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Abstract. We present a novel approach to description of a multidimen-
sional image histogram insensitive with respect to an additive Gaussian
noise in the image. The proposed quantities, although calculated from the
histogram of the noisy image, represent the histogram of the original clear
image. Noise estimation, image denoising and histogram deconvolution
are avoided. We construct projection operators, that divide the histogram
into non-Gaussian and Gaussian part, which is consequently removed to
ensure the invariance. The descriptors are based on the moments of the
histogram of the noisy image. The method can be used in a histogram-
based image retrieval systems.

Keywords: Gaussian additive noise · Multidimensional histogram ·
Invariant characteristics · Moments · Projection operator

1 Introduction

Real images are often corrupted by noise, which not only degrades their visual
appearance but also significantly changes all quantitative descriptors. If the
signal-to-noise ratio is low, the corruption may be so heavy that it is very difficult
to deduce anything about the original scene from the acquired image.

In this paper, we pay attention to the influence of the noise on the image
histogram. Histogram provides statistics of graylevel/color frequencies and has
become a simple, yet powerful descriptor for image classification. Histogram has
established itself as a meaningful image characteristic for content-based image
retrieval (CBIR) [8,12,14] because histogram similarity is a salient property
for human vision. Two images with similar histograms are mostly perceived as
similar even if their actual content may be very different from each other. On the
other hand, those images that have substantially different histograms are rarely
rated by observers as similar. Another attractive property of the histogram is
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that it does not depend on image translation, rotation and (if normalized to
the image size) on scaling. Simple preprocessing can also make the histogram
insensitive to linear changes of the contrast and brightness of the image.

The CBIR methods based on comparing histograms are sensitive to noise
in the images. Additive noise leads to a histogram smoothing, the degree of
which is proportional to the amount of noise (see Fig. 1 for illustration). This
follows from the well-known theorem from probability theory. Given a random
variable X (which represents the pixel values of the image) with probability
density function (PDF) hX (which is now the normalized histogram of the image)
and additive noise N with PDF/histogram hN , then for the PDF hZ of noisy
random variable Z = X + N holds

hZ(x) = (hX ∗ hN ) (x) =
∫

hX(x − s)hN (s) ds, (1)

assuming that the noise is independent of the image. The histogram smooth-
ing immediately results in a drop of the retrieval performance because different
histograms tend to be more and more similar to each other.

Fig. 1. Histogram smoothing due to image noise. Histogram of clear Lena image (top
left). Histograms of noisy images: SNR= 120 (top right), SNR= 40 (bottom left),
SNR= 5 (bottom right). For low SNR the histogram becomes unimodal and hard to
distinguish from other smoothed histograms.
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In digital photography, when using a CCD chip, the noise is unavoidable. It
is apparent especially when taking a picture in low light using high ISO and/or
long exposure time (see Fig. 2). The noise has several components. Photon shot
noise, thermal noise, readout noise and background noise are the main ones.
Additive noise component can be reasonably modelled by a Gaussian random
variable uncorrelated with the image values. The signal-dependent component
follows Poisson distribution. The method presented in this paper can handle only
the former one.

Fig. 2. A low-light scene (left). On the close-up, the noise is clearly apparent (right).

Although the noise in digital imaging is an issue we cannot ignore even in
consumer photography, very little attention has been paid to developing noise-
resistant histogram representation. The authors of the papers on CBIR have
either skipped this problem entirely or rely on denoising algorithms applied to
all images before they enter the database. A pioneer work on this field was
published by Höschl and Flusser [3] who proposed a kind of convolution moment
invariants. Their work was motivated by blur invariants applied to a different
problem in the image domain [1,2,6,9,15]. The authors presented invariants
w.r.t. convolution, calculated from the histogram moments. These invariants
were, however, defined only for 1D histogram of a graylevel image and cannot
be easily extended to multidimensional histograms of color and multispectral
images.

In this paper, we present a new histogram representation, based on its
moments, which is totally resistant (at least theoretically) to additive Gaussian
noise. This histogram representation could be implemented in CBIR systems in
the case of noisy database and/or noisy query images (see Fig. 3 for the method
outline). Our method does not perform any denoising and cannot replace it in the
applications where the noise should be suppressed in order to improve the visual
quality of the image. Unlike [3], the proposed method works with multidimen-
sional histograms, which makes it suitable for color images. Another remarkable
feature is that the method does not assume an independent noise in individual
channels/spectral bands.

The main idea of this paper is the following one. We introduce projection
operators, acting on the histogram space, that divide each histogram into two
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Fig. 3. The outline of the proposed method. From left to right: original image and its
histogram, noisy images with smoothed histograms, representation of the histograms
by invariant features (the core of the method), potential usage for noise-robust image
retrieval. The actual implementation works with color images and the histograms are
multidimensional.

components. Based on the known parametric form of hN , we show that one of the
components can be used to compute quantities, which are invariant with respect
to convolution in Eq. (1). These quantities can be used directly to characterize hX

regardless of the amount of noise present.

