
Blur Invariant Template Matching Using
Projection onto Convex Sets
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Abstract. Blur is a common phenomenon in image acquisition that neg-
atively influences recognition rate if blurred images are used as a query
in template matching. Various blur-invariant features and measures were
proposed in the literature, yet they are often derived under conditions
that are difficult to satisfy in practise, for example, images with zero
background or periodically repeating images and classes of blur that are
closed under convolution. We propose a novel blur-invariant distance that
puts no limitation on images and is invariant to any kind of blur as long
as the blur has limited support, non-zero values and sums up to one. A
template matching algorithm is then derived based on the blur-invariant
distance, which projects query images on convex sets constructed around
template images. The proposed method is easy to implement, it is robust
to noise and blur size, and outperforms other competitors in this area.

Keywords: Blur-invariant distance · Projection operator ·
Object recognition · Blurred image

1 Introduction

Image recognition covers a wide variety of practical and theoretical areas ranging
from feature-based classification for product quality control to complex tasks
such as video tracking used in forensics. The images themselves vary not only
in captured information but also in quality. This paper focuses on a recognition
of blurred templates. We introduce a method that can match a blurred query
image against a database of clean templates. This task is very challenging as
the templates may be fairly similar and some inputs can be severely degraded
so that visual recognition is difficult. Presented results thus serve not only as
automation of the recognition process but also help in cases when human visual
classification fails.
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A commonly used model of image acquisition is a simple convolution equation

g = f ∗ h + n, (1)

where f is the ideal original image, h is the blur kernel representing the degra-
dation, and n is noise. Although this model is only an approximation of the real
image formation process, it is a reasonable and mathematically tractable simpli-
fication of many real scenarios. In this paper, we assume the image degradation
(blur and noise) to follow the model (1).

Since 1960’s, a large number of papers have been devoted to image restora-
tion, i.e. to estimation of f from its blurred version g. This is, however, super-
fluous for template matching purposes. One can avoid the time-consuming and
ill-posed inversion of (1) by designing a matching algorithm, which is robust (or
even totally invariant) to the blur. In this paper, we propose a new algorithm of
this kind.

We show that all admissible blurred versions of an image form a convex set
in the image space. We construct this set for each database template fi. Given
a query image g, we measure its distance to all these convex sets and g is then
classified by a minimum distance rule. We show that the distance between an
image and a convex set is a simple minimization problem which can be efficiently
resolved numerically. This results in a blur-invariant matching algorithm, which
outperforms state-of-the-art methods in most aspects. The performance of the
algorithm is illustrated by experiments on standard datasets of human faces and
handwritten digits.

The paper is organized as follows. First, we give an overview of related work
in Sect. 2 and then we formulate the proposed blur-invariant distance formally in
Sect. 3. The presented theory is used for developing a projection based method
for blur-invariant template matching in Sect. 4. Sections 5 and 6 discuss the effect
of noise and the blur size. Finally, the experimental Sect. 7 verifies the theory
and provides a comparison with three reference methods.

2 Related Work

Methods performing the blur-invariant image recognition task can be categorized
according to assumptions on the blur kernel properties. Most of the methods
assume a particular shape of the blur and then construct invariants to convolu-
tion with the kernel of this kind. Classification is then performed in the space
of invariants, usually by the minimum distance rule [8]. This approach was orig-
inally introduced by Flusser et al. [5,7] who proposed moment-based invariants
w.r.t. centrosymmetric blur. Later on, their theory was extended to N -fold sym-
metric blur [6,15] and N -fold dihedral blur [16].

