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Pod vodárenskou věž́ı 4, 182 08 Praha 8, Czech Republic

{flusser,suk}@utia.cas.cz
2 School of Automation, Northwestern Polytechnical University,

127 West Youyi Road, Xi’an 710 072, Shaanxi, People’s Republic of China
bo.yang@hotmail.fr

https://www.utia.cas.cz

Abstract. We propose a new kind of moment invariants with respect to
an affine transformation. The new invariants are constructed in two steps.
First, the affine transformation is decomposed into scaling, stretching and
two rotations. The image is partially normalized up to the second rota-
tion, and then rotation invariants from Gaussian-Hermite moments are
applied. Comparing to the existing approaches – traditional direct affine
invariants and complete image normalization – the proposed method is
more numerically stable. The stability is achieved thanks to the use of
orthogonal Gaussian-Hermite moments and also due to the partial nor-
malization, which is more robust to small changes of the object than the
complete normalization. Both effects are documented in the paper by
experiments. Better stability opens the possibility of calculating affine
invariants of higher orders with better discrimination power. This might
be useful namely when different classes contain similar objects and can-
not be separated by low-order invariants.

Keywords: Affine transformation · Invariants · Image normalization ·
Gaussian-Hermite moments

1 Introduction

Recognition of objects that have undergone an unknown affine transformation
has been the aim of extensive research work. The importance of affinely-invariant
recognition techniques is mainly due to the fact, that 2D images are often projec-
tions of 3D world. As such, 2D images of 3D objects are perspective projections
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of their “ideal” views. Since perspective transformation is non-linear and dif-
ficult to cope with, in simplified imaging models it is often modelled by affine
transformation. Such an approximation is justified if the object size is small com-
paring to the distance from the camera, because the perspective effect becomes
negligible. For this reason, affine invariants play an important role in the view-
independent object recognition and have been widely used not only in tasks
where image deformation is intrinsically affine but also commonly substitute
projective invariants.

Among the existing affine invariants, moment invariants are the most fre-
quently studied, cited in the literature and used in applications (see [9] for
an exhaustive survey). Their history can be traced back to Hilbert and other
famous mathematicians of the last century [10,11,14,21,28,29], who elaborated
the traditional theory of algebraic invariants. Currently, we may recognize two
major approaches to the design of affine moment invariants (AMIs). In direct
derivation, explicit formulas for the invariants are found by various techniques.
Reiss [19] and Flusser and Suk [8] adopted the algebraic theory, Suk and Flusser
applied graph theory [25,27] and Hickman proposed the method of transvec-
tants [13]. All reported AMIs are composed of geometric moments, which are
simple to work with theoretically but they are unstable in numerical implemen-
tation. When calculating them, we face the problem of precision loss due to
the floating-point underflow and/or overflow. In theory of moments, a popular
way of overcoming numerical problems is the use of orthogonal (OG) moments
(i.e. moments defined as projections on an orthogonal polynomial basis) instead
of the geometric ones. Since OG polynomials have a bounded range of values
and can be calculated in a stable way by recurrent relations [4], the precision
loss is by several orders less than that of geometric moments. Unfortunately, all
known sets of OG polynomials are transformed under an affine transformation
in so complicated manner, that a direct derivation of OG AMIs has not been
reported yet.

Image normalization is an alternative way of obtaining invariants. The object
is brought into certain canonical (also called normalized) position, which is
independent of the actual position, rotation, scale, and skewing. The canoni-
cal position is usually defined by constraining the values of some moments, the
number of which is the same as the number of free parameters of the transforma-
tion. Plain moments, calculated from the normalized object, are affine invariants
of the original object. Affine image normalization was first proposed by Rothe
et al. [20] and followed by numerous researchers [18,22,26,39].

Normalization approach seems to be attractive because of its simplicity. We
can override the numerical problems by taking OG moments of the normalized
image. Lin [16] used Chebyshev moments, Zhang [38] used Legendre moments,
and Canterakis [3], Mei [17] and Amayeh [1] adopted Zernike moments for this
purpose. Another advantage is that no actual spatial transformation of the orig-
inal object is necessary. Such a transformation would slow down the process
and would introduce resampling errors. Instead, the moments of the normalized
object can be calculated directly from the original object using the normaliza-
tion constraints. However, a major drawback of image normalization lies in the
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instability of the canonical position. Two visually very similar shapes may
be brought, under the same normalization constraints, to distinct canonical
positions. The difference in canonical positions propagates into all normalized
moments and these shapes are no longer recognized as similar. This used to be
the main argument against the normalization method.

