbfleisch
and Prentice [4]. The unit of measurement was 1000 hours.

Both nonparametric estimates are displayed in Figure 4 (stepwise func-
tions), together with estimates obtained from them by kernel smoothing.
Ruhi [8] as well as other authors (references see in Ruhi) tried to describe the
data by models mixing two plain distribution densities. Success of modelling
was assessed by several criteria, as the likelihood or the Kolmogorov-Smirnov
distance of model survival function from the nonparametric PLE. Naturally,
these two criteria lead to different results, though both are asymptotically
consistent. For comparison, I decided to use a model based on mixture of haz-
ard rates with its parameters estimated by the maximum likelihood method.
Figure 5 shows the result (dashed curve), namely the model constructed just
by sum of two Weibull hazard rates. Such a model has 4 parameters. Simi-
larly as above, the best solution was approached by a random search, then
asymptotic confidence intervals were computed from the second derivative
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Figure 4: From above: the NAE with 95% CI-s, kernel-smoothed estimate of
HR, then the PLE with 95% CI-s, kernel-smoothed estimate of density, data
of Ruhi (2015).

of the log-likelihood. Figure shows that the fit should be improved yet. For
comparison, achieved maximal value of the log-likelihood was −170.14, while
the best result of Ruhi [8] was −176.7 obtained by the mixture of densities of
Weibull and Normal distributions having 4 parameters of components plus
one of mixture.

Estimated parameters of the sum of two Weibull hazard rates are in Ta-
ble 2. It is seen that the first distribution can be taken as the exponential one,
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Figure 5: CHR above, with stepwise NAE, survival functions are below, with
stepwise PLE. Dotted are kernel-smoothed nonparametric estimates, dashed
curves correspond to mixed hazard rates model obtained by the MLE.

i.e. with β1 = 1. Then the MLE of other parameters is comparable, as well
as maximal log-likelihood. Now the model has just 3 parameters estimated
as α1 = 38.5612, α2 = 3.5717, β2 = 2.9590, with maximal log-likelihood
−170.16.

Blischke [2] as well as Ruhi [8] considered also the Akaike information
criterion (AIC) for comparison of different models performance. Let us recall
that AIC= 2k − 2L, where k is the number of model parameters and L
equals achieved maximum of the log-likelihood, the model with smaller AIC
is regarded as being better. Hence, in the case of our model with β1 = 1
AIC = 346.3, which is less than the AIC of all models considered in Blischke
or Ruhi. The model has the form of the “nonlinear failure rate model” with
h(t) = a + btγ , where a = 1/α1 = 0.0259, b = β2/(α

β2

2 ) = 0.0684, γ =
β2 − 1 = 1.9590.

As it has been said, there are also other model fit methods available.
For instance the use of the MCMC methods can improve the random search
results, it also offers Bayes credibility intervals for parameters. Naturally,
one may consider mixtures with also other hazard rates types, not limiting
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Figure 6: CHR above, with stepwise NAE, survival functions are below, with
stepwise PLE. Dotted are kernel-smoothed nonparametric estimates, dashed
curves corresponding to change-point model obtained by the MCMC.

himself just to Weibull, or to use more than two components. In fact, kernel
estimate of density functions in Figure 4 below suggests that 3 component
could be optimal. That is why the same data were analyzed also in the next
section, with, it seems, a better result.

6. Change-point models for hazard rates
The task of change point detection belongs among quite well developed sta-
tistical techniques. There exist also results dealing with changes of hazard
rates. While corresponding asymptotic theory connected with the MLE is
rather complicated, cf. Nguyen et al. [6], practical analysis can be based on
rather simple methods detecting a region where the residuals (i.e. reasonably
defined deviation of data from actual model) are crossing a given border.
Our problem could be viewed also as an incremental construction of a sig-
nal model, which means that in detected point of change a new component
is added to current model. This is possible when the change leads to the
increase of hazard.
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Param. α1 α2 α3 β1 β2 β3 Tch1 Tch2

Estim. 31.384 2.996 0.834 0.957 1.555 2.053 0.907 3.952

LCrI 20.792 2.400 0.760 0.762 1.304 2.118 0.754 3.075

UCrI 39.476 3.338 1.891 1.196 1.925 4.745 1.235 4.226

β1 = 1 37.705 2.883 0.877 1.000 1.811 2.273 0.835 3.914

Table 3: Estimates of incremental model parameters and change-points, with
LCrI and UCrI the lower and upper bounds of sample-based 90% credibility
intervals. The last row – model with β1 = 1.

The example shown in Figure 6 deals still with the data from Ruhi [8].
Figure displays again stepwise estimates (thick) and dotted smoothed esti-
mates, the NAE of the CHR above and the PLE of survival function below.
Further, dashed curves show the best “two change-points” model achieved.
Namely, the model of hazard rate was constructed from one Weibull haz-
ard rate starting from t = 0 and two Weibull hazard rates added at two
times of change, Tch1, Tch2, which also had to be found optimally. Then
h(t) = h1(t)+h2(t−Tch1) · I[t > Tch1]+h3(t−Tch2) · I[t > Tch2], I[.] denotes
the indicator function. Thus, the model had 8 parameters. The method of
solution used the Metropolis MCMC algorithm generating a representation
of Bayes posterior distribution of parameters, while their prior distributions
were chosen to be independent uniform, in reasonable intervals. Therefore the
posterior distribution was proportional to the likelihood. Together 50 000 it-
erations of the algorithm were performed, results were taken from last 20 000.
Table 3 contains the “modes” of posterior distribution, i.e. the values max-
imizing the likelihood, and empirical quantiles representing the Bayes 90%
credibility intervals. Achieved maximum of the log-likelihood was −165.5.

Similarly as above it is seen that the first component is close to exponen-
tial. When we fixed β1 = 1, the results were comparable, they are in the last
row of Table 3. The max of log-likelihood was −165.6. Model had just 7 pa-
rameters, with AIC = 345.2, which was even smaller than the best (regarding
the AIC) result in the preceding section.

7. Concluding remarks
The problem of construction of hazard rate from additive components can be
also interpreted as the problem of a regression model fitting the nonparamet-

11



Vědecké a odborné články

ric estimate (e.g. smoothed from the NAE). To preserve some interpretation,
the model should be constructed from a small set of given parametric function
and kept non-negative.

In fact, the case studied here was simplified, just sums of Weibull hazard
rates were considered. A next problem to explore is to use (convex) mixtures
of hazard rates of other distributions and to study whether it is possible
to estimate both parameters of distributions and coefficients of mixture and
whether this task is unambiguous. Or, variantly, the flexibility of mixture
models (based either on hazard rates or on probability densities) could be
examined after the time is transformed (e.g. to the logarithmic scale).
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