If a parametric form of the blur kernel is known, the invariants from the
above group do not provide a maximum possible discrimination power because
they do not employ the parametric form explicitly. In order to maximize the dis-
criminability, some authors attempted to design special blur invariants w.r.t.
rotation-symmetric Gaussian blur. First invariants of this kind were found
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heuristically [13,17] but recently a consistent theory of Gaussian blur invari-
ants was presented in [4]. An interesting method, still limited to Gaussian blur,
was published by Zhang et al. [20]. Instead of deriving blur invariants explicitly,
the authors proposed a distance measure between two images which is indepen-
dent of circular Gaussian blur. Their core idea is to estimate the blur level of
images to be compared, bring them to the same blur level by blurring of the one
which is less blurred, and then measure their similarity by the geodesic distance
on a manifold.

Gopalan et al. [10] derived another blur-invariant distance measure without
assuming the knowledge of the blur shape but imposed a limitation on its support
size. From this point of view, their method is the closest one to our proposed
technique, so we review their method in more detail.

Gopalan et al. established the correspondence between images and subspaces
representing points on Grassmann manifold. Classification is then performed by
minimizing the Riemannian distance of those points. This distance can be viewed
as measuring angles between two subspaces. Gopalan et al. consider H to be a set
of arbitrary blur kernels with fixed support m × n, i.e.

H =
{
h ∈ (R)m×n

}
. (2)

Then any blur h ∈ H can be written as a linear combination of “basis” blurs.
Without loss of generality we can consider the standard basis

hij(x, y) =

{
1, if x = i, y = j,

0, otherwise
(3)

where i = 1, . . . , m, j = 1, . . . , n. The basis blurs are thus shifted delta functions.
Let us denote the set of all images resulting from the convolution of clear

image f with the basis blurs hij as

Sf = {f ∗ hij , i = 1, . . . , m, j = 1, . . . , n}. (4)

Consequently, the blur invariance of Span(Sf ) is proven, i.e. Span(Sf ) =
Span(Sg). In theory, when g is a blurred version of f , both subspaces Span(Sf )
and Span(Sg) are identical. Employing Grassmann manifold recognition is then
performed by means of the minimum-distance classifier with metric defined by
Riemannian distance dG(Span(Sg),Span(Sfi)).

3 Blur-Invariant Distance

Blur functions in standard acquisition scenarios have various shapes, yet typically
they have three properties in common: limited support, non-negative values, and
preservation of the mean image intensity. Let us define the set of admissible blurs
with these properties as

H :=

{

h ∈ (R)m×n
∣
∣
∣ h(x, y) ≥ 0 ,

∑

x,y

h(x, y) = 1

}

. (5)
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where D = m × n is the maximal assumed blur size. Note that imposing the
non-negativity and brightness-preservation constraints is a significant difference
from the assumptions used in [10], which changes the geometry of blur-invariant
sets. We will now derive a blur-invariant distance with respect to H.

The set of blurs H in (5) is a convex set with D vertices. For every image f
of size N , the set of all its blurred versions

Cf :=
{

f ∗ h
∣
∣
∣ h ∈ H

}
(6)

is also a convex set residing in the N dimensional space, which follows from
linearity of convolution. The convex set is equivalent to a convex hull of Sf in
(4). By definition, g ∈ Cf ⇔ g = h ∗ f for some h ∈ H. The blur invariant
matching problem can be therefore seen as a task to find, for query image g, the
closest set Cf .

Let us denote the projection of g onto Cf as Pf (g), then

I(f, g) := ‖Pf (g) − g‖ (7)

is a blur-invariant distance with respect to H defined in (5). The projection
Pf (g) is a point in Cf with the shortest Euclidean distance from g. Then the
blur-invariant distance can be formulated as minimization

I(f, g)2 = min
h

‖f ∗ h − g‖2, s.t. h ∈ H, (8)

which is a simple convex problem. If h∗ denotes the minimizer of (8), then the
projection to Cf is implemented as Pf (g) = f ∗ h∗. The efficient computation of
I(f, g) is discussed in Sect. 4.

Due to sampling, quantization and additive noise, I(f, g) might be non-zero
even if g is a blurred version of f . In the case of multiple templates {fi}, the
distance I(fi, g) is used to determine the closest matching template f∗. The
discriminability of this approach is influenced by mutual position and shape of
convex sets Cfi ’s, which are determined by the type of template images and the
dimension D of H. An illustration is provided in Fig. 1.