2 Problem Formulation

Let X be an r-band original clear image with histogram hX and N ∼ N (0, Σ) be
a normally distributed random noise, independent of X, with regular covariance
matrix Σ. The r-D noise histogram hN has the well-known Gaussian shape

hN(x) =
1√

(2π)r|Σ| exp
{

−1
2
xTΣ−1x

}
, (2)

where x = (x1, . . . , xr)T is the vector of intensities. Under the above assump-
tions, histogram hZ of the noisy image Z = X + N is given as

hZ = hX ∗ hN. (3)
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Our aim is to design a histogram descriptor I, which is invariant with respect
to the noise, i.e. we require

I(hX) = I(hZ) = I(hX ∗ hN) (4)

for any normally distributed zero-mean random noise N with arbitrary
(unknown) covariance matrix Σ.

Complying with Eq. (4) is, however, not the only desirable property of I. At
the same time, I must be discriminable, which means

I(hX) �= I(hY) (5)

for any two images X and Y such that Y is not a noisy version of X.

3 Construction of the Invariant

The main idea of constructing invariants to Gaussian convolution is based on
projections of a histogram onto the set of all Gaussian functions and on its
complement. In this way, we decompose any histogram into Gaussian and non-
Gaussian components. We show that the ratio of these two components possesses
the desired invariant property. In the sequel, we introduce the necessary math-
ematical background.

Let us denote the set of all probability density functions (normalized his-
tograms) as D and the set of all zero-mean Gaussian probability density func-
tions (including Dirac δ-function) as S.

Lemma 1. S is closed under convolution.

Proof. It holds for any two Gaussian PDFs hN1 and hN2 with covariance matri-
ces Σ1 and Σ2 that the result of convolution is again a Gaussian PDF

hN1 ∗ hN2 = hN

with covariance matrix Σ = Σ1 + Σ2.

The set S with the operation convolution (S, ∗) is a commutative semi-group.
However, S is not a vector space.

Let us define projection operator P that projects arbitrary PDF h ∈ D on
the “nearest” Gaussian PDF in the sense of having the same covariance matrix.
In other words, P : D �→ S is defined as

P (h) = hN, (6)

where hN has the same covariance matrix as h. The operator P is well defined
for all PDFs with a regular covariance matrix. It is idempotent, i.e. P 2 = P
and every h ∈ D can be uniquely written in the form h = Ph + ha, where ha

is defined as h − Ph. In this way, the set D can be expressed as a direct sum
D = S ⊕ A, where S is the range of P and A is the kernel. Note that P is not
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a projector in the common sense known from linear algebra because it is not
a linear operator. Still, we call it projector because it keeps the above mentioned
key properties of “algebraic” projection operators.

For our purposes, the crucial property of operator P is that it commutes
with the convolution with functions from S. This property is necessary for the
construction of the invariant descriptors, as we demonstrate later.

Lemma 2. Let h ∈ D and hN ∈ S. Then

P (h ∗ hN) = Ph ∗ hN. (7)

Proof. First, we investigate the right-hand side, where we have a convolution
of two Gaussians with covariance matrices Σh and ΣhN

, respectively. Thanks
to Lemma 1, this is also a Gaussian with covariance matrix Σh + ΣhN

. On the
left-hand side, P (h ∗ hN) is by definition a Gaussian with covariance matrix
Σh∗hN

. It is well known that central second-order moments of any PDF, which
is a convolution of two other PDFs, are sums of the same moments of the factors.
The same is true for entire covariance matrix. Hence, on the left-hand side we
have Σh∗hN

= Σh + ΣhN
, which completes the proof.

Now we formulate the principal theorem of the paper that introduces the
invariant descriptor of a probability density function as a ratio of certain char-
acteristic functions. Characteristic function of a random variable is in fact the
Fourier transform of its density [5].

Theorem 1. Let h ∈ D and let P be the projector onto S defined above. Then
the ratio of characteristic functions Φ of the densities h and Ph

I(h)(u) =
Φ(h)(u)

Φ(Ph)(u)
(8)

is an invariant to convolution with a Gaussian probability density function:
I(h) = I(h ∗ hN) for any hN ∈ S.
Proof. First of all, note that I(h) is well defined for any h because both Φ(h)
and Φ(Ph) exist and Φ(Ph)(u) �= 0 for any u. The proof of invariance follows
from the fact that P commutes with the convolution (see Lemma 2). If hN ∈ S,
then

I(h ∗ hN) =
Φ(h ∗ hN)

Φ(P (h ∗ hN))
=

Φ(h ∗ hN)
Φ(Ph ∗ hN)

=
Φ(h)Φ(hN)

Φ(Ph)Φ(hN)
=

Φ(h)
Φ(Ph)

= I(h).

