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Abstract—Sensor and lens blur degrade images acquired by
digital cameras. Simple and fast removal of blur using linear
filtering, such as Wiener filter, produces results that are not
acceptable in most of the cases due to ringing artifacts close to
image borders and around edges in the image. More elaborate
deconvolution methods with non-smooth regularization, such as
total variation, provide superior performance with less artifacts,
however at a price of increased computational cost. We consider
the alternating directions method of multipliers, which is a
popular choice to solve such non-smooth convex problems, and
show that individual steps of the method can be decomposed
to simple filtering and element-wise operations. Filtering is
performed with two sets of filters, called restoration and update
filters, which are learned for the given type of blur and noise level
with two different learning methods. The proposed deconvolution
algorithm is implemented in the spatial domain and can be easily
extended to include other restoration tasks such as demosaicing
and super-resolution. Experiments demonstrate performance of
the algorithm with respect to the size of learned filters, number
of iterations, noise level and type of blur.

Index Terms—Wiener filter, LMMSE, deconvolution, total
variation, ADMM, non-smooth optimization

I. INTRODUCTION

Digital cameras are present in various measuring systems
including microscopes, telescopes, and also small embedded
systems like smartphones. Data acquired by camera sensors are
subject to various types of signal degradation, for example lens
and sensor blur, aberrations, color filter array (CFA) and noise.
To obtain true images of the measured scene, it is necessary
to correctly process the acquired data. The processing step
is designed to run in the camera with limited computational
capacity that allows only pixel-wise operations and some basic
filtering.

Blur degradation often remains unattended in cameras as
the cost to remove it is very high. Blur is modeled by
convolution and even if the convolution kernel – called point
spread function (PSF) – is known, the inverse problem of
deconvolution is ill-posed due to values close to zero in spectra
of common PSFs. For this reason, deconvolution methods
based solely on linear operators, such as filtering, produce
poor results.

From all linear filters, the optimal is the well-known Wiener
filter, which is popular for having an explicit form in the
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Fig. 1. Deconvolution without ringing artifacts: (a) the original image, (b)
the blurred input image and PSF (inset), (c) restoration using the Wiener filter
with power spectrum of the original image, (d) restoration using the proposed
iterative Wiener filtering after 10 iterations. Notice ringing artifacts in the
Wiener solution (c) and their absence in the proposed method (d).

frequency (Fourier) domain (FD) and estimates a sharp image
in one step. However, the estimated image exhibits ringing
artifacts around edges; see an example of Wiener output in
Fig. 1(c) obtained by filtering the blurred image in Fig. 1(b).
Another disadvantage is that implementation in the FD im-
plicitly assumes circular convolution, which in real scenarios
is violated and the so-called problem of boundary conditions
results in disturbing artifacts close to image borders. Proposed
remedies either solve the boundary pixels separately in the
spatial (image) domain (SD) [1], [2], or modify the boundary
pixels in the blurred image to better comply with circular
convolution [3], [4].

Equivalently, the problem of boundary conditions can be
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solved if only a ‘valid’ part of convolution is considered. De-
convolution formulated as a least squares optimization prob-
lem with Tikhonov quadratic regularization has a closed-form
linear solution of type Ax = b; review classical restoration
methods in [5]. However, when the ‘valid’ part of convolution
is used, the inversion of A is typically not feasible and iterative
numerical methods, such as Conjugate Gradient, must be used.

To achieve deconvolution results without artifacts, we have
to leave the space of linear operators and allow non-linear
ones. This is done by introducing non-smooth regularization
terms, such as total variation [6], in the optimization problem;
see for example [7]. Solving non-smooth convex problems
requires specialized techniques, of which saddle-point methods
[8] are probably the most popular. Generally, the solution is not
in a closed form anymore and instead an iterative procedure
is applied, which consists of multiple update equations and
some of them are non-linear.

In this work, we propose to solve the deconvolution problem
by combining the computational efficiency of Wiener filtering
and the superior restoration quality of non-smooth optimiza-
tion methods. We show that in the saddle-point methods
linear update equations can be interpreted as Wiener-like filters
and the non-linear update equations as soft thresholding. All
steps are implemented in the SD using only filtering and
element-wise operations, which naturally solves the problem
of boundary artifacts. The filters are learned by solving a
separate optimization problem on training data, which are
specifically generated for the learning procedure. We foresee
that the proposed algorithm easily extends to space-variant
deconvolution, demosaicing or super-resolution.

