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Abstract
Image and video data acquired by portable devices such as mobile phones are degraded by noise and blur due to the small
size of optical sensors in these devices. A wide range of image restoration methods exists, yet feasibility of these methods
in portable platforms is not guaranteed due to limited hardware resources on such platforms. The paper addresses this
problem by focusing on denoising algorithms. We have chosen two representatives of denoising methods with state-of-the-art
performance, and propose different parallel implementations and algorithmic simplifications suitable for mobile phones. In
addition, an extension to resolution enhancement is presented including both visual and quantitative comparisons. Analysis
of the algorithms is carried out with respect to the computation time, power consumption and output image quality.

Keywords Image restoration · Denoising · Super-resolution · Numerical optimization · Portable devices

1 Introduction

Enhancement of image and video quality by restoration
methods is one of the most important challenges of mobile
imaging since noise and blur are always present in real
world images. Appropriate algorithms able to diminish
noise and sharpen images significantly increase resulting
image quality and make the portable device camera even
more attractive for customers. However, these algorithms
can be computationally expensive and often the most power
consuming parts in applications.

To meet this challenge, it is nowadays common to inte-
grate several different computing devices in a single chip
each accelerating specific algorithms. Specialized image
signal processors (ISPs) have been shown to bring forth
performance and power efficiency gains. Typically, indus-
trial ISPs power consumption range from 150 to 250 mW
depending on the resolution and frame rate [3]. This sets the
commercial target for the power consumption level of algo-
rithms running in the camera preview mode.
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Designing, implementing, and tuning new algorithms for
ISPs has remained a high-cost exercise. Therefore, a more
general purpose solution such as mobile graphics process-
ing units (GPUs) that handle image processing tasks is
desired. Here, scalability of the solution using mobile GPUs
helps to achieve improved energy efficiency and low power
dissipation which is needed when dealing with battery pow-
ered devices. Therefore, parallel implementation using for
example the OpenCL framework allows to cut down time-
to-market and related costs.

In this context, analysis of the algorithm efficiency with
respect to the achievable enhancement quality and usage
of different mobile SoC (system on chip) computing units
was realized on the multi-core ARM CPU, ARM NEON,
and GPU platforms. This includes finding the optimal algo-
ritmization, design patterns considering a good trade-off
between the performance/throughput, energy efficiency and
reuse via programmability. From the implementation point
of view, all targets should be supported from the same
C/C++/OpenCL application source code, and the process-
ing time and the power consumption must be predictable,
when the algorithm is integrated to end-users applications.

In this paper image restoration is the subject of such algo-
rithm analysis. Image denoising is one of the fundamental
digital image processing challenges, it has been studied for
decades, yet it is still a valid research topic as the theoreti-
cal limits of this type of restoration are not well understood
[5, 14]. The key idea of denoising is to average pixels with
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similar intensities that ideally differ only by noise. By aver-
aging similar pixels the noise variance decreases without
further blurring the image. The key problem of denoising is
to determine which pixels to average. There are generally two
ways to address this problem: spatial averaging and tempo-
ral averaging. The first exploits self-similarity in images and
searches for similar patches within a single image. The lat-
ter takes multiple images of the same scene and searches for
similar pixels by spatially aligning the images.

Spatial averaging methods range from simple and fast
algorithms, such as basic filtering using Gaussian mask or
wavelet thresholding, to state-of-the-art and complex algo-
rithms based on non-local means principles (NLMS) [2].
The idea of current methods is to cluster similar patches
within a neighbourhood window and denoise them simulta-
neously. The patches to be denoised are accumulated in a
buffer and pixel-wise normalized with respect to the num-
ber of overlapping patches. The baseline for high-quality
image denoising using patches remains block matching with
3D filtering (BM3D) [6]. Later, non-local Bayes approach
was proposed [13], which directly solves for the most likely
patches by matrix inversion, which outperforms BM3D for
vector images. A wide class of patch-based methods makes
use of dictionaries for sparse representation of the patches [7].
Recently, many methods using neural networks appeared [4].