The following theorem claims that the invariant I is a complete description
of h modulo convolution with a Gaussian.

Theorem 2. Let h1, h2 ∈ D and let I be the invariant defined in Theorem1.
Then I(h1) = I(h2) if and only if there exist hN1 , hN2 ∈ S such that hN1 ∗ h1 =
hN2 ∗ h2.
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Proof.

I(h1) = I(h2) ⇔ Φ(h1)
Φ(Ph1)

=
Φ(h2)

Φ(Ph2)
⇔ Φ(h1)Φ(Ph2) = Φ(h2)Φ(Ph1)

⇔ Φ(h1 ∗ Ph2) = Φ(h2 ∗ Ph1) ⇔ h1 ∗ Ph2 = h2 ∗ Ph1,

which implies that hN1 , hN2 ∈ S exist and are defined as hN1 = Ph2, hN2 = Ph1.

Theorems 1 and 2 show that invariant I entirely and uniquely describes any
normalized histogram modulo convolution with a Gaussian.

Consider the equivalence relation on D: h1 ∼ h2 if and only if there exist
functions hN1 , hN2 ∈ S such that hN1 ∗ h1 = hN2 ∗ h2. The factor set D/∼ is
the same as the orbit set of the semi-group action with (S, ∗). Invariant I is
constant within each orbit but has distinct values for any two different orbits.
In particular, for the Gaussian orbit S we have I(h) = 1.

4 Invariants from Moments

Although theoretically the invariant I(h) fully describes the orbit, several prob-
lems may occur when dealing with finite-precision arithmetic. The division by
small numbers leads to the precision loss. To speed up the computation, it would
be better to avoid the explicit construction of Φ(h) and Φ(Ph). In this Section,
we show that it can be accomplished by constructing moment-based invariants
equivalent to I(h). The idea of describing a histogram by its moments is reason-
able. Moment-based representation yields an additional feature – the number
of the moments used is a user-defined parameter by means of which we may
control the trade-off between a high compression on one hand and an accurate
histogram representation on the other hand [7].

We rewrite Eq. (8) as

Φ(Ph)(u) · I(h)(u) = Φ(h)(u). (9)

If the characteristic function is n-times differentiable, then the nth derivative
is a moment of the PDF up to a multiplicative constant. Assuming that both
Φ(h) and Φ(Ph) have a Taylor expansion, then we can write, using a multi-index
notation,

∞∑
k=0

|k|�=0, even

i|k|

k!
m

(Ph)
k uk ·

∞∑
p=0

i|p|

p!
Apup =

∞∑
q=0

i|q|

q!
m(h)

q uq, (10)

where
m

(h)
k =

∫
xkh(x) dx. (11)

By comparing coefficients of the same power of u we get
k∑

l=0
|l| even

i|l|

l!
m

(Ph)
l

i|k|−|l|

(k − l)!
Ak−l =

i|k|

k!
m

(h)
k , (12)
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which is equivalent to

k∑
l=0

|l| even

(
k
l

)
m

(Ph)
l Ak−l = m

(h)
k . (13)

Each Ak, being a Taylor coefficient of I(h), must be an invariant. Rearranging
the previous equation, we obtain a recursive formula for Ak

Ak = m
(h)
k −

k∑
l=0

|l|�=0, even

(
k
l

)
m

(Ph)
l Ak−l. (14)

The intuitive meaning of invariants Ak is the following one. If the “mother
PDF” hr exists, then I(h) is its characteristic function and Ak’s are its moments.
The invariants Ak can be, however, applied even if hr does not exist. Another
noteworthy point is that generally we have to calculate moments of both h and
Ph in order to evaluate Eq. (14). In the next Section, we show how the construc-
tion of Ph and calculation of its moments can be avoided.

5 Invariants in One and Two Dimensions

Histogram is a function of either a single variable when working with graylevel
images or of multiple variables for color/multispectral images. In this Section,
we show how Eq. (14) can be further simplified in 1D and 2D cases.