The paper is organized as follows. In Section II, learning
filters in the SD and the proposed algorithm is introduced.
Section III experimentally validates the algorithm performance
with respect to various conditions and Section IV concludes
the paper with a short discussion of possible extensions of the
algorithm.

II. METHODOLOGY

The discrete formation model considered in this work is a
standard convolution process

g = Hu+ n , (1)

where g is the blurred and noisy image, u is the unknown
sharp image, H(·) ≡ h ∗ · denotes a degradation operator
(matrix) performing convolution with some known PSF h, and
n ≈ N (0, σ2) is additive white Gaussian noise (AWGN) with
zero mean and variance Var(n) = σ2. We consider scalar-
valued digital images represented as column vectors u ∈ Rm
and g ∈ Rp. Pixels are indexed as (u)i. In practice, H models
‘valid’ convolution and thus m ≥ p. We define a discrete
gradient operator D : Rm → Rm×2, which in its simplest
form returns horizontal and vertical differences of pixels. It
is a multidimensional array (tensor) consisting of two matrix
components [Dx, Dy] that perform convolution with [1,−1]
and [1;−1] filters. The operator D can be more general and
have more components, e.g. diagonal differences for isotropic

behavior, or differences of pixels in a larger neighborhood
to better capture correlation of pixels. On the vector-valued
output of D, we define following norms:

‖Du‖2,1: Rm×2 → R ≡
∑
i

(
(Du)2i,1 + (Du)2i,2

)1/2
,

‖Du‖22,1: Rm×2 → R ≡
∑
i

(
(Du)2i,1 + (Du)2i,2

)
.

If ‘valid’ convolution is replaced with circular convolution
then (1) rewrites in the FD as

G = HU +N , (2)

where capital calligraphic letters denote the Fourier transform
F (·) of the corresponding function, e.g. G = Fg, H = Fh.

First let us formulate deconvolution as an optimization
problem with Tikhonov regularization

û = argmin
u

γ

2
‖Hu− g‖22 + ‖Du‖22,1 , (3)

where the norm of the first term is the classical `2-norm.
A closed-form solution exists in this case and if circular
convolution is assumed, the result in the FD has an explicit
form of linear filtering

Û = ŴG =
H∗

|H|2 + 1
γ |D|2

G , (4)

where Ŵ is a restoration filter in the FD. Note that since
D is a tensor then |D|2 = |Dx|2 + |Dy|2, where D(·)’s
are Fourier transforms of gradient operator components. The
power spectrum of D is identical to the spectrum of the
Laplacian operator, which is f2 with f being the spatial
frequency.

The solution Ŵ resembles a standard Wiener filter with a
modified power spectrum of the original image. Recall that the
Wiener filter is a linear minimum mean square error (LMMSE)
estimator defined as

Ŵ = argmin
W

Eu,n{‖WG − U‖22} , (5)

where Eu,n{·} denotes the expectation with respect to the
distribution of images and noise. The solution is the well-
known formula Ŵ = H∗/(|H|2 + Snn/Suu) where Suu
and Snn are power spectra of the original image and noise,
respectively, and are assumed to be known. The filter Ŵ in
(4), which is the solution of Tikhonov regularization, is thus
the Wiener filter for noise n ≈ N (0, 1/γ) and images with
the power spectrum Suu = 1/|D|2.

A. Learning restoration filters
To avoid the problem of boundary conditions in convolution,

it is preferable to have restoration filters in the SD. We discuss
two approaches. A straightforward one is to use the closed
form solution in (4) and estimate the corresponding SD filter
ŵ ∈ Rs for some given size s by solving

ŵ = argmin
w
‖Ŵ − Fw‖2

s.t. w ∈ Rs,
∑
i

(w)i = (Ŵ)0 , (6)
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where the second equality constraint guarantees that the fil-
ter mean is preserved. The above constrained optimization
problem has a simple solution using the method of Lagrange
multipliers: transform Ŵ to the SD, crop it to size s, and
add an appropriate constant to preserve the original mean
value. However, there are two disadvantages of this approach.
First, the filter is optimal in the sense of `2-norm calculated
in the PSF domain, which has limited relation to the quality
of the restoration. Second, it can be used only if the explicit
form (4) in the FD exists. For example, if downsampling is
present in the formation model, such as in super-resolution or
demosaicing, the inversion must be done numerically and the
FD explicit form is not viable.

A remedy to the above problems is the second approach
that solves LMMSE (5) directly in the SD, see this approach
applied to demosaicing in [9]. We take an arbitrary image
ũ and perform type of spectral whitening by modifying the
image power spectrum to Sũũ = 1/|D|2. Then we generate a
blurred image g̃ following the formation model (1) with n ≈
N (0, 1/γ). The pair (ũ, g̃) is a training set, which we then use
in optimization (5) by replacing the expectation with a sample
mean. The complete algorithm is summarized in Alg. 1.