The second category - temporal averaging - has an advan-
tage over spatial averaging. It combines a set of images and
therefore the latent image is recovered with less blurring
compare to spatial averaging. Averaging multiple images
however requires accurate spatial alignement (image reg-
istration), otherwise blurring due to misregistration tends
to appear. To achieve accurate registration, a four-step pro-
cedure [20] is typically applied: feature detection, feature
matching, transform model estimation, and final image
resampling and transformation. If the image viewpoints are
close to each other and geometric transformations are sub-
tle then it is more convenient to register via optical flow [9].
In addition, temporal averaging is naturally extendable to
resolution enhancement, i.e. super-resolution [18]. Images
registered with sub-pixel accuracy are warped on a reference
high-resolution grid, averaged, and the final high-resolution
image is deconvolved with a sensor blur estimate [8].

From each category one denoising method was chosen.
These methods were not previously implemented on
portable platforms due to their complexity. To tackle the
problem of complexity, we propose appropriate algorithmic
simplifications and different parallel implementations.

The paper is organized as follows. Section 2 provides
the mathematical formulation of denoising and discusses in
detail the selected spatial and temporal methods. Section 3
shows different implementations viable on mobile plat-
forms. Section 4 covers experiments comparing the quality

of denoised images, computational time and power con-
sumption. The final Section 5 concludes the paper.

2 Image Denoising

The objective of image denoising algorithms is to reduce
noise while preserving details in the image. The general
model for an image degradation caused by additive noise
and blurring is

g(x, y) = (h ∗ f )(x, y) + n(x, y), (1)

where g(x, y) is an observed noisy image, f (x, y) is an
original image, h(x, y) is the sensor PSF (Point Spread
Function), and n(x, y) is additive noise. As mentioned ear-
lier there are two general categories of denoising methods:
spatial averaging and temporal averaging. From each cate-
gory we have selected one representative, which we analyze
from the algorithmic and implementation perspective.

In the category of spatial averaging, the non-local
means algorithm (NLMS) [2] is one of the most well-
known methods for image denoising. The implementation
of the patch based version (PNLMS) of this algorithm for
portable devices is a computationally cheaper alternative
than, e.g., the BM3D method [6]. Therefore, PNLMS has
been considered for portable device implementation here.

In the case of temporal averaging, we extend the single-
image model (1) to multiple acquisitions of K images gk ,
k = 1, . . . , K , as

gk(x, y) = D(h ∗ Wkf )(x, y) + nk(x, y) , (2)

where Wk denotes a geometric transformation (warping) of
the k-th image to the reference grid and D is a sampling
operator that models ideal sampling of the camera sensor.
The reference grid is typically aligned with one image in the
set, let us denote it gr , and then Wr is the identity operator.
The sampling operator is defined as multiplication by a sum
of delta functions placed on a grid. Denoising by temporal
averaging requires accurate estimation of Wk’s. We assume
images captured in the camera burst mode which results in
small misalignment among images and we propose regis-
tration via patch-wise rigid optical flow (PROF). To further
improve the image quality, we apply super-resolution (SR).
In the model (2) this can be seen as inverting the effect of
sampling operator D and sensor blur h.

2.1 Spatial Averaging – PNLMS Algorithm

In contrast to filters considering only neighboring pixels
of the reference pixel, the NLMS algorithm [2] compares
non-local pixel patches to each other. Typically fixed size
patches such as 7 × 7 pixels are used. Non-locality of
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the algorithm comes from the fact that the patches can in
theory locate anywhere in the image. In practice, the patch
locations are limited inside a local search window such as
21 × 21 pixels in order to reduce computations.