Fig. 1. Illustration of projection process with g not belonging to the convex set Cf

(left) and g being in the set Cf̃ .
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The proposed blur-invariant distance in (7) has a single parameter, which is
the assumed blur size D. In many practical applications, the upper bound of the
blur size is known or can be estimated. In addition, the distance is robust to size
overestimation as discussed in Sect. 6 and to some extent also to underestimation
as shown in Sect. 7.

Simple visualization of main differences between Zhang’s, Gopalan’s and ours
blur invariant measures is illustrated in Fig. 2.

Fig. 2. Illustration of blur invariant distances: Zhang’s (Z) image to image, Gopalan’s
(G) subspace to subspace and proposed (P) image to convex set.

4 Implementation Details

The computation of the proposed blur-invariant distance (8) can be formulated
as a problem of quadratic programming. Having the given blur set H with the
blur size D = m×n, we first construct for each template image fi of size N = k×l
a matrix Ufi ∈ R

N×D by vectorizing elements of Sfi and concatenating them,
i.e.

Ufi = [Fih11, . . . ,Fihmn] , (9)

where Fih(·,·) is the column vectorized f ∗ h(·,·). Matrices Ufi are stored and
used repeatedly for the same dataset and blur size D. The computational cost is
fairly low. For example for the standard basis (3), the columns are just shifted
versions of fi.

The query image g in its vectorized form g is then used to solve the quadratic
problem

I(fi, g)2 = min
h

hTUT
fiUfih − 2gTUfih + gTg, (10)

subject to
h ≥ 0,

∑
h = 1. (11)

The complete algorithm for blur invariant template matching can be
described as follows:
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1. Prepare the convex set Cfi for each template image fi by constructing Ufi as
in (9).

2. For the given query image g and every set Cfi , compute the blur-invariant
distance I(fi, g) according to (10).

3. The best matching template f∗ is f∗ = fj , where j = arg mini I(fi, g).

Note that by solving (10), we obtain the estimated blur h∗ as a byproduct,
yet our goal is not to restore the query image g. Full recovery of image f is an
ill-posed problem even with the knowledge of h; see e.g. [1,3,18,19]. Here the aim
is to find the template, from which the query image was created by degradation.

5 Constraints Versus Noise

Let us consider a query image g that is a blurred version of some template image
f , i.e. g = h̃ ∗ f , h̃ ∈ H. In the noiseless case, the minimizer h∗ of (8) clearly
corresponds to h̃. In the presence of noise, the acquisition model follows (1) and
the minimizer h∗ will partially compensate for the introduced noise.

Combining (1) and (8), we obtain

h∗ = min
h

‖fi ∗ h − fi ∗ h̃ − n‖2 =

= min
h

‖fi ∗ (h − h̃) − n‖2

and the optimal h∗ can be written as

h∗ = h̃ + c, (12)

where
c = arg min

h
‖fi ∗ h − n‖2, s.t. h ∈ H

The element c serves as a compensation for noise n. The problem is, that noise is
Gaussian-distributed, hence c and consequently h∗ would be very likely a better
minimizer if allowed to have negative values.

Solution to this is to ignore the constraints (11). The quadratic problem in
(10) then simplifies to the classical least squares method that is solved by a
system of linear algebraic equations as I(f, g) = ||Uf (UT

f Uf )−1UT
f g − g||.

Omitting the constraints of blur model (11) means, that we are projecting g
onto Span(Sf ) instead of convex set Cf . On one hand, this can improve classifi-
cation of noisy images, on the other hand, we loose some discrimination power.
As shown in Sect. 7, there are real-life inspired datasets where the constrained
version outperforms the unconstrained one. Figure 3 illustrates the difference
between projecting g onto Cf and Span(Sf ).