In this paper, we propose an original “hybrid” approach, which should sup-
press the instability while keeping all the positive aspects of normalization,
namely the possibility of working with OG moments. The main idea is to decom-
pose affine transformation into anisotropic scaling and two rotations, normalize
w.r.t. the first rotation and anisotropic scaling only, and then use moment invari-
ants from OG moments w.r.t. the second rotation. Thanks to using OG moments,
this method is numerically more stable than direct AMIs. At the same time, skip-
ping the normalization w.r.t. the second rotation makes the canonical position
robust to small changes of the object. Figure 1 shows the differences between
these three approaches graphically.

Fig. 1. Three approaches to reaching affine invariance. Direct affine invariants (top),
partial normalization (middle), and complete normalization (bottom). We propose to
use partial normalization followed by applying Gaussian-Hermite rotation invariants.

2 Affine Transformation and Its Decomposition

Affine transformation in 2D is defined as

x′ = Ax + b (1)

where A is a regular 2 × 2 matrix with constant coefficients and b is a vector
of translation. Normalization w.r.t. translation is achieved easily by shifting the
coordinate origin into the object centroid. Thus, b vanishes and we will not
consider it in the sequel.

Normalization w.r.t. A is based on a decomposition of A into a product
of single-parameter matrices and subsequent normalizations w.r.t. each matrix.
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Several decompositions can be used for this purpose. Rothe et al. [20] proposed
two different decompositions – XSR decomposition into skewing, nonuniform
scaling and rotation, and XYS decomposition into two skews and nonuniform
scaling. Their method was later improved by Zhang [39], who studied possible
ambiguities of the canonical position. Pei and Lin [18] tried to avoid the skew-
ing matrix and proposed a decomposition into two rotations and a nonuniform
scaling between them. A generalized and improved version of this decomposition
was later published by Suk and Flusser [26]. We apply the decomposition scheme
from [26] in this paper. We recall its basics below.

Affine matrix A is decomposed as

A = R2TR1S (2)

where S is a uniform scaling, R1 is the first rotation, T is so-called stretching
which means T is diagonal and T11 = 1/T22, and R2 is the second rotation. If A
is regular, then such a decomposition always exists and is unique. If det(A) <
0, then A performs also a mirror reflection (flip) of the object and additional
normalization to the mirror reflection is required. This case is however rare and
we will not consider it in the sequel (we refer to [26] for detailed treatment of
this case).

Now we apply the normalization from [26] but only to S, R1 and T. The
normalization constraints are defined by prescribing the values of certain low
order central moments. Moments of the original image are denoted as μpq, those
of the normalized image as μ′

pq

μpq =
∫ ∫

xpyqf(x, y)dxdy (3)

(note that the image centroid has been already shifted to (0, 0)). Normalization
to scaling S is constrained by μ′

00 = 1. Normalization to rotation R1 is achieved
by the principal axis method (see [9], Chap. 3), when we diagonalize the second-
order moment matrix and align the principal eigenvector with the x-axis. This
is equivalent to constraints μ′

11 = 0 and μ′
20 > μ′

02 and leads to the normalizing
angle

α =
1
2

arctan
(

2μ11

μ20 − μ02

)
. (4)

(If μ11 = 0 and μ20 = μ02, then we consider the image is already normalized to
rotation and set α = 0; if μ11 �= 0 and μ20 = μ02, we set α = π/4.) Normalization
to stretching is done by imposing the constraint μ′′

20 = μ′′
02.

In traditional “complete” normalization, the last normalization step – nor-
malization w.r.t. R2 – is done by means of higher-order moments, which may
lead to an unstable canonical position. An example of such instability is shown
in Fig. 2. We used a T-like shape (we assumed it had already passed the nor-
malization w.r.t. S, R1 and T) and varied its width t from 68 to 78 pixels.
We normalized it w.r.t. rotation R2 by means of third-order moments as pro-
posed in [26]. The canonical positions for t = 68, 73 and 78 pixels, respectively,
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are shown in Fig. 2 (b)–(d). We can see they differ from one another signifi-
cantly, which leads to a strong discontinuity of any features calculated from the
canonical form. In this paper, we propose to skip the last normalization and
calculate rotation invariants from the canonical position achieved by normal-
ization w.r.t. S, R1 and T. A similar idea was proposed by Heikkilä [12], who
used Cholesky factorization of the second-order moment matrix for derivation
of partial normalization constraints and then continued with geometric rotation
moment invariants from [7].

Fig. 2. The test shape of the thickness t = 73 before the normalization to R2 (a). The
canonical positions after the R2-normalization has been applied for t = 68 (b), t = 73
(c), and t = 78 (d).