The patch wise algorithm weights pixel values for each
square patch Bk centered at the location k in the image I as
follows

B̂k =
∑

l∈I

g(Bl)w(Bk, Bl) (3)

where g(Bl) is the unfiltered image patch centered at the
location l. The weighting factor Wk for the patch k is

Wk =
∑

l∈I

w(Bk, Bl) (4)

and w(Bk, Bl) is the weighting function which is a Gaussian

w(Bk, Bl) = e
− ‖g(Bk)−g(Bl )‖2

2
σ2 . (5)

This function computes the sum of squared differences
between neighboring patches and the reference patch.
Therefore, each denoised output patch is obtained by
weighted averaging of neighboring patches. In general,
larger weights are given to patches that are similar to
the reference patch. Parameter σ defines the strength for
filtering.

After applying this procedure for all patches in the image,
we average all the estimates to construct the final denoised
image. For all pixels i in the image, we aggregate all
overlapping patches as follows

f̂ (i) =
∑

B̂k∑
Wk

(6)

where
∑

B̂k is the sum of weighted patches contributing to
pixel i,

∑
Wk is the sum of patch weights contributing to

pixel i and f̂ (i) is the denoised pixel value at the location
i in the image. Using overlapping image patches, we can
avoid block effects in the patch boundaries. However, it is
also possible to use non-overlapping patches when targeting
computationally fast implementations. In this case, we also
avoid synchronizing memory writes to the final output
image if multi-threading is utilized.

2.2 Temporal Averaging – PROF-SR Algorithm

The proposed temporal averaging method consists of two
main parts; in the first step the images are geometrically
registered by means of the patch-wise rigid optical flow
(PROF) and in the second step the enhancement itself is
realized using the super-resolution (SR) approach.

2.2.1 PROF Registration

Computing dense optical flow is time consuming on
mobile devices. Therefore, we propose to restrict ourselves
to rigid transformations and perform calculations patch-
wise. The described method is inspired by [15] with
several simplifications and modifications. It is possible to
use homography (projective transformation) with optical
flow leading to linear equations when restricting to small
homography deformations only. Let the reference frame be
the r-th image gr from the set, and we register the other
frames gk’s to the reference one. The optical flow constraint
at the location i is

gx(i)�x(i) + gy(i)�y(i) + gt (i) = 0 . (7)

where gx and gy denote derivatives of the reference image
gr with respect to spatial coordinates, and gt = gk − gr . To
simplify the notation, we will further omit the pixel location
index i. �x and �y are the shifts of corresponding pixels
between the two images. We assume that in every image
patch the shifts are parametrized by a homography P and
this leads to

[gx, gy, gt − xgx − ygy]P[x, y, 1]T = 0 , (8)

where the column vector [x, y, 1]T denotes homogeneous
coordinates of the location i and P is the 3 × 3 homography
transformation matrix. The same equation exists for every
pixel in the image patch and the only unknowns are the nine
homography parameters of P. Let p denote these unknown
parameters as a column vector. Rewriting the equation to
extract the unknowns, we obtain

[xgx, ygx, gx, xgy, ygy, gy, xg′, yg′, g′]p = 0 , (9)

where g′ = gt − xgx − ygy . Stacking the equations for
every pixel, we construct a “tall” matrix with 9 columns for
homography parameters and the number of rows equal to
the number of pixels in the patch. We apply singular value
decomposition and the right singular vector corresponding
to the smallest singular value is the solution.

Patch-wise estimated homographies are then used to
construct warping operators Wk in Eq. 2. Note that here
we assume that the order of convolution and warping is
interchangeable, which is not precisely true. For linear
transformations the assumption is correct. For non-linear
transformations, which includes homography, interchanging
operators transfers the original convolution to space-variant
convolution, however the PSF variations are subtle and can
be ignored in practice. The denoised image f̂ is estimated
as the mean of registered images, i.e.,

f̂ (i) = 1

K

K∑

k=1

W−1
k gk(i) . (10)
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Instead of the mean one can calculate the median to have
a more robust estimator yet at a cost of higher memory
consumption (we need all warped images to calculate the
median).

