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A detailed mathematical analysis of the two-dimensional hybrid model for the lateral dynamics
of walking-like mechanical systems (the so-called hybrid inverted pendulum) is presented in
this article. The chaotic behavior, when being externally harmonically perturbed, is demon-
strated. Two rather exceptional features are analyzed. Firstly, the unperturbed undamped hybrid
inverted pendulum behaves inside a certain stability region periodically and its respective fre-
quencies range from zero (close to the boundary of that stability region) to infinity (close to its
double support equilibrium). Secondly, the constant lateral forcing less than a certain thresh-
old does not affect the periodic behavior of the hybrid inverted pendulum and preserves its
equilibrium at the origin. The latter is due to the hybrid nature of the equilibrium at the ori-
gin, which exists only in the Filippov sense. It is actually a trivial example of the so-called
pseudo-equilibrium [Kuznetsov et al., 2003]. Nevertheless, such an observation holds only for
constant external forcing and even arbitrary small time-varying external forcing may destabilize
the origin. As a matter of fact, one can observe many, possibly even infinitely many, distinct
chaotic attractors for a single system when the forcing amplitude does not exceed the mentioned
threshold. Moreover, some general properties of the hybrid inverted pendulum are characterized
through its topological equivalence to the classical pendulum. Extensive numerical experiments
demonstrate the chaotic behavior of the harmonically perturbed hybrid inverted pendulum.

Keywords : Hybrid system; walking robot; lateral dynamics; chaos.

1. Introduction

The purpose of this paper is to provide the
detailed mathematical analysis of the so-called
hybrid inverted pendulum including its chaotic
behavior when subjected to the external periodic
harmonic forcing.

Hybrid inverted pendulum shown in Fig. 2
is a simple one-degree-of-freedom mechanical sys-
tem introduced in [Čelikovský & Lynnyk, 2018a] to
study the lateral dynamics of the three-dimensional

underactuated walking-like mechanical system
when just two-dimensional walking strategies are
applied. Typical two-dimensional walking-like sys-
tem, or walking robot, can be seen in Fig. 1. The
dynamics of the walking robot is studied and con-
trolled in the forward direction only while laterally
it is supported by the special frame. Its forward
dynamics is still an interesting and challenging topic
of the investigation even when omitting the lat-
eral dynamics and their mutual coupling. There are
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Fig. 1. The experimental robot in ÚTIA (Institute of Infor-
mation Theory and Automation) laboratory.

two crucial features to be addressed when designing
and analyzing the walking robot: its mathematical
model is both under-actuated and hybrid.

The under-actuation is related to the fact that
the robotic device shown in Fig. 1 does not include
the actuated ankles and therefore the pivot angle
between the stance leg and the ground is not actu-
ated. In such a way, any model of the swing phase
of the walking should have less independent actua-
tors than degrees of freedom. Recall in this context
that the mechanical systems having less actuators
than degrees of freedom are called under-actuated
mechanical systems. On the contrary, fully actuated
robots use large flat feet and the strong ankles actu-
ation with the necessity to preserve the full con-
tact of the feet with the ground via the so-called
zero moment point computation. In such a way, the

under-actuated walking more adequately represents
the intrinsic essence of the human gait where the
ankles cannot provide a large torque and stabil-
ity is maintained thanks to a dynamic essence of
the movement. See famous IEEE Control Systems
Magazine paper [Chevallereau et al., 2003] for more
arguments and some historical remarks.

As already noted, only the sagittal plane
dynamics is modeled during the planar walking
assuming that the lateral stability is ensured by
some ad hoc supporting frame, rod, moving plat-
form, etc. For some representative yet not complete
picture see e.g. the monographs [Westervelt et al.,
2007; Chevallereau et al., 2009], or the general intro-
ductory part of a more recent paper [Grizzle et al.,
2014] and the references within. Samples of other
approaches to planar underactuated walking are
[Shiriaev et al., 2014, 2006, 2005; Song & Zefran,
2006a, 2006b; Majumdar et al., 2013; Pchelkin
et al., 2015; Spong & Bullo, 2005; La Herra
et al., 2013; Dolinský & Čelikovský, 2012, 2018;
Čelikovský & Anderle, 2016, 2017].

Yet, fully autonomous walking robots cannot
use any supporting frames and require the full
three-dimensional walking models being much more
complex than the planar ones. Indeed, they require
a proper definition of Euler angles and tensors of
inertia for each link. See [Song & Zefran, 2006b] for
a brief introduction or [Grizzle et al., 2014] for a
more comprehensive exposition.

An alternative and somehow simpler treatment
was presented in [Kuo, 1999] studying the possibili-
ties to stabilize properly the lateral dynamics inde-
pendently of the forward one. Still, some active tools
were required in [Kuo, 1999] while in [Čelikovský &
Lynnyk, 2018a] the authors considered just the nat-
ural stability of lateral oscillations, moreover, it is
shown to be preserved even under additional limited
external harmonic forcing that emulates influence
of the coupling with the forward dynamics. The
model to study these effects was called the hybrid
inverted pendulum (HIP) in [Čelikovský & Lynnyk,
2018a]. This paper also briefly noted the possible
chaotic behavior in the harmonically perturbed HIP
and some preliminary study of these chaotic phe-
nomena was presented in [Čelikovský & Lynnyk,
2018b]. In such a way, the HIP belongs to the class
of hybrid, or discontinuous Filippov-like systems
where these aspects have been broadly studied as
well. In particular, period doubling in a simple walk-
ing model was demonstrated in [Garcia et al., 1998],
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while [Shi et al., 2013] and [Dua & Marathe, 2015]
presented the Melnikov method for the detection
of chaos in nonsmooth systems. In [Kunze, 2000]
the Lyapunov exponents for nonsmooth dynamical
systems with an application to a pendulum with
dry friction are calculated and Li et al. [2016a,
2016b] obtained Melnikov function to study the per-
sistence of heteroclinic cycles for a planar hybrid
piecewise-smooth system. Bifurcations in discon-
tinuous mechanical systems are studied in detail
in [Leine et al., 2000; Leine & Nijmeijer, 2004],
while the one-parameter bifurcations in planar Fil-
ippov systems were studied in [Kuznetsov et al.,
2003]. Several regular and chaotic modes of the
sinusoidally driven rigid planar pendulum were dis-
cussed and illustrated by the computer simulations
in [Butikov, 2008].

As a matter of fact, the above topics go back
to the well-known treatment of the passive walkers
walking down the moderate slope, where the impact
effects are crucial, broadly studied since the semi-
nal paper [McGeer, 1990], cf. more recent results in
[Freidovich et al., 2009] and references within. It is
well-known that the passive biped walker walking
down the slope may exhibit chaotic behavior when
the slope is too steep.

The HIP is a particular case of planar Filippov
systems classified in [Kuznetsov et al., 2003]. Yet, it
deserves further detailed analysis thanks to its prac-
tical importance explained above. The main contri-
bution of the present paper is therefore the detailed
mathematical analysis of the basic properties of the
HIP, including their full mathematical proofs. Fur-
ther, topological equivalence of the HIP to the linear
oscillator is proved to provide some clues to under-
stand the essence of the possible chaotic behavior in
the harmonically perturbed HIP. Nevertheless, the
proved topological equivalence is of special inter-
est as it relates the planar Filippov system having
the discontinuous right-hand side to the planar sys-
tem having the smooth right-hand side. Finally, the
detailed numerical experiments are performed to
demonstrate how and why chaos appears, in partic-
ular, the relation between the forcing amplitude and
frequency and the size of the chaotic oscillations.

More specifically, two types of situations will be
observed. First, for the amplitudes not exceeding
certain threshold, chaos requires sufficiently large
initial condition, i.e. it does not attract the tra-
jectories starting at the origin or very close to it.
Moreover, there are many attractors, each of them is

reached only from a specific and limited basin of
attraction. In such a way, multiple hidden
attractors in the sense of Leonov–Kuznetsov
[Leonov et al., 2011; Leonov & Kuznetsov, 2013;
Chen et al., 2017] are observed in this case. Sec-
ondly, for the amplitudes larger than the threshold,
the HIP exhibits the chaotic behavior even for a
very small (practically zero) initial condition and
the size of the attractor depends on the forcing fre-
quency, i.e. a smaller forcing frequency generates a
larger attractor and vice versa.

The rest of the paper is organized as follows.
The next section introduces the HIP, its state space
model and provides the mathematical results on
existence and uniqueness if its solutions, stability,
etc., including the detailed mathematical proofs.
Section 3 provides further analysis through topo-
logical equivalence that may help to understand
the chaos emergence in the harmonically perturbed
undamped HIP. Section 4 presents the experimen-
tal numerical simulations-based investigation and
some conjectures based on them. The final section
contains concluding ideas.

Notation. Euclidean norm in R
n is denoted as ‖·‖,

Bc,r := {x ∈ R
n | ‖x − c‖ < r}, sign(a) = a/|a|,

a �= 0, sign(0) = 0, and g = 9.81 is the gravity con-
stant. COM stands for the center of mass, DOF for
the degree of freedom, MI for the moment of iner-
tia. Moreover, Sign(x) is the set-valued map with
Sign(a) = {sign(a)}, a �= 0 and Sign(0) = [−1, 1].
For a mapping f : R

n �→ R
n and a set Ω ⊂ R

n

denote f(Ω) := {z ∈ R
n | ∃x ∈ R

n : f(x) = z}.
Furthermore, for a set Ω ⊂ R

n denote its closure
in Euler norm topology as Ω and its convex hull as
co(Ω). For brevity, coΩ stands for the convex clo-
sure, i.e. coΩ := co(Ω). Finally, denote ẋ := dx/dt.

2. Hybrid Inverted Pendulum
Model and Its Properties

The hybrid inverted pendulum (HIP) is depicted in
Fig. 2. Its mechanical configuration is more com-
plex than the one presented in [Čelikovský & Lyn-
nyk, 2018b] and it also more adequately mimics the
real laboratory model shown in Fig. 1. It is com-
posed from the left link, the right link, the upper
link and the torso. All these elements are attached
to each other rigidly and perpendicularly. They
are assumed to be narrow homogeneous rods with
some additional masses placed on them. In such a
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(a) (b) (c)

Fig. 2. Hybrid inverted pendulum. (a) q1 = 0, (b) q1 > 0 and (c) q1 < 0.

way, they are modeled using their overall masses
placed at the appropriate COMs and their MIs
with respect to the rotation axes passing through
those COMs perpendicularly to the plane contain-
ing the HIP. The left and right links have the same
mass m, but possibly different MIs denoted IL, IR

and possibly different COMs placement given by
the distances lL, lR, respectively. The latter feature
is due to the fact that the HIP actually emulates
the frontal projection of the robot shown in Fig. 1,
having straightened legs at knees, but both these
legs need not belong to the frontal plane, or even to
a single plane. The upper link has the length d, the
moment of inertia ID and the mass MD, the torso
has the moment of inertia IT , the total mass MT

and the center of mass placement at the distance
lT from the middle of the upper link. Note, that
the torso of the real laboratory model in Fig. 1 may
have a position not belonging to the frontal plane.

The HIP has a single DOF being the angular
displacement q1 shown in Figs. 2(b) and 2(c), while
q̇1 stands for the corresponding angular velocity.
To obtain the HIP dynamical model, consider the
Lagrangian

L = K− V, V = θ1 cos q1 + θ2|sin q1|, K =
θq̇2

1

2
,

(1)

θ1 = g(m(lL + lR) + MDl + MT (l + lT )),

θ2 = gd

(
m +

MD + MT

2

)
,

(2)

θ = m(l2L + l2R + d2) + IL + IR + ID + IT

+ MD

(
l2 +

d2

4

)
+ MT

(
(l + lT )2 +

d2

4

)
,

(3)

where V is the potential energy with respect to the
ground level and K is the kinetic energy with respect
to the inertial system stuck to the ground. Note,
that the Lagrangian (1) is not smooth for q1 = 0, i.e.
the hybrid dynamical model is needed, which justi-
fies the term “HIP”. Using the well-known Euler–
Lagrange formalism

d
dt

∂L
∂q̇1

− ∂L
∂q1

= F (t),

where F (t) stands for a possible additional external
generalized force, one gets

q̈1 = θ−1(θ1 sin q1 − θ2sign(q1) cos q1 + F (t)),

q1 �= 0. (4)

Since the generalized coordinate is the angle (i.e.
dimensionless physical quantity), the generalized
force should be the torque. Indeed, the product
of any generalized coordinate and the correspond-
ing generalized force should always have physical
dimension Nm. In such a way, F (t) is a certain
external torque applied to the HIP, this torque is
always acting with respect to the support pivot
point of the HIP.