To combine benefits of both versions, we propose to relax the non-negativity
constraint but still to keep the brightness-preservation constraint. There are
many possibilities how to achieve that. One way is to introduce a penalization for
attaining negative value in the minimization problem (10). Other option, which
is even simpler, is to change h ≥ 0 to h > −ε, where ε becomes a new parameter
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in the algorithm. During experiments, this approach proved to improve results
though the change was not significant and choosing incorrect ε could worsen the
recognition rate.

Fig. 3. Simple 2D schematic showing impact of constraints on classification. Convex
sets Cf and Cf̃ are two line segments. With constraints in effect, g = f ∗ h + n is

assigned to the template image f as ‖g−Pf‖2 < ‖g−Pf̃‖2. Without the non-negativity

constraint, ‖g − Pf̃‖2 becomes smaller than ‖g − Pf‖2 and f̃ would be incorrectly
selected.

Depending on the task we are solving and given set of templates, we have to
decide, whether we want to solve unconstrained problem (10) and have better
robustness to noise or if we employ constraints (11) and have potentially better
results for templates whose convex sets are close together.

6 Blur Size

The main advantage of our method is its generality. We are not bound by any
specific blur class and it does not require any input parameters except the blur
size. We may attempt to estimate the blur size from given data as described,
e.g., in [2] and [14]. This could lead to different blur size settings for each query
image even though they were all acquired the same way and its safe to assume
that the actual blur support is the same for all of them. Such case would mean
unnecessary computational cost.

First, let us discuss the influence of overestimating blur size. It follows imme-
diately from the construction of convex sets and the matrix form of the mini-
mization problem (10) that estimated blur will be the original blur padded with
zeroes. Overestimation thus has a negligible effect on the recognition rate and
only increases the computational cost since blur size determines the dimension
of the problem (10).

We conducted an experiment to quantify the effect of underestimating blur
size. Results show (see Fig. 6), that even with over 30% underestimation, the
classification still maintains good performance. For most cases it is sufficient to
estimate the blur size only once for each given dataset of templates.

7 Experiments

We prepared two datasets, the first one consisting of handwritten binary digits
(0–9) from MNIST database [12] and the second one consisting of 38 faces from
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YaleB database [9]. We corrupted all images by blur of various sizes and two types
– motion (M) and Gaussian blur (G) – and added Gaussian white noise with SNR
ranging from 50 dB to 1 dB (see Fig. 4). We compared the proposed projection
method (PM) with the method of Gopalan (GM), Zhang (ZM) and with moment-
based blur invariants (MI). Two types of moment invariants were used depending
on the considered blur. For motion blur, invariants to centrosymmetric blur [5]
and for Gaussian blur, invariants to Gaussian blur [11] were used to ensure
optimal performance. In all cases, the maximum order of moments was manually
tuned to produce the best results. To mimic realistic usage of tested methods,
we normalized both template and query images to have unit mean value. This
makes recognition generally more difficult but it is necessary in practice.

Fig. 4. Examples of the face and digit images used in experiments: clear database (top
row) and corrupted query images (bottom).

Tables 1 and 2 summarize the success rate of the classification with changing
SNR and blur size, respectively. Compared to the other methods, the proposed
method shows excellent robustness to noise, type of the blur and also to the
amount of blur. Only in the case of Gaussian blur, MI slightly outperforms the
proposed method. This is probably because the MIs were designed specifically
for Gaussian blur, while our projection method does not employ any assumption
about the kernel parametric form. However in the case of motion blur, small dis-
cretization effects break the centrosymmetry assumption and the performance
of MI starts to deteriorate. Zhang’s method performs better for Gaussian blur as
it is derived for this type of blur. Maybe surprisingly Gopalan’s method shows
a relatively poor recognition rate. By construction, it is less dependent on the
type of blur compared to the Zhang and MI. Our hypothesis is that the Rieman-
nian distance between often overlapping subspaces is not a good blur-invariant
measure.