2.2.2 Non-iterative SR Algorithm

Super-resolution is an inverse problem for the model
(2). Sampling operator D is ill-conditioned, and for a
single image (K = 1), the inverse problem is ill posed.
If the number of images is large enough so that the
number of unknowns (size of f ) is smaller than the
number of equations in Eq. 2 then the inverse problem
is overcomplete and thus better posed. Full SR methods
try to solve such inverse problems. For mobile platforms
this is however not feasible, since the inverse problems
are complex and require iterative optimization methods
that are computationally demanding. Instead, we apply an
approximative method which is simple and not iterative with
the quality performance similar to full SR methods.

When Wk’s are estimated, the model (2) is approximately
given by

1

K

K∑

k=1

W−1
k DT gk = h ∗ f , (11)

where DT is an upsampling operator and W−1
k DT performs

warping of gk on a high-resolution grid. Again, the mean
can be replaced by the median to increase robustness to
outliers which are produced, e.g., by incorrect registration
or saturated pixels.

Finally to estimate the original high-resolution image f ,
a deconvolution step, which in our case is the Wiener filter,
is applied to remove the effect of the sensor PSF h.

3 Implementation

In this section we discuss implementation details of the
PNLMS and PROF-SR algorithms.

3.1 PNLMS Implementation

Three implementations of the PNLMS algorithm were
made for different targets: multi-threaded C/C++ for CPU,
parallelized ASM with NEON extensions, and OpenCL
for GPU. Both C/C++ and ASM implementations are
able to run on ARM CPU cores. The GPU version was
implemented using OpenCL API.

3.1.1 Mobile Multi-core CPU

Mobile processors are designed to consume less power and
dissipate less heat than desktop processors, while using

a smaller silicon size. To preserve battery life, mobile
processors can work with different power levels and clock
frequencies. The operating system can set cores on-line
or off-line depending on computational load and thermal
status. For example, if the device gets heated for a long time,
CPU/GPU cores are set to a lower frequency by the system.

Processors used in mobile devices are mostly based
on the ARM architecture which describes a family of
processors designed in accordance with RISC principles.
A VFP (Vector Floating Point) extension is included to
provide for low-cost floating point computations although
later versions of the architecture have abandoned it in favor
of a more complete NEON SIMD extension.

The particularities of ARM processors enable C code
optimizations to achieve higher performance. We have
implemented an ARM optimized version of the PNLMS
algorithm that avoids conditional branching and utilizes the
built-in ARM registers to reduce the number of memory
accesses.

Most of the newest devices include processors with
several cores. All the cores usually have the NEON
extension access. In Android devices, different tasks can be
assigned to the cores by using several APIs. The processor
cores can share data with different techniques such as shared
caches.

3.1.2 Mobile Multi-core CPU with NEON Extension

Many computationally intensive algorithms requiring high
performance cannot be carried out on the mobile application
processor alone in real-time. For this purpose, a wide range
of accelerators have been included as specific arithmetic
units or co-processors. Many ARM based mobile processors
provide signal processing acceleration by including a SIMD
instruction set known as NEON, which shares floating point
registers with the VFP. NEON supports 8-, 16-, 32- and 64-
bit integer and single-precision (32-bit) floating point data
and SIMD operations.

Bordallo et al. [1] reported that the use of NEON
increases the power consumption. However, a better
performance over power can be achieved, with about a 40%
gain in performance for only a 20% increase in the power
consumption. Considering energy consumption, the highest
contributing factor is usually the execution time for similar
CPU utilization.

NEON can be accessed by using, for example, inline
assembly instructions or NEON intrinsic. Grasso et al. [11]
claim that the high performance is achieved only through
manual code optimization and tuning. Our experiments
support this claim as it was impossible for us to get
optimized solution using intrinsic or auto vectorization
functionality. In our design, we try to use NEON registers as
efficiently as possible. The shortcoming is that the code is
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not easily portable and the designer should be careful when
integrating the inline assembler code to new projects.