The rotation invariants we recommend to use are composed of Gaussian-
Hermite (GH) moments. A brief introduction to GH moments along with an
explanation why we chose GH moments for this purpose is given in the next
section.

3 Gaussian–Hermite Moments and Invariants

Gaussian–Hermite moments and their use in image processing were exhaustively
studied in [2,6,23,24,30,32–34,36]. Hermite polynomials are defined as

Hp(x) = (−1)p exp (x2)
dp

dxp
exp (−x2). (5)

They are orthogonal on (−∞,∞) with a Gaussian weight function

∞∫

−∞
Hp(x)Hq(x) exp (−x2)dx = 2pp!

√
πδpq (6)

and they can be efficiently computed by the following three-term recurrence
relation

Hp+1(x) = 2xHp(x) − 2pHp−1(x) for p ≥ 1, (7)
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with the initial conditions H0(x) = 1 and H1(x) = 2x. For the definition of
Gaussian–Hermite moments, we scale Hermite polynomials by a parameter σ
and modulate them by a Gaussian function with the same parameter. Hence,
the Gaussian–Hermite moment (GHM) ηpq of image f(x, y) is defined as

ηpq =

∞∫

−∞

∞∫

−∞
Hp

(x

σ

)
Hq

( y

σ

)
exp

(
−x2 + y2

2σ2

)
f(x, y)dxdy. (8)

The most important property of the GHMs for object recognition, making
them “prominent” OG moments, is the following one. GHMs are transformed
under an image rotation in the same way as geometric moments. In particular,
given a functional I(f, μpq), p, q = 0, 1, · · · , r which is invariant under rotation
of image f , then functional I(f, ηpq) is also an invariant. This theorem was
discovered by Yang et al. [36]. Recently, the proof has been given in [31] that
GHMs are the only orthogonal polynomials possessing this property. The Yang’s
theorem offers an easy and elegant way to design rotation invariants from GHMs
of arbitrary orders [34]. In the classical geometric moment invariants from [7]
that were proven to form an independent and complete set

Φpq =

⎛
⎝ q0∑

k=0

p0∑
j=0

(
q0
k

)(
p0
j

)
(−1)p0−jip0+q0−k−jμk+j,p0+q0−k−j

⎞
⎠

p−q

·
p∑

k=0

q∑
j=0

(
p

k

)(
q

j

)
(−1)q−jip+q−k−jμk+j,p+q−k−j

(9)

where p ≥ q and p0, q0 are fixed user-defined indices such that p0 − q0 = 1,
we only replace all μpq’s with corresponding ηpq’s. These invariants are finally
applied to the partially normalized image.

The idea of partial normalization is not fixed to any particular type of
moments. In principle, any moments generating rotation invariants could be
employed here. However, our experiments show that the GHMs perform better
than all tested alternatives. We could use, similarly to [12], directly geometric
moment invariants (9) but OG moments in general ensure better numerical sta-
bility and hence offer the possibility of using higher-order invariants [9]. Among
OG moments, the moments orthogonal on a unit circle such as Zernike and
Fourier-Mellin moments, provide an immediate rotation invariance and could
be used here as well. Their application, however, requires mapping the image
inside the unit circle, which introduces additional errors due to resampling and
requires an extra time. So, moments orthogonal on a square appear to be an opti-
mal choice because they are inherently suitable to work on a pixel grid directly.
Finally, as proved in [31], GHMs are the only moments orthogonal on a square
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and yielding rotation invariants in the explicit form1. In this sense, GHMs pro-
vide an optimal solution.

4 Partial Normalization Method

In this section, we present the entire method step by step.

1. Let f(x, y) be an input image, possibly deformed by unknown affine trans-
formation A. Compute the normalization parameters w.r.t. partial matrices
S, R1 and T as described in Sect. 2. Do not transform/resample the image
f(x, y), do not generate the normalized image f ′(x, y).

2. Calculate the transformed coordinates
(

x′

y′

)
= TR1S

(
x
y

)
. (10)

3. Calculate the GHMs (8) of the original image f(x, y) with the Gaussian-
Hermite polynomials computed on the normalized coordinates from the pre-
vious step. To do so, we have to know how GH polynomials are transformed
under rotation and scaling. Fortunately, both relations are well known: GHMs
are under rotation transformed as geometric moments [36]

η′
pq =

p∑
k=0

q∑
j=0

(
p

k

)(
q

j

)
(−1)j sinp−k+j α cosq+k−j α ηk+j,p+q−k−j . (11)

The behavior of GHMs under scaling was analyzed in [35]. Scaling affects
not only the coordinates of Hermite polynomials but also the variance of the
Gaussian modulation, which must be compensated by dividing the coordi-
nates by

√
μ00. Since scaling is separable, we need just a 1D transformation

for both 2D scaling and stretching. Thanks to this, we obtain the GHMs of
f ′(x, y) without actually creating the normalized image.