Equation (4) is not valid for q1 = 0 and
therefore some switching conditions are needed for
q1 = 0. They can be obtained by analyzing the so-
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called impact, i.e. the effect of one of the vertical
links hitting the ground for q1 = 0. The standard
assumptions made for the impact are: (i) no leg
slipping and rebound; (ii) the impact is instanta-
neous; (iii) both the total momentum and the total
energy are preserved. As the HIP possesses a sin-
gle degree of freedom only, the switching conditions
are simple: both q1 and q̇1 should stay continuous
when switching between q1 > 0 and q1 < 0 in (4).
In other words, (4) actually constitutes the system
of the second-order differential equations with the
discontinuous right-hand side. Nevertheless, the fol-
lowing equivalent treatment in the hybrid setting is
possible:

q > 0 : q̈ = θ−1θ1 sin(q) − θ−1θ2 cos(q)

+ θ−1F (t); (5)

q = 0 : q+ = −q−, q̇+ = −q̇−. (6)

In this hybrid setting, q is always positive during
the continuous-time part (5), namely, q := q1 in
Fig. 2(b) and q := −q1 in Fig. 2(c). Discrete-time
part (6) then adequately relabels q and reverses for
q = 0 the velocity, keeping thereby the set q ≥ 0
invariant with respect to (5) and (6). In the sequel,
the discontinuous right-hand side description (4)
will be used, nevertheless, the hybrid setting (5) and
(6) justifies yet another time the previously intro-
duced terminology “HIP”. Summarizing, one has
the following definition.

Definition 2.1. System (4) is called hybrid
inverted pendulum (HIP). Its trajectory is
defined as everywhere continuously differentiable
and almost everywhere second-order continuously
differentiable function q1(t) satisfying (4) for q1 �= 0.
If F (t) ≡ 0 (F (t) �≡ 0), (4) is called as the unforced
(forced) HIP.

Further, denote x1 = q1, x2 = q̇1 and assume
that the external forces have the form F (t)=−kq̇1 +
w(t), k ≥ 0, where the first term is the friction-
like damping while the second one is the bounded
external forcing. Denote ω(t) = w(t)θ−1, k1 = kθ−1,
then (4) gives for x1 �= 0 the following system of the
first-order ordinary differential equations [recall (2),
(3) for the definition of constants θ, θ1, θ2]:

ẋ1 = x2,

ẋ2 =
θ1 sinx1 − θ2sign(x1) cos x1

θ

− k1x2 + ω(t), k1 ≥ 0,

(7)

having its right-hand side discontinuous at x1 = 0.
System (7) will be called in the sequel hybrid
inverted pendulum in the state space
form (HIPSF). The HIPSF is called damped
(undamped) for k1 > 0 (k1 = 0) and perturbed
(unperturbed) for ω(t) �≡ 0 (ω(t) ≡ 0). There are
two standard saddle point equilibria of the HIPSF
for ω(t) ≡ 0:

xE1
1 = arctan(θ2θ

−1
1 ), xE1

2 = 0,

xE2
1 = arctan(−θ2θ

−1
1 ) = −xE1

1 , xE2
2 = 0.

(8)

The following relations for xE1
1 , xE2

1 to be used later
are the straightforward consequence of (8):

sin2x
E1,2

1 =
θ2
2

θ2
1 + θ2

2

,

cos2x
E1,2

1 =
θ2
1

θ2
1 + θ2

2

.

(9)

Intuitively, it is clear that the HIPSF should have
yet another equilibrium at the origin (0, 0)� corre-
sponding to its double support and the zero velocity.
Despite its clear mechanical meaning, this equilib-
rium is tractable only as the trivial solution of the
differential equation with discontinuous right-hand
side (7) in the Filippov sense. In the sequel it will
be called as the equilibrium in the Filippov sense.
To be more specific, let us first recall the following
definition.

Definition 2.2. Consider the following ordinary dif-
ferential equation

ẋ = f(x), x ∈ R
n,

where f(x) is bounded on any bounded subset of R
n

and it is smooth except for some submanifold of R
n

where it may be discontinuous. Then its solution in
the Filippov sense [Filippov, 1988] on some bounded
time interval [0, T ], T > 0, is an absolutely continu-
ous time function x(t) defined on [0, T ], T > 0, such
that the following differential inclusion

ẋ ∈ F (x), F (x) :=
⋂
ε>0

cof(Bx,ε)

holds almost everywhere on [0, T ]. The solution in
the Filippov sense x(t) on [0, T ], T > 0, is called the
maximal solution in the Filippov sense if there does
not exist a solution x(t) on [0, T ′], T ′ > T, such that
x(t) = x(t), ∀ t ∈ [0, T ]. If, in addition, x(0) = x0,
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x0 ∈ R
n, then x(t) is called the solution in the Filip-

pov sense with the initial conditions x(0) = x0. The
solution is called globally defined (or simply global),
if there is no maximal solution on some bounded
interval [0, T ], T > 0. If there is a trivial solution
in the Filippov sense x(t) = x0 ∈ R

n, ∀ t ≥ 0, then
this solution will either be called the equilibrium in
the Filippov sense, or the pseudo-equilibrium as in
[Kuznetsov et al., 2003]. Analogously, one can define
the solutions in the Filippov sense with the initial
conditions x(0) = x0 on any time interval [T1, T2],
T1 < 0, T2 > 0, or on (−∞,∞). The latter may
be alternatively referred to as the Filippov solution
existing for ∀ t ∈ R.

Example 2.1. The solution of the scalar ordinary
differential equation with the discontinuous right-
hand side ẋ = sign(x), x �= 0, in the Filippov
sense is the solution of the differential inclusion
ẋ ∈ Sign(x). Note, that the origin is the equilib-
rium in the Filippov sense only. Moreover, there is
no uniqueness of the solution with the initial condi-
tion x(0) = 0 on [0, T ], ∀T > 0, namely, besides the
trivial solution there are two more solutions x(t) ≡ t
and x(t) ≡ −t. Nevertheless, the similar system
ẋ = −sign(x), x �= 0, has the unique solution in the
Filippov sense with the initial condition x(0) = 0 on
[0, T ], ∀T > 0. Let us briefly sketch the proof of this
property. Consider the function x2/2 and let x(t) be
a solution, then (d/dt)(x2(t)/2) = −|x(t)| ≤ 0. In
such a way, x2(t) is a nonincreasing function of time
in every neighborhood of the origin (except the ori-
gin itself) and therefore every absolutely continuous
solution starting at the origin cannot leave it. The
analogous idea as in the previous sketch will be used
later on when analyzing the uniqueness of solutions
for the HIPSF.

One can see straightforwardly that⋂
ε>0

cof(Bx,ε) = {f(x)}

for every point x ∈ R
n where f(x) is continuous. As

a consequence, the dynamics (7) is for x1 �= 0 rep-
resented in the Filippov sense by the trivial single
point set differential inclusion, i.e. by the differen-
tial equation

ẋ1 = x2,

ẋ2 =
θ1 sin x1 − θ2sign(x1) cos x1

θ

− k1x2 + ω(t), k1 ≥ 0, x1 �= 0,

(10)

while for x1 = 0, it takes the form

ẋ1 = x2,

ẋ2 ∈
[
−θ2

θ
− k1x2 + ω(t),

θ2

θ
− k1x2 + ω(t)

]
,

k1 ≥ 0, x1 = 0.

(11)

Proposition 1. Let ω(t) ≡ 0. Then the mapping
x(t) ≡ (0, 0)�, t ∈ [0,∞), is the global solution
of (7) in the Filippov sense with the initial con-
ditions (0, 0)�. Moreover, any solution of (7) in
the Filippov sense x(t), t ∈ [0, T ], T > 0, x(0) =
(0, 0)�, satisfies x(t) ≡ (0, 0)�, ∀ t ∈ [0, T ].

Proof. First, note that the mapping x(t) ≡ (0, 0)�
is obviously the global solution of (7) in the Filip-
pov sense for the initial conditions (0, 0)�. Indeed,
the differential inclusion (11) for x1 = x2 = 0 and
ω(t) ≡ 0 takes the following form

ẋ1 = 0, ẋ2 ∈
[
−θ2

θ
,
θ2

θ

]
,

and therefore ẋ1(t) = 0, ẋ2(t) = 0 satisfies that
inclusion for all t ∈ R since 0 ∈ [−θ2/θ, θ2/θ].

It remains to prove that if x(t), t ∈ [0, T ],
T > 0, with x(0) = (0, 0)� is the solution of
the differential inclusion (10), (11), then x(t) =
(0, 0)�,∀ t ∈ [0, T ]. To prove this claim, assume the
opposite, namely, assume that there exist t′ > 0,
ε ∈ (0, arctan(θ2θ

−1
1 )) and absolutely continuous

mapping x(t), t ∈ [0, T ], T > 0, satisfying almost
everywhere (10), (11), such that x(0) = 0 and
ε > ‖x(t′)‖ > ε/2. Further, consider the follow-
ing everywhere continuous and differentiable for all
x1 �= 0 function

V (x1, x2) := θ1(cos x1 − 1) + θ2|sin x1| +
θx2

2

2
,

V (x) > 0 for x �= 0,

|x1| < arctan(θ2θ
−1
1 ), V (0, 0) = 0.

Indeed, one has straightforwardly that

x1
∂V

∂x1
> 0 ∀x1 �= 0, |x1| < arctan(θ2θ

−1
1 ),

x2
∂V

∂x2
> 0 ∀x2 ∈ R\{0}.

Moreover, the function V (x(t)) : R �→ R is abso-
lutely continuous. Indeed, by the definition of the
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solution, x(t) is required to be an absolutely con-
tinuous map while V (x) is differentiable ∀x1 �= 0
and by (10) the equality x1(t) = 0 may hold at iso-
lated points only due to the ad absurdum assump-
tion ε > ‖x(t′)‖ > ε/2, ε > 0. Therefore the time
derivative of V (x(t)) : R �→ R exists almost every-
where and straightforward computations show that
almost everywhere it holds

dV (x(t))
dt

= −k1x
2
2 ≤ 0.

The latter inequality and V (0, 0) = 0 actually imply
that V (x(t′)) ≤ 0. Indeed:

V (x(t′)) = V (x(t′)) − V (0, 0)

= V (x(t′)) − V (x(0))

=
∫ t′

0

dV (x(s))
ds

dt ≤ 0.

Nevertheless, by the ad absurdum assumption ε >
‖x(t′)‖ > ε/2, ε > 0, and by the mentioned pos-
itive definiteness of the function V, it holds that
V (x(t′)) > 0, which is the contradiction. �

Proposition 2. Let ω(t) be a piecewise continuous
function such that

Ωmin ≤ ω(t) ≤ Ωmax, t ∈ [0,∞),

Ωmin ∈ R, Ωmax ∈ R. (12)

If [Ωmin,Ωmax] ⊂ [−θ2/θ, θ2/θ], then the mapping
x(t) ≡ (0, 0)�, t ∈ [0,∞), is the global solution
of (7) in the Filippov sense with the initial condi-
tions (0, 0)�. Moreover, if ω(t) = Ωc ∈ R, ∀ t ≥ 0,
then any solution of (7) in the Filippov sense x(t),
t ∈ [0, T ], T > 0, x(0) = (0, 0)�, satisfies x(t) =
(0, 0)�, ∀ t ∈ [0, T ].