3.1.3 Mobile GPU

A mobile GPU is especially useful for executing tasks that
can be parallelized. Its resources are most conveniently
and portably utilized with a standard API. A number of
projects have targeted real-time implementations for the
desktop GPU acceleration using CUDA [10, 16, 17]. On
a mobile device platform the choice was earlier limited
to OpenGL ES but now the OpenCL framework offers
flexibility similar to vendor specific solutions designed for
desktop computers. All major mobile GPU vendors such as
ARM’s Mali, Qualcomm’s Adreno, Imaginations PowerVR
and Vivante, support OpenCL in one way or another.

Our OpenCL kernel, which computes the PNLMS
algorithm performs image denoising for non-overlapping
8 × 8 image blocks. Then, the memory synchronization
is not needed. If SIMD instructions are supported on the
GPU, the implementation can benefit from hand-tuned
vectorization of the code. In the sum of squared difference
(SSD) computing, we adopt the vector data type of short8
to load one row from the 8 × 8 pixel block simultaneously.
With some mobile GPUs this leads to considerably faster
code. Also, the designer should favor built-in fast integer
math operations, which can improve the performance
significantly.

Considering the use of local memory, the proper
workgroup size reduces the redundancy in global memory
accesses. However, a larger workgroup size needs more
local memory. Since the local memory can be limited to
8 kbytes in some Adreno devices, this practically limits the
possible workgroup combination that we can handle with
the current generation of hardware.

3.2 PROF-SR Implementation

For registration we use rigid homography optical flow
described in Section 2.2.1. However, for the optical flow to
work efficiently it needs to be performed on multiple scales.
We begin by downsampling the images several times by a
factor of 2 and then on each scale perform the registration,
update the transformation matrix, go one scale up and
repeat. This multiscale approach is necessary to be able
to cover transformations where pixel positions differ more
than 2-3 pixels.

It is often the case that images do not differ strictly by
a homography, e.g. a rolling shutter effect introduces slight
differences that smoothly increase throughout the image or
the scene is not planar and the camera is not only rotating
along its optical center. For this reason we implemented a
patch-wise registration. The images are divided into several

patches, e.g. an 8 × 8 grid covering the whole image
area. Then registration is performed per patch leading to
potentially slightly different transformation matrices. Final
warping is computed by homography matrices for each
pixel and the matrices are defined by bilinear interpolation
of transformations in neighbouring patches. This leads to
a smooth and “elastic”-like transformation which registers
the images more precisely. Yet, care must be taken to
have large enough patches to ensure correct registration,
or detect failed registration and deal with it appropriately.
The Wiener filter is computed in the Fourier domain. The
FFT algorithm implemented in the FFTW library was used
for converting images to the frequency domain. We use the
FFTW port specifically tuned for multi-core ARM CPUs
with SIMD instruction set (NEON). The final algorithm
with PROF multi-scale registration and SR is summarized
in Algorithm 1.

Input images are in YUV420 color space. That means we
have a gray-scale image Y and two UV color components
with 4× smaller resolution. Most information is contained
in the gray-scale part and therefore we use only Y in
the registration step. Color information from the UV
components is incorporated during the final warping using
the same transformation matrices.

4 Experiments

The experimental section is divided into three parts.
The first part provides visual assessment of implemented
denoising algorithms on real data taken by a mobile phone.
In the second part we compare computation time and power
consumption of different implementations of the PNLMS
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algorithm, which represents spatial-averaging denoising. The
third part quantitatively evaluates resolution improvement
of the PROF-SR algorithm, which belongs to the category
of denoising methods based on temporal averaging.