4. Substitute the GHMs into (9) and calculate Gaussian-Hermite affine moment
invariants (GHAMIs) of f(x, y). They constitute the feature vector for invari-
ant image description and classification.

5 Numerical Experiment

In this section, we test how the GHAMIs perform numerically and compare them
to their two closest competitors, which are direct AMIs from geometric moments

1 The reader may recall the so-called “indirect approach” to constructing rotation
invariants from Legendre [5,15] and Krawtchouk [37] moments. The authors basi-
cally expressed geometric moments in terms of the respective OG moments and
substituted into (9). They ended up with clumsy formulas of questionable numerical
properties.
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Fig. 3. Original test images: (a) Lena, (b) Lisa.

Fig. 4. Examples of the transformed and noisy test images: (a) Lena, (b) Lisa.

by Reiss and Suk [19,27] and partial normalization along with rotation invari-
ants by Heikkila [12]. We choose direct AMIs for comparison since they are
well-established and most cited affine invariants based on moments. Heikkila’s
method was chosen because it uses a similar idea of a partial normalization as we
do. Comparison to other affine invariant methods is mostly irrelevant or unfair.
For instance, the instability of complete normalization methods illustrated in
Fig. 2 so much degrades their invariants, that these methods are seriously handi-
capped, even if the instability occurs on certain objects only. That is why we did
not include any complete normalization method in this experimental study. We
took two commonly used test images (see Fig. 3), generated 200 random affine
transformations of both and added heavy Gaussian white noise of SNR = 0 dB
to every image (see Fig. 4 for an example). For each image, we calculated a com-
plete set of invariants up to the 12th moment order by three methods mentioned
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Fig. 5. The subspaces of two invariants of order 12 out of 85 invariants calculated: (a)
GHAMIs, (b) AMIs, (c) PN-GRIs.

above. We choose the order 12 as a compromise – it allows to demonstrate the
higher-order properties while still being numerically tractable. The complete set
up to the 12th order consists of 85 independent invariants.

As a quality criterion, we chose the between-class separability measured by
Mahalanobis distance

M =
√

(m1 − m2)T (S1 + S2)−1(m1 − m2), (12)

where mi is the class mean and Si is the covariance matrix. To demonstrate the
higher-order effects, we used only the invariants of the highest (i.e. the 12th in
this case) order. There are 13 invariants of the 12th order in each method.

The best separability was achieved by the proposed method using GHAMIs
(M = 173), the worst one was provided by partial normalization and geometric
rotation invariants (PN-GRIs, M = 103), and the AMIs performed somewhere
in between yielding M = 131. The best performance of the GHAMIs is because
the geometric moments, employed in the other two reference methods, suffer
from the precision loss when calculating higher-order moments. The subspaces
of two invariants are shown in Fig. 5 for illustration. It should be noted, that the
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separability in the case of GHAMIs is influenced by the modulation parameter
σ. We tested several settings and found out that σ = 0.525 maximizes the
Mahalanobis distance between these images.

While for the evaluation by Mahalanobis distance between two classes we
used only the invariants of order 12, the graphs in Fig. 6 show how the dispersion
of an individual class grows as the moment order increases from 3 to 12. We can
see that the growth of the mean standard deviation has an exponential character
for AMIs and PN-GRIs, while staying reasonably low in the case of GHAMIs. To
make this comparison as fair as possible, we compensated the differences in the
range of values by dividing of the AMIs values by 10 and those of the PN-GRIs
by 100.
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Fig. 6. Mean standard deviations of the GHAMIs, AMIs, and geometric rotation
moment invariants for the Lena cluster. The average was calculated over all invariants
of each order. Note the rapid growth of AMIs and PN-GRIs caused by the precision
loss.

6 Conclusion

We proposed a new kind of moment invariants w.r.t. affine transformation. The
new invariants are constructed in two steps. First, the image is partially nor-
malized up to a rotation, and then recently proposed rotation invariants from
Gaussian-Hermite moments are applied. Comparing to the existing approaches
– direct affine invariants and complete normalization - the proposed method is
more numerically stable and opens the possibility of using affine invariants of
higher orders than before. This might be useful namely when different classes
contain similar objects and cannot be separated by low-order invariants.
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