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Abstract: In various fields of real life, many interesting optimization problems appear. The
present contribution deals with optimization of maintenance of a technical device. Namely,
both the period of maintenance and its level are controlled, the costs are compared with the
cost caused by the device failure and necessary repair after it. We consider a variant the Kijima
model assuming that the consequence of such a repair is the decrease of ’virtual’ age of the
object. The main objective is to formulate a proper stochastic objective function evaluating the
costs of given maintenance strategy and then to present an optimization method for selected
characteristics of the costs distribution.
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1 INTRODUCTION

In reliability analysis, the models of imperfect repairs are mostly based on the reduction of
the hazard rate, either directly or indirectly (by shifting the virtual age of the system). If
the state of the system is characterized by its degradation, the repair degree can be connected
with the reduction of the degradation level. We shall concentrate mainly to selection of certain
repair schemes, their consequences, and possibilities of an ’optimal’ repair policy leading to
the hazard rate stabilization and costs minimization. The organization of the paper is the
following: First, general models of repairs will be recalled. Then, a variant of the Kijima II
type model for preventive repair [6] will be considered and its scheme applied to the case of a
model with degradation process. Repair then will be connected with the reduction of the level
of degradation. Finally, a solution searching for optimal repair parameters will be demonstrated
on an artificial example.

2 BASIC REPAIR MODELS

Let us first recall briefly the most common schemes of repair of a repairable component and
the relationship with the distribution of the time to failure (cf. [1]). The renewal means
that the component is repaired completely, fully (e.g. exchanged for a new one) and that,
consequently, the successive random variables – times to failure – are distributed identically
and independently. The resulting intensity of the stream of failures is defined as

h(t) = limd→0+
P (failure occurs in [t, t + d))

d
.

Its integral (i.e. cumulated intensity) is then H(t) = E[N(t)] =
∑∞

k=0 k · P (N(t) = k), where
N(t) is the number of failures in (0,t].

2.1 Models of partial repairs

There are several natural ways how the models of complete repairs can be widen to repairs
incomplete. One of basic contribution is in the paper [6]. Let F be the distribution function
of the time to failure of a new system. Assume that at each time the system fails, after a
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lifetime Tn from the preceding failure, a maintenance reduces the virtual age to some value
Vn = y, y ∈ [0, Tn + Vn−1] immediately after the n-th repair (V0 = 0). The distribution of the
n-th failure-time Tn is then

P [Tn ≤ x|Vn−1 = y] =
F (x + y)− F (y)

1− F (y)
.

M. Kijima then specified several sub-models of imperfect repairs. Denote by An the degree
of the n-th repair (a random variable taking values between 0 and 1). Then in Model I the
n-th repair cannot remove the damages incurred before the (n-1)th repair, Vn = Vn−1 +An ·Tn.
On the contrary, the Model II allows for such a reduction of the virtual age, namely Vn =
An · (Vn−1 + Tn). Special cases contain the perfect repair model with An = 0, minimal repair
model, An = 1, and frequently used variant with constant degree An = A. Naturally, there are
many other approaches, e.g. considering a randomized degree of repair, the regressed degree
(based on the system history), accelerated virtual ageing, change of hazard rate etc., see for
instance [3], [1], [5]), or [7].

2.2 A variant of Kijima model of preventive maintenance

Let us recall the following simple case of the Kijima II model with constant degree δ of virtual
age reduction, and assume that it is used for the description of consequence of preventive
repairs. Further, let us assume that after the failure the system is repaired just minimally, or
that the number of failures is much less than the number of preventive repairs. Let ∆ be the
(constant) time between these repairs, Vn, V ∗

n the virtual ages before and after n−th repair.
Hence:

Vn = V ∗
n−1 + ∆ and V ∗

n = δ · Vn.

If we start from time 0, then V1 = ∆, V ∗
1 = δ∆, V2 = δ∆+∆ = ∆(δ+1), V ∗

2 = ∆(δ2+δ), V3 =
∆(δ2 + δ + 1) etc. Consequently, Vn → ∆

1−δ , i.e. it ’stabilizes’.
Now, let us consider a variant, in which the reduction of ”virtual age” means just reduction

of the failure rate to the level corresponding to virtual age. I.e., for each δ and ∆ there is a
limit meaning that the actual intensity of failures h(t) ’oscillates’ between h0( δ∆

1−δ ) and h0( ∆
1−δ ),

where h0(t) is the hazard rate of the time-to-failure distribution of the non-repaired system.
Simultaneously, the cumulated intensity increases regularly through intervals of length ∆ by

dH = H( ∆
1−δ )−H( δ∆

1−δ ), i.e. ’essentially’ with the constant slope a = dH/∆. Figure 1 shows
graphical illustration of such a stabilization in the case that the hazard rate h0(t) increases
exponentially.