Proof. First, note that the mapping x(t) ≡ (0, 0)�
is obviously the solution of (7) in the Filippov sense
for the initial conditions (0, 0)�. Indeed, the differ-
ential inclusion (11) takes the form for x1 = x2 = 0
as

ẋ1 = 0, ẋ2 ∈
[
−θ2

θ
+ ω(t),

θ2

θ
+ ω(t)

]
,

i.e. ẋ1(t) = 0, ẋ2(t) = 0 satisfy that inclusion for all
t ∈ R since by [Ωmin,Ωmax] ⊂ [−θ2/θ, θ2/θ] holds

0 ∈
[
−θ2

θ
+ Ωmax,

θ2

θ
+ Ωmin

]

⊂
[
−θ2

θ
+ ω(t),

θ2

θ
+ ω(t)

]
.

It remains to prove that if ω(t) = Ωc ∈ R, ∀ t ≥ 0,
then any solution of the differential inclusion (10),
(11), x(t), t ∈ [0, T ], T > 0, with x(0) = (0, 0)�
satisfies x(t) ≡ (0, 0)�, t ∈ [0, T ]. Assume the
opposite, namely, assume that there exist ε0 > 0
and absolutely continuous mapping x(t), t ∈ [0, T ],
T > 0, satisfying (10), (11) such that x(0) = 0 and
‖x(t′)‖ > ε0. As a matter of fact, the latter is by the
continuity of x(t) equivalent to the following prop-
erty: for all ε ∈ [0, ε0) there exists t′′(ε) such that
‖x(t′′(ε))‖ = ε.

To show the contradiction, consider the abso-
lutely continuous function

V (x1, x2) := θ1(cos x1 − 1) + θ2|sin x1|

− θΩcx1 +
θx2

2

2
,

V (0, 0) = 0.

Straightforward differentiation and the proposition
assumption Ωc ∈ [Ωmin,Ωmax] ⊂ [−θ2/θ, θ2/θ] give

lim
x1→0+

∂

∂x1
(θ1(cos x1 − 1) + θ2|sin x1| − θΩcx1)

= θ2 − θΩc > 0,

lim
x1→0−

∂

∂x1
(θ1(cos x1 − 1) + θ2|sin x1| − θΩcx1)

= −θ2 − θΩc < 0.

As a consequence, there exists δ > 0 such that
V (x1, x2) > 0 ∀x = (x1, x2)� �= 0, ‖x‖ < δ. More-
over, straightforward computations show that

dV (x(t))
dt

= −k1x
2
2 ≤ 0.

The previous inequality and V (0, 0) = 0 actually
imply that V (x(t′′(ε))) ≤ 0 for any ε ∈ [0, ε0) ∩
[0, δ). Indeed:

V (x(t′′)) = V (x(t′′)) − V (0, 0)

= V (x(t′′))− V (x(0))

=
∫ t′′

0

dV (x(s))
ds

dt ≤ 0.
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Nevertheless, recalling the ad absurdum assump-
tion ‖x(t′′(ε))‖ = ε for any ε ∈ [0, ε0) and posi-
tive definiteness of the function V one easily gets
that V (x(t′′(ε))) > 0 for all ε ∈ [0, δ). Selecting any
ε ∈ [0, ε0) ∩ [0, δ) then gives both V (x(t′′(ε))) > 0
and V (x(t′′(ε))) ≤ 0, which is the contradiction.

�

Remark 2.1. The interesting question arises whether
the HIPSF perturbed by a nonconstant ω(t) such
that Ωmin ≤ ω(t) ≤ Ωmax with [Ωmin,Ωmax] ⊂
[−θ2/θ, θ2/θ] has the unique global solution start-
ing at the origin. The proof of the uniqueness part
of Proposition 2 heavily depends on the assump-
tion that ω(t) is constant and cannot be adapted
even in the case of very slowly varying and smooth
ω(t). Indeed, replacing in V the constant Ωc by
a smooth ω(t) would give an additional term in
the derivative of V along some solution, namely,
the term ω̇(t)x1. This term is locally sign indefinite
and makes the derivative of V along some solution
locally sign indefinite even for some very small value
of ω̇(t). This is, of course, no proof of nonunique-
ness, nevertheless, both Example 2.1 and numeri-
cal simulations later on indicate, that there may be
solutions starting at the origin and leaving for non-
constant ω(t). It is fair to point out here frankly,
that the full and precise proof of that property is
still missing despite some efforts by the authors of
the current paper to obtain it.

Though the HIPSF has the discontinuous right-
hand side not only at (0, 0)�, but for all x = (x1,
x2)� ∈ R

2 such that x1 = 0, outside any neighbor-
hood of the origin, the following simpler definition
of solutions is sufficient to study the HIPSF.

Definition 2.3. Let T > 0 be given. The mapping

[0, T ] �→ R
2 : x(t) = (x1(t), x2(t))�, t ∈ [0, T ],

is called the trajectory of (7) on [0, T ] if x1(t) is
a differentiable function on [0, T ], x2(t) is a con-
tinuous piecewise differentiable function on [0, T ]
and (7) holds for all t ∈ [0, T ] such that x1(t) �= 0.
The HIPSF (7) is called unperturbed for ω(t) ≡ 0,
undamped for k1 = 0, damped for k1 > 0 and per-
turbed for ω(t) �= 0. The solution of (7) on [0, T ]
with the initial condition (x0

1, x
0
2)

� is its trajec-
tory (x1(t), x2(t))�, t ∈ [0, T ], such that x1(0) =
x0

1, x2(0) = x0
2. The solution x(t) on [0, T ], T > 0, is

called maximal if there does not exist a solution x(t)
on [0, T ′], T ′ > T, such that x(t) = x(t),∀ t ∈ [0, T ].

The solution is called globally defined, if there is no
maximal solution on some bounded interval [0, T ].

The following proposition was given in
[Čelikovský & Lynnyk, 2018b], including an incom-
plete sketch of its proof. The full proof of this propo-
sition is one of the main theoretical contributions of
the current paper. This proposition actually shows
that outside any arbitrarily small neighborhood of
the origin, every solution exists and is unique not
only in the Filippov sense (Definition 2.2), but also
in the sense of Definition 2.3.

Proposition 3. Given that arbitrary ε > 0, (x0
1,

x0
2)

� �∈ B0,ε and a piecewise continuous and globally
bounded ω(t), then there exist T > 0 and a unique
solution (x1(t), x2(t))� on t ∈ [0, T ] with the initial
condition x1(0) = x0

1, x2(0) = x0
2 of the HIPSF (7)

in the sense of Definition 2.3. Moreover, this solu-
tion is also the unique solution in the Filippov sense
on [0, T ] and it is either globally defined, or there is
a finite time tf , such that it exists on [0, tf ] and
(x1(tf ), x2(tf ))� ∈ B0,ε.

Proof. The proof of Proposition 3 is based on Lem-
mas 1–4 formulated and proved below. First, note
that, except points where x1 = 0, the local solu-
tion in the Filippov sense is the same as the local
one in the sense of Definition 2.3. Moreover, due to
Lemma 1 and the standard theorem on the exis-
tence and the uniqueness of the solution of the
differential equation with the Lipschitz right-hand
side, the solution of the HIPSF (7) in the sense of
Definition 2.3 exists and it is unique for all initial
conditions from the set {x ∈ R

2 |x1 �= 0}. Moreover,
it exists at least until it stays inside that set. By
Lemma 2, there exists a unique local trajectory x̃(t)
of the HIPSF (7) in the sense of Definition 2.3 pass-
ing through any point xc of the set {x ∈ R

2 |x1 =
0, x2 �= 0} which is also a solution in the Filippov
sense. By Proposition 3 assumption the point xc

belongs to the set {x ∈ R
2 |x1 = 0, x2 �= 0}\B0,ε

and therefore by Lemma 2 with ε = ε/2 the trajec-
tory x̃(t) takes xc to the point x̃(t) with x̃1(t) �= 0,
sign(x̃1(t)) = sign(x̃2(t)) and |x̃2(t)| > ε/2 for some
suitable time moment t. Now, applying Lemma 4
with ε̃ = ε/2, the next time when the trajectory
crosses the set {x ∈ R

2 |x1 = 0, x2 �= 0} is not
earlier than after time segment having the length
k−1

1 log(K−1k1ε/2+1). This length does not depend
on the particular crossing of the set {x ∈ R

2 |x1 =
0, x2 �= 0}, as soon as all crossing points stay
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outside B0,ε, as assumed in Proposition 3 formu-
lation. This completes the proof. �

Lemma 1. The right-hand side of (7) is globally
Lipschitz with respect to x ∈ R

2 both on {x ∈
R

2 |x1 > 0} and on {x ∈ R
2 |x1 < 0}. Moreover,

the appropriate Lipschitz constants can be in both
cases taken as

L := max{
√

2k2
1 + 1,

√
2(θ1 + θ2)θ−1}. (13)

Proof. Straightforward computations using the
first-order Taylor expansion for the right-hand side
of (7) and estimate properly all terms of that
expansion. �

Lemma 2. Given that arbitrary point (0, xc
2)

� ∈ R,
xc

2 �= 0, time moment tc > 0 and ε > 0, then
there exist δ > 0 and a unique trajectory x̃(t)
of HIPSF (7) in the sense of Definition 2.3 on
[tc, tc + δ] such that :

x̃(tc) = (0, xc
2)

�,

sign(x̃1(tc + δ)) = sign(x̃2(tc + δ)) = sign(xc
2),

|x̃2(tc + δ)| ≥ ε.

Moreover, x̃(t), t ∈ [tc, tc + δ], is also the unique
solution of (10), (11), i.e. the solution of (7) in the
Filippov sense.

Proof. Straightforward computations using the
first equation of (7) and of Eqs. (10) and (11). �

Lemma 3. Let the assumptions of Proposition 3
hold and denote ω := supt≥0 |ω(t)|. Let x(t) be any
trajectory of the HIPSF (7) in the sense of Defini-
tion 2.3 such that x1(t) �= 0 for all t ∈ [t′, t′′], t′′ >
t′ > 0. Then for any trajectory x(t) on [t′, t′′] it
holds that ∀ t ∈ [t′, t′′]:

|x2(t)| ≥ |(|x2(t′)| + Kk−1
1 )

× exp(−k1(t − t′)) − Kk−1
1 |,

K :=
(

θ1

θ
+

θ2

θ

)
+ ω.

Proof. The second equation of (7), which holds by
the assumption x1(t) �= 0 for all t ∈ [t′, t′′] on the
whole interval [t′, t′′], gives straightforwardly

∀ t ∈ [t′, t′′] : ẋ2 = φ(x, t) − k1x2,

|φ(x, t)| ≤
(

θ1

θ
+

θ2

θ

)
+ ω = K,

x2(t) = exp(−k1t)

×
(

x2(t′) +
∫ t

t′
exp(k1s)φ(x(s), s)ds

)
,

∀ t ∈ [t′, t′′].

Using the well-known inequality |a + b| ≥ ||a| −
|b||,∀ a, b ∈ R, taking the absolute value inside the
integral, using |φ(x, t)| ≤ K and calculating the
integral of the exponential function give ∀ t ∈ [t′, t′′]
that

|x2(t)| ≥ exp(−k1(t − t′))

×
∣∣∣∣|x2(t′)| − K

∫ t

t′
exp(k1s)ds

∣∣∣∣
= |(|x2(t′)| + Kk−1

1 )

× exp(−k1(t − t′)) − Kk−1
1 |,

which completes the proof. �

Lemma 4. Let the assumptions and notations of
Lemma 3 hold. Let x(t) be an arbitrary trajectory
of HIPSF (7) in the sense of Definition 2.3 such
that for some t′ ≥ 0, x1(t′) �= 0 holds, |x2(t′)| ≥ ε̃,
sign(x1(t′)) = sign(x2(t′)). Then we get

x1(t) �= 0, x2(t) �= 0, sign(x1(t)) = sign(x2(t)),

∀ t ∈ [t′, t′ + k−1
1 log(K−1k1ε̃ + 1)].

Proof. First, let us realize that the conditions
x1(t) �= 0, x2(t) �= 0, sign(x1(t)) = sign(x2(t))
to be proved should hold on any interval [t′, t′′]
where ∀ t ∈ [t′, t′′] and x2(t) �= 0, sign(x2(t)) =
sign(x2(t′)). Indeed, if x1(t) �= 0 ∀ t ≥ t′, such a
claim is trivial, otherwise, denote t′′′ = inf{t ∈ R |
x1(t) = 0}. Since x1(t′) �= 0, by continuity argument
t′′′ > t′ and x1(t) �= 0, sign(x1(t))= sign(x1(t)′), ∀ t ∈
[t′, t′′′). In particular, the equations of HIPSF (7)
hold on the whole interval [t′, t′′′) and therefore

x1(t′′′) = x1(t′) +
∫ t′′′

t′
x2(s)ds.