In 1D, the invariants (14) obtain the form

Ap = m(h)
p −

p∑
k=2

k even

(
p

k

)
(k − 1)!!mk/2

2 Ap−k . (15)

This simplification follows from the fact that the odd-order moments of a 1D
Gaussian with standard deviation σ vanish and the even-order ones are given as
mp = σp(p − 1)!! . Furthermore, σ2 ≡ m

(Ph)
2 = m

(h)
2 which allows to express all

moments of Ph in terms of moments of h.
In 2D, simplification of Eq. (14) is much more difficult. First, we need to

express the moments of 2D Gaussian explicitly. If we assume that the two com-
ponents of our random variable N are independent, then we can constraint the
covariance matrix of Ph to be diagonal. Then the moments of Ph are simply

m(Ph)
pq = mp

20m
q
02(p − 1)!!(q − 1)!! (16)

and we obtain similar formula as in 1D case

Amn = m(h)
mn −

m∑
l=0

n∑
k=0

l+k �=0,
l+k even

(
m

l

)(
n

k

)
(l − 1)!!(k − 1)!!ml/2

20 m
k/2
02 Am−l,n−k . (17)
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However, the assumption of independent noise components and hence of the
diagonal covariance matrix is not always realistic in practice. In Fig. 4 we can
see 2D histogram of red and green channels of the noise, extracted from a real
RGB photograph. The noise is actually a background and thermal noise of the
camera; the noise extraction was done by subtracting a time-averaged image.
A correlation about 0.33 was found (and is also apparent visually) between the
noise acting in the red and the green channel (the correlation was probably
introduced by an in-built postprocessing/interpolation on the chip). So, to make
our method applicable in practice, we have to assume a general covariance matrix
of Ph.

Fig. 4. 2D histogram of the noise extracted from red and green channels of a real
digital image. The on-chip postprocessing introduced a correlation about 0.33 between
the noise in both channels. (Color figure online)

For the general covariance matrix, the formula for moments of a Gaussian is
not commonly cited in the literature.1 Therefore we derived an explicit formula
for 2D zero-mean case, which is very useful in the sequel:

m(Ph)
mn =

�m
2 �∑

i=0

i∑
j=0

j≥m−n
2

(−1)i−j

(
m

2i

)(
i

j

)
(m + n − 2i − 1)!!(2i − 1)!!·

·mm−2j
11 mj

20m
n−m

2 +j
02 .

(18)

1 The reader is usually referred to the classical Isserlis’ paper [4] or to some more
recent papers [10,11,13] but no simple explicit formula can be found there.
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If we use Formula (18), the recurrence (14) turns to the form

Amn = m(h)
mn −

m∑
l=0

n∑
k=0

l+k �=0,
l+k even

(
m

l

)(
n

k

) � k
2 �∑

i=0

i∑
j=0

j≥ k−l
2

(−1)i−j

(
k

2i

)(
i

j

)
·

·(l + k − 2i − 1)!!(2i − 1)!!mk−2j
11 m

l−k
2 +j

20 mj
02Am−l,n−k .

(19)

Note that the formula contains only the moments of h. Neither the character-
istic functions Φ(h) and Φ(Ph) nor the projection Ph itself are necessary to be
constructed.

6 Experiment

In this experiment, we show the invariance property if the noise follows the
Gaussian model. We used blue and green channels of a real RGB image as “clear”
test data. We corrupted the image 100 times with a Gaussian noise generated
according to Eq. (2), the covariance matrix of which was randomly generated in
each realization. As one can see in Fig. 5, the histogram of noisy image is actually
a smoothed version of the histogram of the clear image.

Fig. 5. 2D histogram of the blue and green channels of the original clear image (left)
and of the same image corrupted by additive Gaussian noise (right). Note that the
“noisy” histogram is actually a smoothed version of the original histogram. (Color
figure online)

We calculated more than 300 invariants (19) of each noisy image histogram.
In Fig. 6 left, we can see a cumulative graph of the ratio between the invariants of
noisy and clear histograms (each invariant order is represented by a single cumu-
lative value). The ratio is almost perfectly equal to one, even for higher orders.
To show the advantage of the proposed invariants over the plain moments, we
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calculated the same for histogram moments, see Fig. 6 right. The errors of the
moments are much higher since the moments do not posses the invariance prop-
erty and are heavily influenced by noise. The error grows with the increasing
moment order. This experiment clearly shows the quality of the proposed his-
togram descriptors.

Fig. 6. Ratio of the invariants (left) and of the moments (right) between the 2D his-
tograms of noisy and clear images. The invariants/moments of the same order have
been cumulated. Black crosses denote the median of the invariants.

7 Conclusion

We proposed a new method for description of multidimensional histogram, which
is robust to additive Gaussian noise in the source image. The method employs
the fact that the histogram of noisy image is a convolution of the original his-
togram and the histogram of the noise. We proposed moment-based descriptors,
which characterize the original histogram but can be computed directly from
the histogram of the noisy image. The method does not require any denoising or
estimation of the noise parameters, which makes it attractive for practical usage.
Potential applications are in noise-robust histogram-based image retrieval and
also in some areas outside image processing.
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