Algorithm 1 Learning restoration filters
Input: h – PSF, s – filter size, σ2 – noise variance, S – power
spectrum
Output: ŵ – filter of size s

1: Generate a training pair (ũ, g̃) :
2: Take some image ũ, modify its spectrum (Sũũ = S),

and generate a blurred image g̃ = h ∗ ũ + n with
n ≈ N (0, σ2).

3: Solve for w ∈ Rs:
4: ŵ = argmin

w
‖w ∗ g̃ − ũ‖22

B. Proposed iterative algorithm

Let us now reformulate deconvolution as an optimization
problem with total variation regularization [6]

û = argmin
u

γ

2
‖Hu− g‖22 + ‖Du‖2,1 . (7)

Saddle-point methods are frequently used for solving such
non-smooth convex problems. A popular choice is the ‘alter-
nating directions method of multipliers’ (ADMM) [10], which
is also considered here, however similar results are obtained
also for ‘primal-dual’ methods of Chambolle and Pock [11].
The ADMM introduces an auxiliary variable v ∈ Rm×2 and an
equality constraint v = Du, and rewrites (7) as a saddle-point
problem for an ‘augmented Lagrangian’:

min
u,v

γ

2
‖Hu− g‖22 + ‖v‖2,1 +

β

2
‖Du− v − a‖22,1 , (8)

where a ∈ Rm×2 is the Lagrange multiplier. Minimization
with respect to the image u leads to a linear problem and if

circular convolution is assumed, the result can be written in
the FD as

U =
H∗

|H|2 + β
γ |D|2

G +
D∗

|D|2 + γ
β |H|2

(V +A) (9)

The first term is the solution of Tikhonov regularization (4)
and is equivalent to Wiener filtering with PSF h, image
power spectrum 1/|D|2 and noise n ≈ N (0, β/γ). Alg. 1
is applied with parameters σ2 = β/γ and S = 1/|D|2 to
learn the corresponding filter in the SD. We refer to this
filter as ‘restoration filter’ w1 ∈ Rs. The second term can
be considered as another Wiener filtering of (v + a) with
vertical and horizontal filters [1,−1], image power spectrum
1/|H|2 and noise n ≈ N (0, γ/β). In this case, Alg. 1 is
unstable since the PSF power spectrum |H|2 typically contains
values close to zero in higher frequencies and setting the
image power spectrum to 1/|H|2 is not feasible. Instead,
we apply the approach in (6) and refer to the estimated
filters as ‘update filters’ w2 ∈ Rs×2. Note that w2 is a
vector-valued function and it consists of two filters one for
each component of the gradient operator D (or more if D
is more complex). Examples of restoration and update filters
for two different PSFs are shown in Fig. 2. The remaining
update equations for the auxiliary variable v and Lagrange
multiplier a are in accordance with the ADMM and consist
of simple element-wise operations. In the thresholding step,
the norm on the vector-valued image is calculated per pixel as
‖Du− a‖2 : Rm×2 → Rm ≡

(
(Du− a)2i,1 + (Du− a)2i,2

)1/2
and the multiplication of the vector-valued image (Du − a)
with the scalar-valued image max(·)/‖ · ‖2 is done element-
wise by replicating the scalar-valued image.

Algorithm 2 Iterative Wiener filtering and thresholding
(IWFT)
Input: g – blurred image, (w1,w2) – restoration and update
filters, and N – number of iterations
Output: u – sharp image

1: Initial estimation with restoration filter:
2: u1 ← w1 ∗ g
3: k ← N , a← 0, β ← 10max(g), u← u1
4: repeat
5: Element-wise soft thresholding:

6: v← (Du− a) ·
max

(
‖Du− a‖2 − 1

β , 0
)

‖Du− a‖2
7: a← a− Du+ v
8: Improve the image with update filter:
9: u← u1 + w2 ∗ (v + a)

10: k ← k − 1
11: until k = 0 or relative tolerance < 10−4

The whole algorithm, which we call the iterative Wiener
filtering and thresholding (IWFT) is summarized in Alg. 2.
The filters w1 and w2 are inputs to the algorithm and they are
precomputed for the given blur and noise level in the degraded
image g. The algorithm consists of three main steps: initial
filtering (line 2), element-wise computation (lines 6 and 7)
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PSF restor. filter update filters