Obviously, previous equality gives for x2(t) �= 0,
sign(x1(t)) = sign(x2(t)), t ∈ [t′, t′′′] that |x1(t′′′)| >
|x(t′)|. Since x1(t′) �= 0 by Lemma 4 assumption,
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one has that x1(t′′′) �= 0, which contradicts the
definition of t′′′.

Secondly, applying Lemma 3, one has that

|x2(t)| ≥ |(|x2(t′)| + Kk−1
1 )

× exp(−k1(t − t′)) − Kk−1
1 |

= |(ε̃ + Kk−1
1 ) exp(−k1(t − t′)) − Kk−1

1 |.

Assume that x2(t∗) = 0 for some t∗ > t′, then

0 = |x2(t∗)|

≥ |(ε̃ + Kk−1
1 ) exp(−k1(t∗ − t′)) − Kk−1

1 |

⇒ exp(−k1(t∗ − t′)) =
Kk−1

1

ε̃ + Kk−1
1

.

Applying logarithm to both sides of the latter equal-
ity gives after straightforward manipulations that

t∗ = t′ + k−1
1 log(K−1k1ε + 1).

Moreover, for all t ∈ [t′, t∗], we obviously get

|x2(t)| ≥ |(ε + Kk−1
1 ) exp(−k1(t − t′)) −Kk−1

1 |

> 0,

i.e. for all t ∈ [t′, t′ + k−1
1 log(K−1k1ε + 1)], x2(t) �=

0, sign(x2(t)) = sign(x2(t′)). By applying the obser-
vation proved at the beginning of this proof, we
conclude it. �

Corollary 2.1. Let all assumptions and notations
of Proposition 3 hold and let ω ≡ 0. Denote the
existing solution of (7) in the sense of Definition 2.3
mentioned in the formulation of Proposition 3 as
x(t, x0), x(0, x0) = x0. Then x(t, x0) depends con-
tinuously on its initial conditions x0 and x(t, x0) =
x(t−t′, x(t′, x0)) for all t > t′ > 0 where the solution
exists. Finally, let any ε > 0 be given, then the solu-
tion of (7) in the sense of Definition 2.3, x(t, x0),
either exists globally for all t ≥ 0 or there is some
tf > 0 such that x(t, x0) exists for all t ∈ [0, tf ]
and x(tf , x0) ∈ B0,ε. Moreover, if x(t, x0) exists for
some t > tf , then x(t, x0) ∈ B0,ε.

Proof. Continuous dependence on initial conditions
follows straightforwardly by the construction of the
solution during the proof of Proposition 3. The same
observation applies to the second property as the
HIPSF with ω ≡ 0 being time invariant.

To prove the last corollary claim, note first that
if this claim holds for all ε ≤ ε, where ε is some pos-
itive real, then it obviously holds for all ε > 0. Next,

consider the function V : R
2 �→ R given by

V (x1, x2)= θ1(cos x1 − 1)+ θ2|sin x1|+
θx2

2

2
(14)

and let x(t) be any trajectory of (7). Straightfor-
ward computations show that V (x(t)) : R �→ R is
everywhere continuous and differentiable except for
isolated time moments and

dV (x(t))
dt

= −θk1x
2
2 + θω(t)x2. (15)

As a consequence, due to the corollary assumption
ω ≡ 0, V (x(t)) : R �→ R is a continuous and non-
increasing function of time on any finite time inter-
val. Moreover, V (0) = 0 and there obviously exists
ε > 0 such that V (x) > 0 ∀x ∈ B0,ε\{0}, since
(∂V/∂x1) = −θ1 sinx1 + θ2sign(x1) cos x1, x1 �= 0,
(∂V/∂x2) = θx2. Take any ε ∈ (0, ε], then by the
mentioned properties of V : R

2 �→ R there exists
c(ε) > 0 and δ(c(ε)) > 0 such that

B0,δ(c(ε)) ⊂ {x ∈ R
2 |V (x) < c(ε)} ∩ B0,ε ⊂ B0,ε.

(16)

Indeed, the claim related to the right inclusion
in (16) follows ad absurdum as follows. Assume that
it does not hold, then for any ε ∈ (0, ε] and any
c > 0 there exists x̃ ∈ B0,ε, x̃ �∈ B0,ε such that
V (x̃) < c. As a consequence, by the continuity of
V and the compactness of B0,ε\B0,ε there exists
x ∈ B0,ε\B0,ε such that V (x) = 0. The latter prop-
erty is the obvious contradiction to the property
that V (x) > 0 ∀x ∈ B0,ε\{0}.

The left inclusion in (16) is the direct conse-
quence of the generally adopted definition of the
continuity of V at 0 since, due to V (0) = 0 and
V (x) > 0 for x �= 0 around the origin, the set
{x ∈ R

2 |V (x) < c(ε)} is the preimage of function
V of the open interval (−c(ε), c(ε)).

Now, to prove the last claim of the corollary
note, by Proposition 3 there exists tf such that the
trajectory until tf and x(tf ) belongs to B0,δ(c(ε)).
Since V (x(t)) is nonincreasing along trajectories
of (7), using (16) one has that the trajectory x(t)
belongs to B0,ε for all t ≥ tf where it exists. �

Based on the above results, the following proposi-
tion can be proved. As a matter of fact, we see that
the unperturbed HIPSF is Lyapunov stable and,
moreover, if it is damped, it is asymptotically stable
as implied by that proposition.
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Proposition 4. Let k1 ≥ 0, ω ≡ 0 and let x0
1, x

0
2 ∈

A\{0}, where

A = {x ∈ R
2 |V (x1, x2) <

√
θ2
1 + θ2

2 − θ1 ∧ |x1|

≤ arctan(θ2θ
−1
1 )}, (17)

V given by (14). If k1 = 0, then there exists a
maximal unique solution of (7), x(t), t ∈ [0,∞),
x1(0) = x0

1, x2(0) = x0
2 in the sense of Defini-

tion 2.3. Further, if k1 ≥ 0 then ∀ ε > 0 ∃ δ(ε) > 0
such that (x0

1, x
0
2)

� ∈ B0,δ(ε) ⇒ x(t) ∈ B0,ε,∀ t ≥ 0
for which that solution x(t) with x1(0) = x0

1, x2(0) =
x0

2 exists. Finally, assume that k1 > 0, then either
x(t) → 0 as t → ∞ or there exists tf > 0 such that
x(t) → 0 as t → tf .

Remark 2.2. Recall, that the trivial trajectory
x(t) ≡ 0 is not the solution of (7) in the sense
of Definition 2.3, therefore the last statement of
Proposition 4 cannot be reduced to x(t) → 0 as
t → ∞ only. In the sequel, we will shortly refer
these two situations mentioned at the end of Propo-
sition 4 as asymptotical stability and finite-time sta-
bility, where appropriate. Note, that for the HIPSF
and its equilibrium at the origin neither of these
notions is stronger than the other one.

Proof. Proposition 3 and Corollary 2.1 provide in
a sense an easy way to avoid the study of a pecu-
liar behavior of a trajectory approaching the equi-
librium at the origin, which is, as already noted,
properly defined only in the Filippov sense. Indeed,
the real number ε > 0 in Corollary 2.1 is arbitrary,
so that either the investigated trajectory enters any
neighborhood of the origin and stays within there,
which is exactly the claim to be proved, or for
all t ≥ 0 it exists outside some neighborhood of
the origin. The latter means that such a trajectory
is well defined in the sense of Definition 2.3 and
the Lyapunov-like function V given by (14) can be
easily used to produce a contradiction, despite its
piecewise differentiability only.

Last but not least, the issue to be solved dur-
ing the proof just illustrated is as follows. The
Lyapunov-like function V given by (14) does not
possess the negative definite time derivative along
the trajectory, so that some standard manipulations
that mimic the well-known LaSalle principle are
needed as well. As a matter of fact, one can use
the LaSalle principle thanks to Corollary 2.1.

To start the above plan in detail, realize first
that the set A given by (17) is bounded. Indeed,

the first term in V is non-negative for all x1 such
that |x1| ≤ 2 arctan(θ2θ

−1
1 ), since

θ1(cos x1 − 1) + θ2|sin x1|

= −2θ1 sin2
(x1

2

)
+ 2θ2

∣∣∣sin (x1

2

)∣∣∣ ∣∣∣cos (x1

2

)∣∣∣
= 2θ2

∣∣∣cos (x1

2

)∣∣∣ ∣∣∣sin (x1

2

)∣∣∣
×

(
1 − θ−1

2 θ1

∣∣∣tan (x1

2

)∣∣∣)
≥ 0 ⇔ |x1| ≤ 2 arctan(θ2θ

−1
1 ).

As a consequence, it obviously holds that

A ⊂
{

x = (x1, x2)� ∈ R
2 :

θx2
2

2
<

√
θ2
1 + θ2

2 − θ1, |x1| ≤ arctan(θ2θ
−1
1 )

}
,

i.e. A is the subset of the bounded set.
Next, using the function V given by (14), define

the following family of the nested sets

Vc := {x ∈ A : V (x) ≤ c}, c ∈ (0,
√

θ2
1 + θ2

2 − θ1),

c1 ≤ c2 ⇒ Vc1 ⊂ Vc2 .

Further, for all x = (x1, x2)� ∈ A the function V (x)
given by (14) is obviously continuous, positive def-
inite with V (0) = 0 and continuously differentiable
for x1 �= 0. Moreover, the straightforward computa-
tions show that its gradient Vx = (Vx1 , Vx2) satisfies
that

Vx1x1 + Vx2x2

= |x1| cos(x1)(θ2 − θ1 tan(|x1|)) + θx2
2

> 0, ∀x ∈ A\{x ∈ R
2 : x1 = 0}.

As a consequence, by Taylor expansion, ∀x ∈
A\{x ∈ R

2 : x1 = 0}, ∀ c ∈ (0,
√

θ2
1 + θ2

2 − θ1)
such that V (x) = c and ∀ ε > 0, there exists x̃ ∈ A,
such that ‖x̃−x‖ < ε and V (x̃) > c. In other words,
denoting by ∂Vc the boundary of Vc, we get

∀ c ∈ (0,
√

θ2
1 + θ2

2 − θ1),

∂Vc = {x ∈ A : V (x) = c},
since any neighborhood of x ∈ ∂Vc\{x ∈ R

2 : x1 =
0} contains a point not belonging to Vc. Moreover,
points (0,±

√
2c/θ)� ∈ Vc are clearly the boundary

ones of Vc as well if c ∈ (0,
√

θ2
1 + θ2

2 − θ1). Summa-
rizing, for all x ∈ A the equality V (x) = c implies
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S. Čelikovský & V. Lynnyk

that x ∈ ∂Vc. Finally, by continuity of V, all points
of the set {x ∈ A : V (x) < c} are the interior points
of Vc and therefore x ∈ ∂Vc implies V (x) = c.

The above proved property that ∂Vc = {x ∈ A :
V (x) = c},∀ c ∈ (0,

√
θ2
1 + θ2

2 − θ1) implies that
∂Vc1 ∩∂Vc2 = ∅ ∀ c1, c2 ∈ (0,

√
θ2
1 + θ2

2−θ1), c1 < c2

and therefore also that Vc1 ⊂ intVc2 ∀ c1, c2 ∈ (0,√
θ2
1 + θ2

2−θ1), c1 < c2. As a consequence, the origin
0 ∈ int Vc ∀ c ∈ (0,

√
θ2
1 + θ2

2 − θ1).
Now, consider any trajectory x(t) = (x1(t),

x2(t))� of the HIPSF (7). Straightforward compu-
tations show that for all t where x(t) exists, the
composed map V (x(t)) is a continuous function.
Moreover, if x1(t) �= 0, then it holds that

dV (x(t))
dt

= −θk1x
2
2 + θω(t)x2,

∀x1 �= 0, x2 ∈ R. (18)

The equality (18) implies that for the unperturbed
undamped case (i.e. ω(t) ≡ 0, k1 = 0) the function
V is constant along trajectories when x1(t) �= 0.
Note that ∀ r > 0, the set {x ∈ R

2 : x1 = 0} ∩ B0,r

is not invariant along trajectories of (7) in the
sense of Definition 2.3 existing due to Proposition 3.
This implies easily the first claim of Proposition 4.
Indeed, take any x0

1, x
0
2 ∈ A\{0}, and let x(t) be the

solution of (7) in the sense of Definition 2.3 with
x1(0) = x0

1, x2(0) = x0
2. Then V (x(t)) ≡ V (x(0)) >

0 and by the above proved properties of V the solu-
tion x(t) stays outside some fixed neighborhood of
the origin, i.e. due to Proposition 3, it exists for all
t ≥ 0.

