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[5] MANGOVÁ, M. Brno Univ. of Technology, 2018, PhD Thesis

S24.04

Comparison of fitting approaches in dynamic contrast-

enhanced magnetic resonance imaging: direct

estimation from raw k-space signals vs. conventional

approach from concentration–time curves
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Purpose/Introduction: DCE-MRI provides information about tissue

perfusion and capillary permeability. It is based on T1-weighted

image acquisition before, during, and after an intravenous adminis-

tration of a contrast agent [1].

Conventionally, image sequences are first reconstructed from the

k-space data, followed by conversion to contrast-agent concentration

[1]. The quantitative perfusion-parameter maps are then obtained by

fitting a pharmacokinetic (PK) model to the measured data, which

relates the PK parameters to concentration–time curves. Recently, a

direct estimation scheme has been presented employing a full com-

pound model including the preprocessing [2]. Alternatively, an

intermediate model working with the reconstructed images can be

formed. We have extended the approaches using a more realistic PK

model and a state-of-the-art spatial regularization and compared them.

Subjects and Methods: Estimation of PK parameters is a least-mean-

squares minimization problem: p = arg minp ||f(p)-y||2 ? R(p), where

p are the PK parameter maps, y is the measured data, f(p) is the model

and R(p) is a spatial regularizer. We solve this non-linear non-differ-

entiable problem using the recently proposed Gauss–Newton approach

with the primal–dual algorithm [3]. Table 1 defines the data and gives

an overview of the three fitting approaches we used in this work.

Approach Conventional T1w Direct

Data to fit, y Concentration images T1-weighted images K-space samples

Model, f(p) PK model PK model +
SPGR model

PK model +
SPGR model +
Coil sensitivities +
K-space sampling

Additional
preprocessing steps

Image reconstruction
Conversion to
concentration

Image reconstruction Estimation of coil profiles

Noise in data Non-Gaussian with
spatial-dependent
variance

Rician (close to
Gaussian) with constant
variance

Gaussian with constant
variance

Pros Voxel-wise computation
The simplest model
The fastest computation
Estimation in ROI

Voxel-wise computation
Noise characteristic
Estimation in ROI

Complete information
Noise characteristic
No image reconstruction

Cons Image reconstruction
needed
Conversion needed
Noise characteristic
Strongly nonlinear
Potentially accumulated
errors

Image reconstruction
needed

Computationally
demanding
No arterial voxel
available for AIF
Coil profiles needed

Table 1: Overview of the fitting approaches

The comparison was performed on a numerical rat phantom (41 tissue

regions with experiment- and literature-based PK parameters) simu-

lating DCE-MRI using the PK tissue homogeneity model [4]

combined with an SPGR sequence under realistic noise conditions.

The T1-weighted images were reconstructed from the 4 channels

using the sum-of-squared reconstruction. Coil profile, SNR and

sequence parameters are given in Fig. 1.

Results: The approaches are compared in Fig. 2 together with their

spatial-regularized variants. The regularization always improved the

readability of the estimated maps. The conventional approach led to

the worst result. The T1w and direct approaches appeared to be equal,

however the non-regularized direct approach had values closer to the

ground truth.
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Discussion/Conclusion: Based on the pros and cons listed in Table 1

and the comparison experiment (Fig. 2), the best approach, in our

configuration, is to fit T1-weighted images. This yields results close to

ground truth with tractable complexity. The conventional approach

had convergence issues, even in case of regularization. The state-of-

the art approach of the direct fitting is tractable, but in case of a full

Cartesian sampling, it seems excessive.
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Purpose/Introduction: While myocardial hypoperfusion is routinely

diagnosed by visual assessment of dynamic contrast-enhanced (DCE)

cardiac MRI, exact quantification of perfusion parameters

(MBF = myocardial blood flow, PS = permeability surface area

product, Vp = plasma volume, Ve = extracellular volume) is desir-

able. The blood tissue exchange model (BTEX)1 applied in recent

studies2 offers detailed modelling, but its complexity increases

computational costs and vulnerability to noise when applying con-

ventional fitting. Our study sought to predict perfusion parameters fast

and accurately using a convolutional neural network (CNN) trained

with synthetically generated sample data.

Subjects and Methods: Perfusion standard parameters3 (Fig. 1a) and

an arterial input function (AIF) averaged from 6 healthy volunteers

were used as input for the pharmacokinetic BTEX model (1b)

extending the cardiac MRXCAT4 phantom framework (1c). Resulting

DCE images (1d) mimicked spoiled saturation recovery GE acqui-

sition in breath-hold with a Gd dose of 0.05 mmol/kg bodyweight.

5000 datasets at random myocardial positions were simulated and

Gaussian noise was added to model contrast-to-noise, then tested on

levels (CNR = 10/15/30/100, Fig. 2a). Simulation data was split in

test, validation, and training sets (2b). A 1D CNN consisting of 8

convolutional, 4 pooling, and 2 densely connected layers (2c) was

implemented and trained using training and validation data (activa-

tion = Relu, loss function metric = MAE, optimizer = first-oder

gradient based Adam, epochs = 1000, batch size = 32). For com-

parison, conventional least squares fitting (FIT) of the BTEX model

was implemented—being dependent on simulated AIFs for finding

the best-matching perfusion parameter estimates (2d). A pre-com-

puted lookup-table and later refinement via L2 norm grid search were

applied for computational efficiency. CNN and FIT were compared to

the known ground truth as absolute difference.

ESMRMB Congress (2019) 32 (Suppl 1): S235–S371 S349

123


	titulka-ESMRMB201936thAnnualScientific
	bartos-ESMRMB201936thAnnualScientific-2