Fig. 2. Learned restoration and update filters for the Airy disk (top row) and
motion blur (bottom row). From left to right: blur (h), initial restoration filter
(w1), two update filters (w2) for horizontal and vertical differences. The filter
size (s) is 45× 45.

and update filtering (line 9). The first filtering step provides
the initial estimator of u, which corresponds to the first term
in (9). The remaining two steps are run iteratively. Update of v
is element-wise soft thresholding with the threshold 1/β. The
parameter β is the same used in the construction of filters w1

and w2. Experimentally we have validated that the best results
are achieved for β 10-times the range of intensity values, i.e.
image gradients below 1/10th of the intensity range are zeroed
out in v. The update of the sharp image u is performed by
filtering each component of the vector-valued image (v + a)
with the corresponding update filter from w2 and summing
the results over the components. The algorithm finishes after
satisfying one the convergence criteria: number of iterations
or relative tolerance between the new estimation and the old
one.

III. EXPERIMENTS

The proposed IWFT algorithm solves the deconvolution
problem (7) using the ADMM, which is guaranteed to con-
verge. The appealing property of the proposed method is that
all steps are implemented either by linear filters or simple
element-wise operations, and thus the problem of boundary
conditions in convolution is not present. The practical usage
of the method is however determined by several other factors:
by what margin the method outperforms the classical Wiener
filter, how many iterations are generally required, and what is
the minimum filter size to achieve these results. The following
experiment addresses these issues in question.

The method performance was evaluated with respect to
the filter size, number of iterations and noise level. The
standard peak signal-to-noise (PSNR) ratio in dB was used as
a performance measure. We also evaluated SSIM [12] and the
results were equivalent. We took sharp images, blurred them
with two types of blur – Airy disk modeling sensor blur and
motion blur modeling camera shake – and added noise with
SNR = 50, 30, 20dB. Figs. 1(a) and (b) illustrate an example
of the original image and the corresponding one blurred by
Airy disk, respectively. The restoration and update filters of
different sizes were learned for each PSF and noise level with
parameters γ = 105 (50dB), γ = 103 (30dB) and γ = 102

(20dB). Fig. 3 summarizes PSNR of the IWFT algorithm after
N = 0, 1, 5 and 15 iterations for all generated images. N = 0
means that only the initial filtering with the restoration filter
w1 in step 2 is performed and the result is equivalent to the
standard Wiener filter for the image power spectrum 1/|D|2.
In this case, strong ringing artifacts are present in the restored
images as illustrated in the first column of Fig. 4. A noticeable
improvement of the restored image both in the PSNR sense
and visually is achieved after one application of the update
filters w2 (see the 1st iteration in the second column of Fig. 4).
Additional iterations further improve the image, yet after 15
iterations (the last column) improvements are negligible.

The quality of restoration improves with the increasing
filter size as expected. When the Airy disk is used, PSNR
saturates for filter sizes of 45 × 45 in the case of 50dB.
When noise increases in the image, the restoration and update
filters perform more denoising than deconvolution and filters
of smaller size become sufficient. So in the case of 30dB
(20dB), PSNR saturates already for filter sizes of around
15×15 (10×10), however due to increased noise the achieved
PSNR is lower. When the motion blur of similar effective
size as the Airy disk is used, we notice that the maximum
achievable PSNR is much higher. This is in accordance with
the fact that Gaussian blurs (including Airy disk and out-of-
focus) are more destructive than motion blurs. Examples of
restored images for two noise levels and both blur types using
filter size 45× 45 are summarized in Fig. 5

IV. CONCLUSIONS

We have proposed a computationally efficient image restora-
tion algorithm IWFT consisting of only filtering and element-
wise operations, which makes it particularly suitable for im-
plementation in digital cameras. The algorithm is based on
the alternating directions method of multipliers and iteratively
solves a non-smooth convex problem of deconvolution with
total variation regularization using two linear filters. One
filter is for initial restoration and another for updating the
current estimate. Filters are implemented in the spatial domain
and learned by two proposed learning methods. Experiments
illustrate that the IWFT algorithm performs well for moderate
filter sizes and removes ringing artifacts after only a few
iterations in the case of realistic sensor and lens blurs.

A promising feature of the algorithm, which we plan to
investigate in the near future, is the capability to seamlessly
incorporate other restoration tasks. The algorithm for learning
restoration filters is sufficiently general to estimate filters that
in addition to deconvolution perform, e.g, demosaicing and
super-resolution. In this case, we can replace the restoration
filter for initial estimation with the newly learned filters and
the rest of the algorithm remains the same.
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