The second claim of Proposition 4 can be
proved as follows. Let ε > 0 be given, then by the
continuity of V at the origin there exists c(ε) > 0
such that Vc(ε) ⊂ B0,ε. Previously, we proved that
the set Vc(ε), c(ε) > 0, contains the neighborhood
of the origin, i.e. there exists δ(c(ε)) > 0 such that
B0,δ(c(ε)) ⊂ Vc(ε). Take (x0

1, x
0
2)

� ∈ B0,δ(c(ε)), then
the solution of (7) in the sense of Definition 2.3
with x1(0) = x0

1, x2(0) = x0
2 satisfies by (18) and by

ω(t) ≡ 0 that V (x(t)) ≤ V (x(0)) ≤ c(ε), ∀ t ≥ 0
and therefore x(t) ∈ Vc(ε) ⊂ B0,ε for all t ≥ 0. This
completes the proof of the second claim.

To prove the last claim of Proposition 4, assume
its contrary which (using Corollary 2.1) is clearly
equivalent to the existence of some ε > 0 and a tra-
jectory x(t) which stays outside the ε-neighborhood
of the origin ∀ t ≥ 0. By Proposition 3, the trajec-
tory x(t) exists ∀ t ≥ 0, by (15) along x(t) it holds

V̇ = −k1x
2
2, k1 > 0. Therefore V (x(t)), t ≥ 0, is

a nonincreasing continuous function and its time
derivative is uniformly continuous as V̇ = −k1x

2
2,

k1 > 0 and x2(t), t ≥ 0, is bounded by the pre-
viously proved properties. Moreover, as V (x(t)) is
bounded from below, it has finite limit as t → ∞.
Since its time derivative is uniformly continuous on
[0,∞), by the well-known property, known also as
the Barbalat lemma, V̇ (x(t)) → 0 as t → ∞ and
therefore x(t) → {x ∈ R

2 : x2 = 0}\B0,ε. Finally,
Corollary 2.1 shows that the well-known basic prop-
erty of the ω-limit set being an invariant set holds
for HIPSF as well, as its flow is transitive and con-
tinuous on every finite time interval. This means
that the set {x ∈ R

2 : x2 = 0}\B0,ε should contain
the invariant subset, which is a clear contradiction.
Indeed, due to the second equation of (7), ∀ r > 0
holds for the set {x ∈ R

2 : x1 = 0} ∩ B0,r being
not invariant along trajectories of (7) in the sense
of Definition 2.3 existing due to Proposition 3. �

Remark 2.3. The function V given by (14) can
be also used to compute separatrices forming the
boundary of stable region of the unperturbed
undamped hybrid inverted pendulum. Indeed, these
separatrices clearly form a level set V (x) = csep =
V (xE1

1 ) = V (xE2
1 ). By (9), we get

csep = θ2|sin x
E1,2

1 | + θ1(cos x
E1,2

1 − 1)

=
√

θ2
1 + θ2

2 − θ1 (19)

and the separatrices are therefore given by the pair
of curves

x2 = ±
√

2θ−1(
√

θ2
1 + θ2

2 − θ2|sin x1| − θ1 cos x1),

(20)

where x1 ∈ [xE2
1 , xE1

1 ], cf. Fig. 3. Furthermore, for
the case k1 > 0, ω(t) ≡ 0, the previously mentioned
region may be considered as the inner estimate of
the region of attraction of the equilibrium at the ori-
gin, where the attraction is meant either in the sense
of asymptotical stability, or finite-time stability.

Remark 2.4. Proposition 4 can be generalized
straightforwardly from the case ω ≡ 0 to the case
ω(t) ≡ Ωc, where Ωc ∈ [−θ2/θ, θ2/θ]. Indeed, in this
case by Proposition 2 the origin is the equilibrium
in the Filippov sense and the corresponding trivial
solution is the unique solution starting at the origin.
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-0.3 -0.2 -0.1 0 0.1 0.2 0.3
x

1

-1

-0.5

0

0.5

1

x
2

Fig. 3. Separatrices (19) and (20) for θ1 = 3.4433, θ2 =

1.0791, θ = 0.1891. xE1
1 = 0.3037, xE1

2 = 0, xE2
1 = −0.3037,

xE2
2 = 0.

Moreover, consider Lyapunov function V intro-
duced during the proof of Proposition 2, namely:

V (x1, x2) = θ1(cos x1 − 1) + θ2|sinx1|

− θΩcx1 +
θx2

2

2
.

Recall, that it was shown during the proof of Propo-
sition 2 that, if and only if Ω ∈ [−θ2/θ, θ2/θ], there
exists δ > 0 such that V (0) = 0 and V (x) > 0 ∀x ∈
B0,δ, x �= 0. Furthermore, it was also shown during
the proof of Proposition 2 that

dV (x(t))
dt

= −θk1x
2
2.

In such a way, even in the case ω(t) ≡ Ωc, Ω ∈
[−θ2/θ, θ2/θ], one can conclude as in the proof of
Proposition 4 that the HIPSF (7) is locally Lya-
punov stable for k1 = 0 and locally asymptotically,
or finite-time, stable for k1 > 0. The basin of attrac-
tion would be modified by that lateral force as the
other classical saddle point equilibria are shifted,
further analysis of the region of attraction is omit-
ted for brevity. Such a phenomenon is exceptional
and it is due to the hybrid nature of the HIP and
the fact that the equilibrium at the origin exists
only in the Filippov sense. Indeed, forcing e.g. the
classical pendulum by constant external force would
just shift the equilibrium from downward position
to a deviated one. Note the following straightfor-
ward physical interpretation of the above hybrid
phenomenon: if the lateral force is constant and
not exceeding certain threshold, the HIP movement
in a close proximity of the double support equi-
librium is not destabilized by that lateral force.
Nevertheless, numerical simulations presented later

show that a time-varying ω(t) belonging at all time
to [−θ2/θ, θ2/θ] can generate a trajectory of the
HIPSF starting arbitrarily close to the origin but
always leaving some fixed small ball centered at the
origin.

3. Topological Linearizability
of the HIPSF Dynamics

First, some facts from dynamical systems theory
are repeated for the sake of the self-complete
exposition.

Definition 3.1. Consider the following time invari-
ant dynamical systems each having its own state
space variable, denoted x and z, respectively, and
its own time variable, denoted t and τ , respectively:

dx

dt
= f(x(t)), x ∈ R

n,

dz

dτ
= g(z(τ)), z ∈ R

n.

(21)

Let Ωx ⊂ R
n and Ωz ⊂ R

n be some regions of R
n.

Assume that f and h are such that the unique
Filippov solutions x(t, x0), z(τ, z0), x(0, x0) = x0,
z(0, z0) = z0 exist for all initial conditions x0 ∈
Ωx ⊂ R

n, z0 ∈ Ωz ⊂ R
n and all times t ∈ R,

τ ∈ R, and x(t, x0) ∈ Ωx ∀ t ∈ R, z(τ, z0) ∈ Ωx ∀ τ ∈
R. Systems (21) are called mutually topologically
equivalent on regions Ωx,Ωz if there exists home-
omorphism between R × Ωx and R × Ωz of the
form [

τ(t, x)

T (x)

]
: R × Ωx �→ R × Ωz, (22)

such that for all x0 ∈ Ωx and for all t ∈ R, we get

z(τ(t, x0),T (x0)) ≡ T (x(t, x0)), τ(0, x0) = 0.
(23)

If one of those systems is linear, the other one
is called topologically linearizable in the respective
region.

Recall that the brief notation ẋ is used for
the derivative with respect to the original (“real”)
time t, i.e. ẋ := dx/dt. For brevity, Definition 3.1
considers only the systems where solutions exist and
are unique for all time moments which is sufficient
for purposes of the current paper. As a matter of
fact, the relation (23) implies certain property of
the dependence of the new time τ on the original
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S. Čelikovský & V. Lynnyk

time t. It is given by the following:

Lemma 5. Let τ(t, x) be such that it provides
topological equivalence between time invariant sys-
tems (21) in the sense of Definition 3.1. Then
∀x0 ∈ Ωx and ∀ t ∈ R,∀ t′ ∈ R, t > t′ hold,

τ(t, x0) = τ(t − t′, x(t′, x0)) + τ(t′, x0). (24)

Proof. A straightforward consequence of the well-
known group property of solutions, i.e. x(0, x0) =
x0, z(0, z0) = z0 and x(t − t′, x(t′, x0)) = x(t, x0),
∀ t ≥ t′,∀x0 ∈ Ωx and z(τ − τ ′, z(τ ′, z0)) = z(τ, z0),
∀ τ ≥ τ ′,∀ z0 ∈ Ωz. �

Proposition 5. Consider time invariant dynami-
cal systems (21) having each its own state space
variable, denoted x and z, respectively, and its own
time variable, denoted t and τ, respectively. Let
Ωx ⊂ R

n and Ωz ⊂ R
n be both forward and back-

ward invariant compact sets of the respective sys-
tem. Assume that f and g are such that the unique
Filippov solutions x(t, x0), z(τ, z0), x(0, x0) = x0,
z(0, z0) = z0 exist for all initial conditions x0 ∈
Ωx ⊂ R

n, z0 ∈ Ωz ⊂ R
n and all times t ∈ R,

τ ∈ R. Then these systems are mutually topolog-
ically equivalent with the mapping (22) being dif-
feomorphism if and only if there exists diffeormor-
phism D(x) : Ωx �→ Ωz and a smooth function
s(x) : Ωx �→ (0,∞), such that

g(D(x)) = s(x)
∂D
∂x

(x)f(x). (25)

Proof. “Only if” Part: Assume that the map-
pings T and τ(t, x) are smooth. Chain rule and (21)
give

g(z(τ)) =
dz

dτ
=

∂T
∂x

dx

dτ
=

∂T
∂x

dx

dt

[
dτ

dt

]−1

=
[
dτ

dt

]−1 ∂T
∂x

f(x(t)).

In other words, recalling that z = T (x), one has

g(T (x(t))) =
[
dτ

dt

]−1 ∂T
∂x

(x(t))f(x(t)).

Differentiating (24) given by Lemma 5 with respect
to t and then substituting t′ = t one has

dτ

dt
(t, x0) =

∂τ

∂t
(0, x(t, x0)), ∀ t ∈ R, ∀x0 ∈ Ωx.

Denoting D := T and s(x) := [∂τ
∂t (0, x)]−1 gives

g(D(x)) = s(x)
∂D
∂x

(x)f(x).

Realize that by the proposition formulation τ(t, x0)
should be smooth one-to-one map having a smooth
inverse for all x0 and therefore s(x0) > 0 for all x0

from Ωx. This completes the proof of the “only if”
part.

“If” Part: Take T (x) := D and

τ(t, x0) :=
∫ t

0
s−1(x(s, x0))ds, (26)

where x(t, x0) stands for the solution of dx/dt =
f(x) with x(0, x0) = 0. Since s(x) > 0 and Ωx is the
compact set by the proposition formulation, there
exists some δ > 0 such that s(x) > δ ∀x ∈ Ωx.
Moreover, recall that by the proposition formulation
x(t, x0) ∈ Ωx ∀ t ∈ R. As a consequence, (26) defines
for every x0 ∈ Ωx a smooth one-to-one map of R

onto itself. Indeed, by the elementary properties of
the integral applied to (26), the function τ(t, x0) is
continuous, growing and limt→±∞ τ(t, x0) = ±∞.
The straightforward computations then show that
equalities in (23) hold. �

In the sequel, the function s(x) in (25) will be
called the time scaling. Topological equivalence pre-
serves qualitative features of the dynamical systems
and therefore it is often used for their classification.
In particular, topological equivalence maps orbits
onto orbits preserving the sense of the time evolu-
tion of the trajectories inside these orbits. The qual-
itative structure of the HIPSF (7) might be better
understood realizing that it is actually topologically
equivalent to the linear oscillator.