4.1 Visual Assessment

We show results of denoising methods on real data captured
by LG Nexus 5 mobile phone camera (8 MP, f/2.4, 30 mm,
1/3.2”, 1.4 μm), see Fig. 1. The raw image as returned by
the camera API is in (a). The default denoising method in
the mobile phone which stores the image as JPEG is shown
in (b). Notice that the level of noise in the JPEG image is
much lower than in the original image, yet at a cost of severe
loss of details. Results of the denoising methods PNLMS
and PROF that we implemented in the phone are in (c) and

(d), respectively. The last row compares results for the SR
factor of 2 achieved by: (e) proposed non-iterative PROF-
SR method and (f) full iterative SR method [19]. In the
case of temporal averaging PROF and both SR methods, the
results were computed from ten input images. It is therefore
logical that they outperform the spatial-averaging PNLMS
method (c) which works with only one image. Notice that
the deconvolution step in SR methods further improves the
final image, however the additional benefit of the complex
SR method (f), which solves the inverse problem precisely,
is negligible in this case.

4.2 Computational and Power Performance

This section reports and discusses the results obtained with
different implementations on the Qualcomm’s Snapdragon

Figure 1 Denoising of images
captured by a mobile phone
camera.
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Table 1 The computation time
results when running
implementations of the noise
reduction algorithm for
different image sizes.

Implementation 2MP: 1920 × 1080 8MP: 3840 × 2160 16MP: 5312 × 2988

Plain C, CPU with 1 core 430 ms 1615 ms 4641 ms

Multi-threaded C, CPU with 4 cores 174 ms 690 ms 1953 ms

Mixed multi-threaded C/ASM, 238 ms 986 ms 2790 ms

CPU with 1 core + NEON

Mixed multi-threaded C/ASM, 99 ms 402 ms 1170 ms

CPU with 4 cores + NEON

OpenCL, GPU 22 ms 51 ms 94 ms

820 mobile platform. The CPU in this platform is a quad-
core Kryo@2.2GHz and the GPU is an Adreno 530. The
OS in the test device is Android 7.0 “Nougat”. The Adreno
530 GPU has clock frequency choices 510, 624, and 650
MHz. In our tests, the maximum frequency of 650 MHz was
used. The OpenCL API version is 2.0 Full profile.

4.2.1 Computation Time

The objective for this test is to evaluate different imple-
mentations of the PNLMS denoising algorithm on the target
platform. Totally, we tested 6 implementations with three
image resolutions 2MP, 8MP, and 16MP. The performance
was measured on the Qualcomm Snapdragon development
board including the MSM8996 chipset, which is a newer
version of the MSM8974 chipset included in Nexus 5. Both
of these chipsets belong to Snapdragon 800 processor series.

Algorithm parameters were set differently for the
preview mode (real-time requirement) and still image
capturing. In the preview mode, the patch size was 8 × 8
pixels, the search window size was 9×9 pixels with 3 pixels
step in each direction (totally 9 neighbors considered), and
the sliding window step was 8 pixels. In the still image
capture (hiqh quality mode), the patch size was 8×8 pixels,
the search window size was 11×11 pixels with 1 pixels step
in each direction (totally 121 neighbors considered), and the
sliding window step was 7 pixels. These parameters used in
testing were chosen to guarantee a good enough quality of
results and at the same time minimize computational cost.

The results are summarized in Table 1 and it can be
seen that the OpenCL based GPU implementation achieves
the best performance with all image resolutions. The
FullHD (2MP) test case provides the lowest speedup (19X)
compared to the baseline plain C implementation while
the best speedup is achived with 16MP images. This is an
expected result because the GPU can parallelize larger tasks
better.

In our earlier work on this topic, transferring the image
data to the GPU took 65 ms and writing the output image
took 15 ms [12]. In the proposed implementation, this is
not a problem anymore and delay of transferring the image

data to the GPU was smaller (10 ms) due to improved GPU
hardware and newer driver software.