We compared the performance of all methods using regular desktop PC.
Time required for one query-template comparison was measured, results are
shown in Fig. 5. Gopalan’s method was implemented based on the “Algorithm
1” in [10] using CS decomposition which is very slow. The time for computing
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MI is affected also by the maximum order of moments computed. The highest
order used in the previous experiment was used for measuring the computational
time. Note that the moment-based algorithm is independent of blur size and the
computational time is not affected by it. With increasing image and blur size, MI
becomes more time efficient. It outperforms the Projection method for images
600 × 60 px with blur 50 × 50 px.

Fig. 5. Time [s] needed to compare one query image to one template: (top) dependency
on image size with fixed blur size of 15 × 15 px and (bottom) dependency on blur size
with fixed image size 40 × 40 px. The Y axis is shown in logarithmic scale.

The graph in Fig. 6 shows that even when we estimate the blur support to
be less than 70% of the original one, we still achieve perfect accuracy with the
proposed method. For this experiment we used uniform blur as it is the worst
possible scenario for underestimated support.
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We also tested our hypothesis from Sect. 5, that omitting the non-negativity
constraint improves recognition results for noisy images and repeated the exper-
iment for the projection method without the non-negativity constraint. For
brevity, we refer to this method as the unconstrained variant and to the original
projection method as the constrained variant. For low-level noise, both variants
perform the same. However for SNR <5 dB, the constrained variant starts to
misclassify query images slightly more often.

Table 1. The recognition rate [%], digits dataset was used with image size 28 × 28 px
and blur size 15 × 15 px.

SNR [dB] GM (G) ZM (G) MI (G) PM (G) GM (M) ZM (M) MI (M) PM (M)

50 99 100 100 100 100 94 100 100

20 67 96 100 100 98 80 99 100

10 45 28 100 100 81 23 85 100

5 38 28 100 98 58 22 79 100

1 35 27 97 86 55 18 53 96

Table 2. The recognition rate [%], faces dataset was used with image size 40 × 35 px
and SNR 20 dB.

Blur size GM (G) ZM (G) MI (G) PM (G) GM (M) ZM (G) MI (M) PM (M)

7× 7 74 100 100 100 99 100 87 100

11× 11 25 86 100 100 76 72 71 100

15× 15 5 48 95 100 40 17 45 100

The second experiment demonstrates the opposite scenario when the con-
strained variant outperforms the unconstrained one. A special dataset was pre-
pared that consists of the same handwritten digits as in the first experiment, but
this time we added a frame – either a circle or a square. This was motivated by a
problem of traffic-sign recognition where the actual shape of the frame changes
the meaning of the sign and it is thus important to correctly match not only the
symbol (number), but the frame as well. Sample images are shown in Fig. 7.

Images of size 41 × 41 px were degraded by motion blur of size 25 × 25 px
and noise with SNR 5 dB was added. The constrained variant maintained 100%
recognition accuracy while the unconstrained variant achieved only 85% accu-
racy. In all the failure cases, the unconstrained algorithm matched the query
image with a template containing the correct symbol but a wrong frame. This
is in accordance with the illustration in Fig. 3.
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Fig. 6. The recognition rate [%] of projection method w.r.t. underestimation of blur
support. Digits dataset was used with uniform blur of size 11 × 11 (blue) and 15 × 15
(yellow), both with SNR = 20 dB. (Color figure online)

Fig. 7. Example of clean images (left) and their degraded versions (right) used to test
the effect of the constrains in the projection method.

8 Conclusion

We showed that the projection onto a convex set representing the template image
with its all admissible blurred variants can be used to construct blur-invariant
measure for arbitrary blur of finite support. Experiments demonstrated high
robustness and recognition rate on a par with the state-of-the-art method of
moment invariants while providing better generality. The proposed method is
easy to implement and requires only one parameter, which is the maximum
expected blur size. A possible future improvement to the proposed method is to
introduce regularization in the optimization problem.
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