Example: Let us consider the Weibull model, with H0(t) = α · expβ, (β > 1, say). In that
case

dH = α∆β 1− δβ

(1− δ)β
and A = α∆β−1 1− δβ

(1− δ)β
.

As special cases, again the perfect repairs with δ = 0, minimal repairs with δ ∼ 1, and the
exponential distribution case with β = 1 can be considered.

Remark 1. If the model holds (with constant times between repairs ∆) it is always possible
to stabilize the intensity by selecting the upper value of H∗ and repair always when H(t)
reaches this value. Then Vn = V = H−1(H∗), V ∗

n = δVn again, and the interval between
repairs should be ∆ = V (1− δ).
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Figure 1: Case of exponentially increasing h0(t) = 0.01 · exp(0.5 · t), δ = 0.7,∆ = 1. Above:
Intensity after repairs. Below: Cumulated intensity with repairs (full) and without (dashed
curve).

3 TOWARDS OPTIMAL MAINTENANCE STRATEGY

Let us consider the stabilized case, as in Figure 1, and assume that the failures are much less
frequent than preventive repairs, then there quite naturally arises the problem of selection of
δ to given repair interval ∆ (or optimal selection of both). By optimization we mean here the
search for values yielding the minimal costs of repairs, which has a sense especially in the case
when the repairs after failures are too expensive.

Let C0 be the cost of failure (and its repair), C1(δ,∆) the cost of the preventive repair.
Then the mean costs to a time t can be written as

C ≈ C0 · E(N(t)) +
t

∆
· C1(δ,∆),

where E(N(t)) is the mean number of failures up to t, which actually equals H(t), the cumulated
intensity of failures under our repairs sequence. The proportion t

∆ is the number of preventive
actions till t. The problem is the selection of function C1, it should reflect the extent of repair.
It leads to the idea to evaluate the level of system degradation and to connect the repair with
its reduction.

3.1 Maintenance as a reduction of system degradation

Let us therefore consider a function S(t) (or a latent random process) evaluating the level of
degradation after a time t of system usage. In certain cases we can imagine S(t) =

∫ t
0 s(u)du

with s(u) ≥ 0 is a stress at time u. We further assume that the failure occurs when S(t) crosses
a random level X. Recall also that the cumulated hazard rate H(t) of random variable T , the
time to failure, has a similar meaning, namely the failure occurs when H(t) crosses a random
level given by Exp(1) random variable.

As T > t <=> X > S(t), i.e. F̄0(t) = F̄X(S(t)), where F̄ denote survival functions, then

H0(t) = −logF̄X(S(t)).

We can again consider some special cases, for instance:
– X ∼ Exp(1), then H0(t) = S(t),
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– S(t) = c · td, d ≥ 0, and X is Weibull (a, b), then T is also Weibull (α = acb, β = b + d),
i.e. H0(t) = α · tβ.

Let us now imagine that the repair reduces S(t) as in the Kijima II model, to S∗(t) = δ ·S(t).
In the Weibull case considered above we are able to connect such a change with the reduction of
virtual time from t to some t∗: S(t∗) = S∗(t) => t∗ = δ

1
d · t, so that the virtual time reduction

follows the Kijima II model, too, with δt = δ
1
d . As it has been shown, each selection of δ, ∆

leads (converges) to a stable (’constant’ intensity) case.
For other forms of function S(t), e.g. if it is of exponential form, S(t) ∼ ect − 1, such a

tendency to a constant intensity does not hold. Nevertheless, it is possible to select convenient
δ and ∆, as noted in Remark 1.

3.2 Degradation as a random process

In the case we cannot observe the function S(t) directly, and it is actually just a latent factor
influencing the lifetime of the system, it can be modelled as a random process. What is the
convenient type of such a process? There are several possibilities, for instance:
1. S(t) = Y · S0(t), Y > 0 is a random variable, S0(t) a function.
2. Diffusion with trend function S0(t) and B(t)-the Brown motion process, S(t) = S0(t)+B(t).
3. S(t) cumulating a random walk s(t) ≥ 0.
4. Compound Poisson process and its generalizations, see for instance [4].

Though the last choice, sometimes connected also with the ”random shock model”, differs
from the others, because its trajectories are not continuous, we shall add several remarks
namely to this case. The compound point process is the following random sum

S(t) =
∑

Tj<t

Y (Tj) =
∫ t

0
Y (u)dNs(u)

with the counting (mostly Poisson) process Ns(t) yielding the random times Tj and random
variables Y (t) > 0 giving the increments. Let λ be the intensity of Poisson process, µ, σ2 the
mean and variance of increments, then it holds

ES(t) =
∫ t

0
λ(u) · µ(u)du,

var(S(t)) =
∫ t

0
λ(u) · (µ2(u) + σ2(u))du.