These earlier tests also showed that the implementation
for GPU (Adreno 330) did not give significant improvement
for the processing time compared to the multithreaded
NEON optimized version. However, the new results clearly
show the advantage of using the GPU for image denoising.
The most significant reason for improved results was the
new GPU hardware (Adreno 530) with increased data
transfer and processing capability.

4.2.2 Power Consumption

Power consumption was measured as the total system power
on the Qualcomm Snapdragon 820 development board. We
used the National Instruments NI 4065 measurement device
for measuring the electric current. The measurement device
was connected to between the battery connector and battery
of the target device and then an averaged period of current
measurements were captured.

First, the baseline system power without the algorithm
running was measured in order to determine the actual
power consumption of the algorithm. Table 2 summarizes
the measured power consumption on the target platform
using the GPU version of the algorithm.

Figure 2 shows current [mA] measurement for 30fps
FullHD (1920 × 1080) stream, and for comparison Fig. 3
shows similar measurements for CPU+NEON version of
the algorithm. It should be noted that only the GPU
implementation can achieve the real-time frame rate (30fps).
The fastest CPU implementation could only achieve 10fps.

The development board uses ∼ 12 V power supply,
and with easy POWER = VOLTAGE × CURRENT

Table 2 The results for the power consumption test for the GPU
implementation of the algorithm.

Image resolution Current [mA] Power consumption [mW]

2MP 91 1092

8MP 140 1680
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Figure 2 Power consumption measurement (mA) when running noise reduction for FullHD (1920 × 1080) size frames at 30 frames per second
with GPU (OpenCL) implementation. X-axis shows time and y-axis shows current in the range between 0 and 700 mA.

computation it can be approximately calculated that the
power consumption is 12 V × 0.091 A = 1.092 W =
1092 mW. This is clearly higher than expected. For
comparison, the fastest CPU implementation using only
10fps consumes 12 V × 0.433 A = 5.196 W = 5196 mW.

Because the typical target is much less than the minimum
achieved power consumption of 1092 mW, we wanted to
find the minimum power consumption of target hardware
when the GPU is activated with the OpenCL framework.
For this experiment, we only load FullHD size images from

Figure 3 Power consumption measurement (mA) when running noise reduction for FullHD (1920 × 1080) size frames at 10 frames per second
with CPU (4 thread + ARM NEON) implementation. X-axis shows time and y-axis shows current in the range between 0 and 900 mA.
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Figure 4 Power consumption measurement (mA) when loading FullHD (1920 × 1080) size frames at 30 frames per second from CPU to GPU
and reading back. X-axis shows time and y-axis shows current in the range between 0 and 700 mA.

CPU to GPU and read it back from GPU to CPU at the
rate of 30fps. Figure 4 shows the result of this experiment.
It can be calculated that the power consumption of such
process is 12 V × 0.045 A = 0.54 W = 540 mW. Based on

this observation it is worthwhile to say that it is impossible
to achieve power consumption level of ISPs with the
Qualcomm Snapdragon 820 when the GPU is used to
process FullHD size images at 30fps.

Figure 5 Power consumption measurement (mA) when copying FullHD (1920 × 1080) size frames at 30 frames per second from CPU buffer to
another CPU buffer (memcpy). X-axis shows time and y-axis shows current in the range between 0 and 700 mA.
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Figure 6 Performance of SR depends, to a certain extent, on the num-
ber of input images. Notice moiré patterns that appear in the area of
higher line frequencies, which is an indication of image insufficient

resolution. The SR reconstruction extends the spectral region (red
line), in which details are correctly reproduced. The image quality
stops improving beyond ten inputs.

In addition to GPU framework power consumption test-
ing, we wanted to determine the power consumption when
only CPU is used and very simple buffer copying (mem-
cpy) is done at 30fps rate. Figure 5 shows the result of this
experiment. It can be calculated that the power consump-
tion of such process is 12 V × 0.039 A = 0.468 W =
468 mW. Therefore it can be assumed that all memory inten-
sive computation, such as processing large images at video
frame rate would consume more power than 500 mW, and
the power consumption level of the ISP is not possible to
achieve with the current hardware.