Proposition 5 provides a more constructive way
to study the topological equivalence when all maps
are diffeomorphisms. Nevertheless, the nondiffeo-
morphical (i.e. homeomorphic only) case is more
useful. In some cases one can look for some almost
everywhere diffeomorphical map T and for some
scaling function s(x) being almost everywhere pos-
itive, differentiable and bounded, then try to prove
the homeomorphic properties required by Defini-
tion 3.1 via some extra ad hoc analysis. As a matter
of fact, such an idea will be used when proving topo-
logical linearizability of the HIPSF (7) postulated
by the following proposition.

Proposition 6. The unperturbed and undamped
HIPSF (7) is topologically linearizable on the
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region1:

Ωx =
{

x ∈ R
2 : θ2|sin x1| + θ1 cos x1 +

θx2
2

2

<
√

θ2
1 + θ2

2 ∧ |x1| ≤ arctan(θ2θ
−1
1 )

}
.

(27)

More specifically, the unperturbed and undamped
HIPSF (7) is topologically equivalent on bounded
region Ωx given by (27) to the linear harmonic oscil-
lator on bounded region Ωz ⊂ R

2

dz1

dτ
= z2,

dz2

dτ
= −z1, z = (z1, z2)� ∈ Ωz,

(28)

Ωz = {z = (z1, z2)� ∈ R
2 :

z2
1 + z2

2 ≤ 2θ−1
√

θ2
1 + θ2

2 − 2θ−1θ1}. (29)

Proof. Consider the following map acting from Ωx

to Ωz:

z1 = sign(x1)
√

2θ−1θ1(cos x1 − 1) + 2θ−1θ2|sin x1|

= 2 sin
(x1

2

)√√√√√θ2 − θ1 tan
(x1

2

)
θ tan

(x1

2

) ,

z2 = x2.

(30)

Straightforward computations using (30) give that

z2
1 = 2θ−1(θ1(cos x1 − 1) + θ2|sin x1|),

z2
2 = x2

2 ⇒ z2
1 + z2

2

= 2θ−1

(
θ1(cos x1 − 1) + θ2|sin x1| +

θx2
2

2

)
.

As a consequence, (30) maps Ωx are given by (27)
onto Ωz as given by (29). Later on, a continuous
inversion of (30) at any z = (z1, z2)� ∈ Ωz will
be computed explicitly, showing thereby that the
map (30) is a homeomorphism of Ωx and Ωz. Fur-
ther, introduce a new time variable τ via the fol-
lowing time scaling

dτ

dt
= s(x1) :=

−θ1|sin x1| + θ2 cos x1

θ|z1|

=
−θ1|sin x1| + θ2 cos x1√

2θθ1(cos x1 − 1) + 2θθ2|sin x1|
.

(31)

It will also be proved later on that (31) defines
τ(t, x) depending on t, x in a way required by Def-
inition 3.1. Note, that the time scaling s(x1) is
the well-defined and smooth one only for all x =
(x1, x2)� ∈ Ωx, such that x1 �= 0, moreover it is
unbounded close to the set where x1 = 0 (preim-
age of the set where z1 = 0). As a matter of
fact, function (s(x1))−1 is smooth everywhere, but
(s(x1))−1 = 0 for all x = (x1, x2)� ∈ Ωx, such that
x1 = 0. In such a way, the smooth equivalence is
excluded by Proposition 5 and some extra efforts
are required to show the topological equivalence.

Before doing so, let us show that the transfor-
mations (30), (31) “formally” convert HIPSF (7)
into the linear harmonic oscillator (28). The home-
omorphism (30) is also smooth except for the set
where x1 = 0 (preimage of the set where z1 = 0),
namely:

∂z1

∂x1
=

−θ1|sin x1| + θ2 cos x1

θ|z1|
,

∂z2

∂x2
= 1.

Straightforward computations using the HIPSF
equations (7) and the chain rule show that the
transformation (30) converts the HIPSF (7) to

dz1

dt
= s(x1)z2,

dz2

dt
= −s(x1)z1.

Moreover, note that

dz

dτ
=

dz

dt

dt

dτ
=

dz

dt

1
s(x1)

, z := (z1, z2)�,

giving for all x ∈ R
2, such that x1 �= 0, and thereby

also for all z ∈ R such that z1 �= 0:

dz1

dτ
= z2,

dz2

dτ
= −z1.

Now, let us show that (30), (31) define topological
equivalence. To do so, let us first invert the home-
omorphism (30). Taking in (30) square power of z1

1Recall, that ± arctan(θ2θ−1
1 ) are the lateral equilibria of the HIPSF (7) and therefore by |x1| ≤ arctan(θ2θ−1

1 ) the set Ωx is

the subset of {x ∈ R
2 : θ2|sin x1| + θ1 cos x1 + θx2

2/2 <
q

θ2
1 + θ2

2} being the area inside the separatrices shown in Fig. 3.
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and some straightforward manipulations, we get

θz2
1

2
+ θ1 = θ1 cos x1 + θ2|sin x1|

=
θ1(1 − r2) + 2θ2r

1 + r2
, r :=

∣∣∣tan x1

2

∣∣∣.
Further straightforward manipulations give a
quadratic equation in r and solving it gives

r =
2θ2 ±

√
4θ2

2 − θz2
1(θz2

1 + 4θ1)
θz2

1 + 4θ1
. (32)

Since r is the substitution variable for |tan x1
2 | and

x1 = 0 if and only if z1 = 0, only the branch
giving r = 0 for z1 = 0 is acceptable, i.e. the
one with ± replaced by minus. Finally, recalling
the relation lost while taking the square power of
z1, namely, sign(x1) = sign(z1), gives the following
inverse transformation

x1 = 2 sign(z1) arctan
2θ2 −

√
4θ2

2 − θz2
1(θz2

1 + 4θ1)
θz2

1 + 4θ1
,

z2
1 < 2θ−1(

√
θ2
1 + θ2

2 − θ1). (33)

Note, that (by some straightforward computations)
the range of z2 given in (33) holds if and only
if the expression under the square root in (33) is
positive. At the same time, it is clear that for all
z = (z1, z2)� ∈ Ωz given by (29) the component z2

is within the range of z2 given in (33). In such a

way, the map z �→ x defined by the equality (33)
together with x2 = z2 is well-defined for all z =
(z1, z2)� ∈ Ωz. Just to double check that both
the map (30) and its inverse (33) give one-to-one
correspondence between Ωx given by (27) and Ωz

given by (29), let us compute in (33) the value of
x = (x1, x2)� at boundary points of the range of
z = (z1, z2)� in (33). Recall that these boundary
points correspond to the case where square root
in (33) is zero and θz2

1 = 2(
√

θ2
1 + θ2

2 − θ1), i.e. the
values of x = (x1, x2)� at these boundary points
are equal to:

±2 arctan
θ2√

θ2
1 + θ2

2 + θ1

= ± arctan
(

θ2

θ1

)
,

where the last equality is due to some straightfor-
ward manipulations based on the well-known gonio-
metric relation between tan x1 and tan(x1/2). Note,
that the obtained boundary values for x1 are exactly
those of (27) for x2 = 0.

Last, but not least, note, that the map (33)
is obviously continuous at all z = (z1, z2)� ∈ Ωz.
Summarizing, the continuous map (30) and its con-
tinuous inverse (33) give one-to-one correspondence
between Ωx given by (27) and Ωz given by (29), as
required by Definition 3.1.

It remains to prove the required properties
of the map τ(t, x). Using the above substitution
r = |tan x1

2 |, |sin x1| = 2r(1 + r2)−1, cos x1 =
(1 + r2)(1 + r2)−1 hold and substituting from (32)
gives:

|sin x1| =
2(2θ2 −

√
4θ2

2 − θz2
1(θz2

1 + 4θ1))(θz2
1 + 4θ1)

(θz2
1 + 4θ1)2 + (2θ2 −

√
4θ2

2 − θz2
1(θz2

1 + 4θ1))2
, (34)

cos x1 =
(θz2

1 + 4θ1)2 − (2θ2 −
√

4θ2
2 − θz2

1(θz2
1 + 4θ1))2

(θz2
1 + 4θ1)2 + (2θ2 −

√
4θ2

2 − θz2
1(θz2

1 + 4θ1))2
. (35)

Using (34), (35), the scaling factor (31) converted to z-coordinates, denoted as s(z1), takes the form

s(z1)=
θ2((θz2

1 + 4θ1)2 − (2θ2 −
√

4θ2
2 − θz2

1(θz2
1 + 4θ1))2 − 2θ1(2θ2 −

√
4θ2

2 − θz2
1(θz2

1 + 4θ1))(θz2
1 + 4θ1))

θ|z1|((θz2
1 + 4θ1)2 +(2θ2 −

√
4θ2

2 − θz2
1(θz2

1 + 4θ1))2)
.

(36)

Recall, that
dτ

dt
= s(x1) = s(z1) ⇒ dt

dτ
=

1
s(z1)

, (37)

and realize that z1(τ) is the first component of the
solution of the linear oscillator (28) in time τ , i.e.

z1(τ) = z1(0) cos τ + z2(0) sin τ.

In such a way, the relation between times t and τ is
as follows

t(τ, z)=
∫ τ

0

dα

s(z1 cos α + z2 sinα)
, z ∈Ωz, τ ∈R,

(38)
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where s is given by (36). Realize, that s(z1)−1 is
continuous and bounded for all z = (z1, z2)� ∈ Ωz

and s(z1)−1 = 0 if and only if z1 = 0. Moreover, Ωz

given by (29) is the interior of a circle and there-
fore it holds that z = (z1, z2)� ∈ Ωz ⇒ z1 cos α +
z2 sin α ∈ Ωz ∀α ∈ R. Summarizing, the function
integrated inside the integral in (38) is a contin-
uous and non-negative function of α, it is strictly
positive ∀α ∈ R such that z1 cos α + z2 sin α �= 0
and it is zero when z1 cos α + z2 sinα = 0. In such
a way, zeroes are isolated, as a matter of fact, there
is time interval of length π between these zeroes.
Moreover, s−1(z1 cos α+z2 sin α) is a periodic func-
tion of α. As a consequence, for every fixed z1 ∈ Ωz

the scalar function t(τ, z) given by (38) is continu-
ous and increasing function of τ with t(τ, z)±∞ as
τ → ±∞. In other words, for every fixed z1 ∈ Ωz

the relation (38) defines homeomorphism R �→ R.
Since we already proved that z1 is related to x1

via the homeomorphism (30), the relations (38)
and (30) give the homeomorphism R×Ωx �→ R×Ωz

requested by (22) in Definition 3.1. �

To address the case of the perturbed damped
HIPSF (7), consider its standard extension to an
autonomous system by adding a formal state vari-
able x3 representing the time t, namely

ẋ1 = x2,

ẋ2 =
θ1 sin x1 − θ2sign(x1) cos x1

θ

− k1x2 + ω(x3),

ẋ3 = 1, k1 ≥ 0.

(39)

Proposition 7. Consider the perturbed damped
HIPSF (7) and assume that there is some region
Ωxf ⊂ Ωx given by (27) such that ∀x0 ∈ Ωxf and
∀ t0 ∈ R, the solution x(t, x0) of (7) exists and
x(t, x0) ∈ Ωxf ∀ t ∈ R. Moreover, assume that nei-
ther limt→∞ x(t, x0) = 0, nor limt→−∞ x(t, x0) = 0.
Then the following system

dz1

dτ
= z2,

dz2

dτ
= −z1 + s(z1)−1(ω(z3) − k1z2),

dz3

dτ
= s(z1)−1, z = (z1, z2, z3)� ∈ Ωzf × R,

(40)

is topologically equivalent to (39) given Ωxf × R.
Here Ωzf is the image of Ωxf via the homeomor-
phism (30) and s(z1) is given by (36).