Again, let us assume that the failure occurs when the process S(t) crosses a level x. Then
S(t) < x <=> t < T , therefore F̄0(t) = FS(t)(x), where F̄0(t) denotes again the survival
function of the time to failure and FS(t)(x) is the compound distribution function at t. If
X is a random level, then the right side has the form

∫∞
0 FS(t)(x)dFX(x). The evaluation

of the compound distribution is not an easy task, nor in the simplest version of compound
Poisson process. There exist approximations (derived often in the framework of the financial
and insurance mathematics, see again [4]). Another way consists in random generation.

4 PARTIAL MAINTENANCE OPTIMIZATION

What occurs when, as in the preceding cases, the repairs reducing degradation, with degree δ,
are applied in regular time intervals ∆? It is assumed that when we decide to repair, then we
are able to observe actual state of S(t). Random generation shows that the system then has
the tendency to stabilize the intensity of failures, as in Figure 1.

We can now return to the ’cost optimization’ problem. Function C1(δ,∆) can now be
specified for instance as C1 · (dS(t))γ +C2, where dS(t) = S(t)(1−δ) = S(tend)−S(tinit). Here
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C1 and C2 are constants, the later evaluating a fixed cost of each repair. Of course, a proper
selection of costs and function C1 in real case is a matter of system knowledge and experience.
We performed several randomly generated examples, with different variants of the objective
function (which was stochastic), with the goal to find optimal maintenance parameters, in the
sense of minimization of costs (i.e. their mean, or median, or other quantile).
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Figure 2: Example of optimal maintenance: Initial phase of search (left), state of search after
12 iterations (right); 1− δ on horizontal, τ on vertical axis.

4.1 Example of optimal maintenance

Let us again assume, in a Kijima II model of non-complete repair, that the device is repeatedly
repaired in its virtual age τ with a degree 1− δ, which means that after repair the virtual age
of the device is δ · τ . Then the parameter ∆ of inter-maintenance times equals (1− δ) · τ .

In the example it is assumed that the Kijima model concerns to preventive repairs, mean-
while after the failure the device has to be renewed completely. We are given the costs of
renewal, C0, and of preventive repair, C1(δ, τ). It is due the problem assumptions that the
objective can be formulated as to maximize, over τ and δ, selected characteristics of random
objective function ϕ(T, δ, τ) equal to proportion of the time to renewal to the costs to renewal.
Here T is the random time to failure of the device. This proportion equals

ϕ(T, δ, τ) =
T

C0
with probability P (T ≤ τ),

ϕ(T, δ, τ) =
τ + τ · (1− δ) · (k − 1) + Tk

C0 + k · C1
with P (T > τ) · P (T1 > τ)k−1 · P (T1 ≤ τ),

where T1 = {T |T > τ · δ} and k is the number of preventive repairs before the failure. It is due
the fact revealed in sect. 2.2 and shown in Figure 1, that the hazard rate stabilizes and after
each preventive action the conditional distribution above is (approximately) the same.

The direct evaluation of objective function is not easy, moreover, it is strongly non-concave.
Therefore, the distribution of variable Y (δ, τ) = ϕ(T, δ, τ), for different δ, τ , is obtained ,em-
pirically’ by random generation, its characteristics then as sample characteristics. The choice
could be the mean, median, or certain quantiles.
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For numerical illustration we selected T ∼ Weibull(a = 100, b = 2), with survival function
F (t) = exp

(
− ( t

a)b
)
, ET ∼ 89, std(T ) ∼ 46. Further, the costs C0 = 40, C1 = 2 + ((1 − δ) ·

τ)γ , γ = 0.2. Such a selection of C1 corresponds to case when the degradation S(t) ∼ t, in the
sense of previous discussion, value 2 stands for fixed costs. We decided to maximize the α = 0.1
quantile of distribution of ϕ(T, δ, τ). Optimal parameters were found with the aid of the Bayes
optimization method (cf. [2]) using 2-dimensional Gauss process as an approximation of the
10% quantile of the objective function. Such a choice says that (roughly) with 90% probability
the value of ϕ(T, δ, τ) will be larger than found maximal value.

Figure 2 shows the results. The procedure started from its Monte Carlo generation in 9
points showed in the left plot. Maximum is denoted by a circle, its value was 0.876. The plot
contains also contours of resulting Gauss process surface. The right plot shows the situation
after 12 iterations. It is seen how the space was inspected, maximal value was stabilized around
1.124, the corresponding point (1− δ ∼ 0.7, τ ∼ 20) is again marked by a circle.

5 CONCLUSION

In the present paper, first, several variants of the Kijima II model were presented, relating
the maintenance degree to the reduction of the followed technical object degradation. The
main objective then was to show how such models can be connected with maintenance costs
evaluation, and, finally, with stochastic optimization problem. One example of such a task was
formulated in detail and solved, with the aid of Bayes optimization approach, though other
procedures of randomized search are applicable as well.
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