4.3 Resolution Enhancement Performance

In this section we measure image-quality performance of
the proposed PROF-SR algorithm with respect to different
criteria.

4.3.1 Number of Input Images

We took several images of the test chart ISO 12233 with
the mobile camera and the SR image quality with respect to
the number of images is compared in Fig. 6. The resolution
quality is measured as the number of line widths (cycles) per
picture height [lw/ph]. For this experiment setting, one step
in the test chart is approximately 300 lw/ph. As the number
of input images increases the high-frequency information

is better restored. Note that the time complexity of the
temporal averaging increases linearly with the increasing
number of input images. With five images we can improve
recognition from the original 800 lw/ph (left image) to
1100 lw/ph (middle image) for this particular mobile device
(Nexus 5). With ten images we get to the resolving power of
1400 lw/ph (right image). Because of model inconsistencies
we were not able to improve beyond this point and more
input images only slow down the computation.

4.3.2 Comparison with the Full Iterative SR

The proposed PROF-SR algorithm is a simplified version
of an iterative SR method [19] that solves the full inverse
problem. This simplification allowed us to circumvent a
time-complex iterative numerical solution that is difficult
to implement on embedded devices such as smartphones.
It is important to quantitatively evaluate to what degree the
proposed simplified algorithm lacks behind the complex
iterative one. We have performed the following experiment
to provide this comparison. We took with the mobile camera
ten images of the test chart “Siemens star” (see Fig. 7),
in which the high-frequency content gradually increases
towards the center. The moiré pattern appears close to the
center of the star where the lines approach each other, which
indicates the high-frequency information is not correctly
represented in the input images.

Figure 7 Comparing performance of the proposed PROF-SR algorithm with the full SR method.
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Figure 8 Contrast versus line widths per picture height (lw/ph)
for three resolution enhancement methods: (blue dotted line) linear
interpolation of a single image, (yellow dashed line) full iterative
SR method, (solid red line) proposed non-iterative PROF-SR method.
Both SR methods were applied to ten captured photos.

We can estimate how well different spatial frequencies
are represented by calculating the contrast along circular
profiles of the star. The diameter of circular profiles is
inversely proportional to the spatial frequency, which we
measure again as lw/ph. The graph in Fig. 8 plots the
contrast versus lw/ph of the three images from Fig. 7. Both
SR methods improve contrast over the linear interpolation
significantly in the range between 400 and 1000 lw/ph. The
most important conclusion is however that in this case the
complex iterative SR method performs almost identically to
the proposed approximative SR.

5 Conclusion

We have analyzed the feasibility of implementing two
denoising methods based on spatial and temporal averag-
ing on mobile platforms. Both methods provide images with
less noise and superior image quality compared to the
default denoising algorithm for JPEG photos implemented
in mobile phones. Different implementations and algorith-
mic simplifications were considered. Algorithm analysis
was carried out with respect to the computation time,
power consumption and output image quality. In the case
of temporal averaging, we also implemented and tested
a non-iterative super-resolution algorithm optimized for
mobile platforms. The resulting algorithm is fully func-
tional with a negligible image-quality loss compare to the
more complex version of iterative super-resolution. In the
case of spatial averaging and mobile GPU implementa-
tion, we have achieved real-time performance on FullHD

videos. In addition, GPU implementation with OpenCL
offers improved flexibility and portability compared to opti-
mized CPU specific implementations using, for example,
the NEON intrinsics. Albeit the power consumption is much
higher than the current ISPs, which renders the algorithm
not fully suitable for being used in the camera preview
mode by default, the on-demand use of the algorithm by end
users is viable as it delivers a perceivable increase of image
quality.
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