Proof. To prove the proposition claim, it has to
be shown first that the homeomorphism (30) and
z3 = x3 together with the time scaling s(z1) given
by (36) transform (39) into (40). Then, secondly, it
has to be shown that the time scaling s(z1) given
by (36) actually defines the time transformation
t → τ required in Definition 3.1. The first part is
straightforward. Realizing that z3(τ) = t ∀ t ∈ R,
it basically mimics the proof of Proposition 6. To
prove the second part, note first that it is not obvi-
ous that

∫ τ
0 s(z1(α))−1dα → ±∞ for t → ±∞.

Indeed, since there is no closed form of solution
z1(τ), no simple analysis of its zero values as in the
proof of Proposition 6 is possible. Nevertheless, one
can prove that

∫ τ
0 s(z1(α))−1dα → ±∞ for t → ±∞

using the famous Barbalat lemma and properties of
the autonomous extension (39). Indeed, the right-
hand side of (40) is globally Lipschitz and therefore
z(τ) exists and is unique for any given initial con-
dition and by (36) the integral

∫ τ
0 s(z1(α))−1dα is a

nondecreasing function defined as ∀ τ ∈ R. If the
function

∫ τ
0 s(z1(α))−1dα is bounded from above

(below), it converges as τ → ∞ (τ → −∞) to
some constant positive (negative) finite value xfp

3

(xfm
3 ). Further, z1(τ) is obviously uniformly contin-

uous on R due to the first equation in (40). There-
fore also s(z1(τ))−1 is uniformly continuous on R

and therefore by Barbalat lemma z3(τ) → zfp
3 ∈ R,

τ → ∞ (z3(τ) → zfm
3 ∈ R, τ → −∞) implies that

s(z1(τ))−1 → 0, τ → ±∞, therefore also z1(τ) → 0,
τ → ±∞. This means that the ω-limit set (the α-
limit set) of (40) is the Cartesian product of {zfp

3 }
({zfm

3 }) and the ω-limit set (the α-limit set) of

dz1

dτ
= z2,

dz2

dτ
= 0,

which is the origin since, due to the time invari-
ance of the system, ω-limit set (α-limit set) should
be invariant. Therefore, x(t) → 0, t → xf

3 , due to
the homeomorphic correspondence of the trajecto-
ries of the HIPSF (7) and (40). Summarizing, unless
the perturbed and damped HIPSF (7) is asymp-
totically stable at some nonzero initial condition,
or unbounded, it is always topologically equivalent
to (40) on the regions specified by the proposition
assumption. �
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Remark 3.1. Proposition 7 and the equivalent sys-
tem (40) help to understand the behavior of the
perturbed undamped HIPSF. First, realize that
s(z1)−1 ≥ 0 given by (36) is smooth except z1 = 0,
where it is Lipschitz and therefore the equivalent
system (40) is also similar. Further, recall that
z3(τ) = t, so that z1, z2 in (40) behave the same
way as in the following system

dz1

dτ
= z2,

dz2

dτ
= −z1 + s(z1)−1(ω(t) − k1z2),

z = (z1, z2)� ∈ Ωzf . (41)

Let us consider for simplicity the case k1 = 0 since
the damping is anyway usually rather weak and
does not have a significant effect. Then the sys-
tem (41) is the linear oscillator in the “new” scaled
time τ perturbed by a signal ω(t) being harmonic
in the “real” time t. Moreover, its amplitude is mul-
tiplied by the nonlinear function s(z1)−1. Close to
z1 = 0, both τ is slowing down with respect to t
(s(z1)−1 is the scaling between τ and t) and the
amplitude is made smaller as it is multiplied by
s(z1)−1. Far from z1 = 0 such an effect is weak.
Notice, that

d
dτ

(z2
1 + z2

2) = s(z1)−1ω(t)z2
2 − k1s(z1)−1z2

2,

k1 ≥ 0, s(z1)−1 ≥ 0,

therefore (when k1 = 0) the norm of (z1, z2)�
increases when ω(t) > 0 and decreases when
ω(t) < 0. Due to the above complex effect of
change of time and amplitude, neither of these
two conditions holds prevailing time. Therefore the
norm alternates between increasing and decreas-
ing, moreover, the norm increase leads to a preva-
lently bigger absolute value of s(z1)−1 ≥ 0, while
the norm decrease leads to a prevalently smaller
absolute value of s(z1)−1 ≥ 0. Such a complex
effect may serve as an explanation of the irregular
chaotic behavior observed and justified numerically
later on.

Remark 3.2. Consider the unforced HIPSF (7). One
of the consequences of the time scaling by s(z1)−1 ≥
0, demonstrated numerically later on, is that in the
original “real” time t the oscillations of the HIPSF
have the period converging to zero when their ini-
tial conditions converge to the origin. Indeed, in
the unforced case the HIPSF oscillations are sim-
ply obtained as the superposition of the harmonic

oscillations in the “new” time τ and the time scal-
ing transformation between the “new” time τ and
the “real” time t. The effect of that scaling trans-
formation is stronger for the oscillations closer to
the origin than for those farther from the origin.
In such a way, the unforced HIPSF self-oscillations
frequencies are growing to infinity as their magni-
tude goes to zero which is intuitively clear from
the mechanical viewpoint as well. Such a prop-
erty is somehow exceptional (cf. Example 3.1 later
on), it is due to the hybrid essence of the HIPSF.
At the same time, such a period goes to infin-
ity, when trajectories approach the separatrices —
boundaries of the region of the stable behavior of
the unperturbed undamped HIPSF. These phenom-
ena are demonstrated by the closed orbits shown
in Fig. 4 and computed HIPSF frequencies of the
periodic motions on those closed curves are col-
lected in Table 1. This gives the following inter-
esting clue to study the influence of the harmonic
perturbation: it may be in the “bad”, i.e. the
destabilizing, phase synchronization for some fixed
amplitude only, increasing the amplitude by desta-
bilization changes the hybrid pendulum frequency
and the stabilizing effect may occur. In such a way,
the bounded chaotic behavior may be intuitively
explained. Moreover, as HIPSF frequencies go to
infinity as their magnitude goes to zero, the chaotic
behavior of the perturbed undamped HIPSF can be
observed later on arbitrarily close to the origin.

Example 3.1. Consider the well-known nonlinear
pendulum oscillating around its lower stable posi-
tion and not reaching its upward (inverted) posi-
tion, i.e.

ẋ1 = x2, ẋ2 = −sin(x1), x1 ∈ (−π, π), x2 ∈ R.

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
x

1

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

x
2

Fig. 4. Orbits of the undamped unperturbed (k1 = 0,
ω(t) ≡ 0) HIPSF (7) for θ1 = 3.4433, θ2 = 1.0791, θ = 0.1891.
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Table 1. Dependence of the undamped unperturbed (k1 = 0, ω(t) ≡ 0) HIPSF oscillations frequency fr on their initial
condition (x1, 0)

� for θ1 = 3.4433, θ2 = 1.0791, θ = 0.1891.

x1 [rad] 0.3 0.25 0.2 0.15 0.1 0.05 0.01 10−3 10−4 10−5 10−6 10−7 10−8 10−9

fr [Hz] 0.25 0.47 0.69 0.92 1.25 1.93 3.49 14.64 46.4 146.5 463.6 1466 4636 14 663

Introduce new coordinates z = (z1, z2)� and time
τ(t, x) as follows

z1 = 2 sin
(x1

2

)
, z2 = x2,

dτ

dt
= cos

(x1

2

)
.

Inverse transformations are

x1 = 2arcsin
(z1

2

)
, x2 = z2,

dt

dτ
=

√
4 − z2

1

2
.

Straightforward computations show that the non-
linear pendulum takes in z-coordinates of the fol-
lowing form

dz1

dτ
= z2,

dz2

dτ
= −z1, z1 ∈ (−2, 2), z2 ∈ R,

which is the linear harmonic oscillator. Unlike the
HIPSF case considered above, all the above trans-
formations are smooth and smoothly invertible on
the above regions with time scaling being smooth,
nonzero and finite as well. Moreover, time scal-
ing is equal to 1 at the origin and the coordinate
change is approximately equal to identity map in a
small neighborhood of the origin. The latter prop-
erty reflects the fact that the approximate lineariza-
tion of the nonlinear pendulum is precisely the same
linear harmonic oscillator given above. As a conse-
quence, the periodic movements of the undamped
nonlinear pendulum have the lower limit of their
periods equal to 2π which is the period of that lin-
ear harmonic oscillator. Contrary to that, the scal-
ing s(x) for the HIPSF case ranges from zero to
infinity and it is only continuous and continuously
invertible. As a consequence, the unforced HIPSF
exhibits oscillations with periods ranging from zero
to infinity. These phenomena are demonstrated by
the closed orbits shown in Fig. 4 and the computed
HIPSF frequencies on those closed curves collated
in Table 1.

4. Numerical Simulations

4.1. On the calculation of the
largest Lyapunov exponent

To test the possible chaotic behavior numerically,
the largest Lyapunov exponent will be computed.

The purpose of this very short subsection is to
present the method for these computations used
later on.

As noticed in [Licskó & Csernák, 2014], cal-
culating the Lyapunov spectrum or even only the
largest Lyapunov exponent (LLE) can be difficult
in case of piecewise-smooth systems. Methods usu-
ally used for smooth systems often fail because of
discontinuities. One of the possible methods for the
estimation of the LLE is based on the calculation
of the coupling coefficient that imposes synchroniza-
tion between two coupled systems [Stefański, 2000;
Stefański & Kapitaniak, 2003]. The smallest value
of the coupling coefficient for which the synchro-
nization takes place is claimed to be equal to the
LLE, see [Stefański & Kapitaniak, 2000] where the
LLE for Duffing oscillator with dry friction was cal-
culated. This method was also implemented to esti-
mate the LLE in the multibody system in [Fu &
Wang, 2006].

More specifically, following Stefański [2000],
consider two coupled perturbed undamped HIPSF:

ẋ1 = x2,

ẋ2 =
θ1 sin x1 − θ2sign(x1) cos x1

θ
+ ω(t),

ẏ1 = y2 + c(x1 − y1),

ẏ2 =
θ1 sin y1 − θ2sign(y1) cos y1

θ

+ ω(t) + c(x2 − y2).

(42)

Local synchronization of the coupled systems (42)
is therefore achieved if (and only if) the coupling
gain c is larger than the LLE, [Baumann & Leine,
2017]. In other words, the infimum of the values of
the coupling coefficient c for which synchronization
takes place is equal to the LLE, [Stefański & Kapita-
niak, 2000]. The coupled system is considered to be
synchronized if the synchronization error e = x− y
becomes smaller than a certain threshold on a long
but finite time horizon.

The practical problem here is the precise deter-
mination of the LLE. Indeed, the LLE is the

1930024-19

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

9.
29

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
09

/0
3/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 21, 2019 11:27 WSPC/S0218-1274 1930024
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infimum of values of c providing the above synchro-
nization. It is clear, that for the values of c close
to that infimum, the synchronization is obtained
only after a long time course. Alternatively, the
desynchronization detection for the values of c less
than the corresponding LLE can be used adapt-
ing the desynchronization detection approach in
[Lynnyk & Čelikovský, 2010; Čelikovský & Lynnyk,
2012]. Moreover, to provide some ground for the
claim, that the studied behavior is chaotic, it is suf-
ficient just to show that the above coupling parame-
ter is positive and the precise value of the respective
LLE is not needed. The subsequent simulations are
therefore usually limited to showing that there is
some positive c ensuring synchronization and some
smaller, yet still positive c, such that the master-
slave configuration (42) remains desynchronized.

Another numerical issue is related to the phe-
nomena at the discontinuity. As a consequence, in
some simulations close to the origin where the dis-
continuity is crossed very frequently, computational
difficulties do not allow the precise determination
of the LLE. The respective LLE estimations are
skipped as they were rather misleading.

4.2. Simulations of the harmonically
perturbed HIPSF

The influence of the external harmonic perturb-
ing signal ω(t) will be systematically studied here.
Remind, that (15) indicates that the external per-
turbation influence is hard to be estimated theoreti-
cally. Obviously, when x2(t)ω(t) > 0, that influence
is destabilizing, when x2(t)ω(t) < 0, it is stabilizing.
As a matter of fact, the hybrid inverted pendulum
is strictly passive for k1 > 0 and it is passive for
k1 = 0. In all these passivity cases the input is ω,
the output is x2 and the storage function is V as
given by (14). As the frequencies of HIPSF natural
oscillations vary from zero to infinity depending on
their magnitudes, external harmonic perturbation
preserves neither the relation x2(t)ω(t) > 0, nor the
relation x2(t)ω(t) < 0 all the time. Such an effect
results in the magnitude variation in an irregular
way. Using LLE estimation, the chaotic character
of that irregularity will be argued.

The following parameters are used in all subse-
quent simulations: IL = IR = 0.0062, ID = 0.00066,
IT = 0.0158, d = 0.2, m = 0.4, lL = lR = 0.22,
l = 0.5, lT = 0.1, MT = 0.25, MD = 0.05,
g = 9.81, given in kg·m2, m, kg, m·s−2, respectively.

These parameters give θ1 = 3.4433, θ2 = 1.0791,
θ = 0.1891 in (7). For the simplicity, only the case
of the undamped (k1 = 0) HIPSF (7) is considered.

To demonstrate the time evolution more vis-
ibly, all simulations are split into ten subsequent
equally long time subintervals. The blue, red and
green colors are then regularly switched for the tra-
jectory drawing line between these intervals. This
applies to the planar state space plots where the
time course cannot be indicated explicitly. Other
plots of some scalar values against the time are kept
monochromatic. Note the interesting property in
some state space trajectory simulations plots close
to the origin. They appear to be monochromatic,
but that is due to the fact that the trajectory evo-
lution is getting faster and faster as time goes on.
As a consequence, the last time segment trajectory
is much longer than the previous ones and it over-
writes them.

The sizes and shapes of the possibly chaotic
attractors depend on the perturbation frequency,
the perturbation amplitude and the initial condi-
tions x1(0), x2(0). To sort these three aspects in
some reasonable synoptical way, let us first split
simulations into two basic groups dependent on the
perturbation amplitude and its relation to the sta-
bility threshold A = θ2/θ = 5.7065 introduced in
Proposition 2 and explained by Remark 2.4. Recall,
that the undamped HIPSF perturbed by a con-
stant external perturbation having absolute value
less than the threshold A = θ2/θ has the trivial solu-
tion starting at the origin, moreover, this solution is
unique and asymptotically stable. For the noncon-
stant external harmonic perturbation, even having
the amplitude less than the threshold A = θ2/θ,
such a property cannot be guaranteed. Neverthe-
less, the HIPSF behavior, when affected by the
external harmonic forcing, is qualitatively different
for the amplitudes less than the threshold A = θ2/θ
and for those greater than it.

To proceed with the above plan, let us start
first with the case when the amplitude of the per-
turbation signal is fixed and bigger than the thresh-
old A = 7 > θ2/θ = 5.7065. Figure 5 shows the
complex behavior of the HIPSF for the different
values of the frequency of the bounded external
perturbation ω(t), while the initial conditions are
fixed and very close to the origin, i.e. x1 = 10−12

and x2 = 0. Yet, they result in a growing trajec-
tory appearing chaotically. There is a clearly visi-
ble relation between the attractor size and forcing
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Fig. 5. Complex behavior of (7) for x1(0) = 10−12, x2(0) = 0, k1 = 0, t ∈ [0, 50]. External forcing signals ω(t) are:
(a) 7 sin 8πt; (b) 7 sin 21πt; (c) 7 sin 9πt; (d) 7 sin 22πt; (e) 7 sin 10πt; (f) 7 sin 23πt; (g) 7 sin 11πt and (h) 7 sin 24πt.
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frequency, namely, a higher frequency results in a
smaller size of the attractor, and a lower frequency
in a bigger size of the attractor. Explanation is
that the attractor size is related to the frequency
of the HIPSF, which should be along that trajec-
tory slightly bigger or slightly smaller than the forc-
ing one. Recall in this respect, Table 1 showing the
relation between the own unperturbed undamped
HIPSF oscillations frequency and the magnitude of
these oscillations. Note, that the case in Fig. 5(a)

(the smallest frequency and the highest attractor
size) appears to be bounded, but that is only due to
the limited time course duration t ∈ [0, 50]. On the
longer time interval [0, 232] the oscillations exceed
the region bounded by separatrices, as shown in
Fig. 6(a). Physically such a situation corresponds
to the HIP falling to the other side of one of the
unstable classical saddle point equilibria. Interest-
ingly, increasing the size of initial condition keep-
ing the same frequency as in Figs. 5(a) and 6(a)
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Fig. 6. State space plots of (7): x2(0) = 0, k1 = 0, ω(t) = 7 sin 8πt and: (a) x1(0) = 10−12, t ∈ [0, 232]; (b) x1(0) = 10−6,
t ∈ [0, 883]; (c) x1(0) = 10−3, t ∈ [0, 358]; (d) x1(0) = 10−1, t ∈ [0, 50]; (e) and (f) illustrate LLE ∈ (0.215, 0.22) for (d).
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does not have a straightforward effect. First, the
escape time gets shorter, cf. Figs. 6(b) and 6(c), but
then for much bigger initial condition, the attractor
stays inside the required region even during a very
long time interval, see Fig. 6(d). For space reasons,
the time duration is limited there to the interval
[0, 50] only, but the trajectory stays inside the stable
region during the duration of every experiment that
was reasonably long to be carried out. The chaotic
essence of the case in Fig. 6(d) is supported by the

LLE estimate in Figs. 6(e) and 6(f), indicating that
the LLE should be within (0.215, 0.22). As already
indicated before, computations of the LLE for the
cases of small attractors close to the origin failed
due to the previously mentioned numerical issues
caused by the frequent crossing of the discontinuity
at x1 = 0.

Secondly, let us present the case when the
amplitude of the external harmonic perturbation
is less than the threshold θ2/θ = 5.7065. In this

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
x

1

-0.5

0

0.5

x
2

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
x

1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x
2

(a) (b)

-0.015 -0.01 -0.005 0 0.005 0.01 0.015
x

1

-0.5

0

0.5

x
2

-0.015 -0.01 -0.005 0 0.005 0.01 0.015
x

1

-0.5

0

0.5

x
2

(c) (d)

(e) (f)

Fig. 7. Complex behavior of (7) for x2(0) = 0, k1 = 0, t ∈ [0, 50], ω(t) = 5 sin 14πt. (a) x1(0) = 0.01; (b) x1(0) = 0.015;
(c) x1(0) = 0.005; (d) x1(0) = 10−4; (e) x1(0) = 10−5 and (f) x1(0) = 10−6.
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case, the trajectory stays very close to the initial
condition for the initial condition x1(0) = 10−6,
x2(0) = 0, see Fig. 7(f). Nevertheless, when the ini-
tial conditions are x1 ≥ 10−5 then the chaotically

appearing attractors emerge and their size, though
rather small, is by several orders bigger than the
respective initial condition, see Fig. 7 showing
different attractors for different initial conditions
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Fig. 8. Multiple hidden attractors in (7) for x2(0) = 0, k1 = 0, t ∈ [0, 50], ω(t) = 5 sin 14πt and various x1(0). Row-by-row,
from the left to the right: x1(0) = 0.12; x1(0) = 0.11; x1(0) = 0.1; x1(0) = 0.09; x1(0) = 0.08; x1(0) = 0.07; x1(0) = 0.06;
x1(0) = 0.05.
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x1(0). Note, that the attractors shown in Fig. 7
may overlap each other, this is not a contradic-
tion, recall that the simulated dynamics is nonau-
tonomous. Further, increasing the initial conditions

even more, different chaotically appearing attrac-
tors emerge and this time all of them are clearly
disjoint, see Fig. 8. This is a very interesting phe-
nomenon. Realize, that all simulations in Figs. 7
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Fig. 9. The synchronization error e2 = x2 − y2 for the coupled HIPSFs corresponding to the cases shown in Fig. 8. From
the top to the bottom, the cases from the top left to the bottom right in Fig. 8 are shown. The left (right) column shows
the synchronization error divergence (convergence) for the lower (upper) LLE estimate. The respective ranges of LLE are:
[0.253, 0.254]; [0.33, 0.333]; [0.56, 0.57]; [0.79, 0.8]; [0.91, 0.92]; [0.7, 0.71]; [0.36, 0.37]; [0.52, 0.527].
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Fig. 9. (Continued)

and 8 show the same system with the same forc-
ing, only initial conditions are different. Moreover,
as already noted, all attractors shown in Fig. 8 are
clearly disjoint. In such a way, it is possible to claim
that the so-called multiple hidden attractors in
the sense of Leonov–Kuznetsov [Leonov et al., 2011;

Leonov & Kuznetsov, 2013; Chen et al., 2017] are
present in the respective HIPSF. This means that
several attractors are present in the system, all of
them have different basins of attraction and not
one of these basins of attraction contains the ori-
gin. Our conjecture here is that there may be even
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infinite number of these attractors, unfortunately,
one cannot demonstrate such a conjecture experi-
mentally. Intuitive explanation of the existence of
multiple hidden attractors is that each of these
attractors correspond to an individual multiple of
the perturbation frequency that fits to some suit-
able HIPSF frequency. Remember that the unper-
turbed HIPSF frequency goes to zero as HIPSF
oscillations approach the separatrices and therefore
theoretically infinite number of multiples of those
frequencies is possible. Practically, nevertheless, all
these behaviors should be placed within increas-
ingly narrow area close to separatrices. In such a
way, another peculiarity when trying to simulate
more attractors close to separatrices is that they

can easily escape the “safe” region inside the sepa-
ratrices during the transition process.

To support the claim that the attractors shown
in Fig. 8 are chaotic, Fig. 9 shows the appropriate
values of the LLEs for all attractors from Fig. 8.
Note, that all these LLEs are clearly positive, i.e.
there is sufficiently large gap between zero and
those lower LLE estimates. As already noted, for
the attractors shown in Fig. 7, numerical issues
related to frequent crossing of the right-hand side
discontinuity prevented obtaining reasonable LLE
estimates and the corresponding simulations are
skipped.

Finally, Fig. 10 demonstrates yet another
HIPSF with multiple hidden attractors, namely, for
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Fig. 10. Complex behavior of (7) for x2(0) = 0, k1 = 0, ω(t) = sin πt, t ∈ [0, 50] and various initial values x1(0). The left side
shows the state trajectories while the right side shows e2 = x2 −y2 for the practically smallest coupling parameter c providing
the synchronization. From the top to the bottom: x1(0) = 0.1, c = 0.91; x1(0) = 0.05, c = 1.31; x1(0) = 0.01, c = 2.3.
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the forcing external signal sin πt. Again, the size of
the attractor depends on the initial conditions x(0),
attractors appear to be mutually disjoint and their
basins of attraction do not contain the origin. The
estimates of the corresponding LLEs are included in
the same figure, for brevity, only the courses of the
synchronizing coupling parameters are included. In
all cases, even a negligible decrease of the coupling
parameter leads to synchronization failure. The val-
ues noted in the caption of Fig. 10 are therefore
quite fair estimates of the appropriate LLEs.

5. Conclusions

The properties of the harmonically perturbed
hybrid inverted pendulum have been studied. An
interesting feature is the presence of the multi-
ple hidden chaotic attractors when the perturbing
amplitude does not exceed the well-defined thresh-
old. Namely, basins of attraction of these attrac-
tors do not contain the origin and are mutually
disjoint. Detailed proofs of the existence, stability
and other basic mathematical properties, includ-
ing topological linearizability of the hybrid inverted
pendulum in the state space form were provided as
well. A challenging outlook for future research is
to use topological linearization for the better com-
putation of the minimal coupling coefficient in the
simple master-slave configuration to determine the
largest Lyapunov exponent. Indeed, even the per-
turbed damped hybrid inverted pendulum in the
state space form is topologically equivalent to a sys-
tem with the Lipschitz right-hand side where the
numerical issues caused by the discontinuity are
avoided.
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