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Abstract - The paper is focused on an algorithmic technique 
for detection of hand presence and distance from a hand to device 
transmitting ultrasound signals. The described method is based on 
a QRD Recursive Least Squares (RLS) algorithm with double 
precision arithmetic and exponential forgetting (EF). Modelling of 
a hand detection problem is based on linear Finite Impulse 
Response (FIR) based regression models and performed using 
MATLAB tools. The modelled system comprises an environment 
model, a hand model and an identification block. A series of 
experiments testing both time-invariant and time-variant 
environment models and time-variant hand models show the 
importance of a correct choice of the EF factor. The experiments 
have proven the accuracy of the algorithm and the possibility to 
calculate a distance from the hand to the device. The final version 
of the algorithm is supposed to be implemented on the embedded 
Xilinx Zynq device equipped with a microphone and ultrasound 
transducers. 

I. INTRODUCTION 

Adaptive Recursive Least Squares (RLS) algorithms [1] are 
widely used in digital signal processing applications 
for parameter estimation, echo suppression, beam-forming and 
etc. One of the first practically applicable algorithms from this 
group was so-called Levinson-Durbinov recursion [2]. Since 
then these algorithms and their variants were meticulously 
researched and many works were devoted to their description, 
analysis and development as well as their practical applications 
[1-5]. 

However, it appears that there is a certain difficulty 
to implement the algorithms on hardware due to their high 
computational complexity and problems with numerical stability 
[1]. To deal with computational complexity, the fast versions of 
the RLS algorithms were developed [1, 4, 6]. To solve the issue 
with numerical stability, a so-called QR decomposition of RLS 
algorithms was proposed [1, 7-9]. 

Based on the QRD RLS algorithm [1], this work attempts to 
provide an algorithm applicable for hand presence detection 
applications using ultrasound technology. The algorithm has to 
be able to compute a distance between the hand and the device 
to make the further stages of data processing for gesture 
recognition easier. It should be noted that there are several hand 
gesture recognition techniques already available on the market 
[10-11]. However, these technologies have certain limitations 

described in [12]. Therefore, there is an attempt to develop a new 
method for hand recognition, which will be based on ultrasound 
technology. The final ultrasound-based applications 
are supposed to be less power consuming, less expensive and 
more user-friendly. The domain of ultrasound applications 
includes, but not limited to automobile industry, smart 
home/building, wearables, etc. 

II. HAND DETECTION USING QRD RLS ALGORITHM 

A. General Principle 

The QRD RLS algorithm described in this work serves only 
as a pre-processing stage for a hand detection problem. 
Therefore, it aims to preliminary detect the hand, reducing the 
noise from the environment, and, respectively, to compute the 
distance between the hand and the device. It will be a part of the 
more complex algorithm for gesture recognition based on 
beamforming technique and supposed to be used in final gesture 
recognition application. The described algorithmic technique 
continues studies presented in [13-14]. 

The basic concept of a hand recognition application 
is as follows: the device sends ultrasound impulses, which 
are reflected from the hand and return back to the device. Taking 
into account responses and their characteristics, the device is 
supposed to detect presence, position and distance of the hand 
from the device [13]. 

However, undesired responses can cause a great problem for 
a recognition process. The undesired responses can come from 
other objects in the environment and should be removed from the 
target signal. The algorithm presented in this work aims to 
eliminate the undesired reflections from the environment and 
provide more accurate information about the desired signal for 
further processing stages [13]. 

The method described in the work benefits from a noise 
cancellation method [1] shortly described in the next subsection. 

The experiments showing a hand detection process and 
distance computation are fulfilled using MATLAB tools and 
discussed in details in further parts of the work. 

B. Algorithm Description 

A noise cancellation technique is well described in [1]. 
Briefly speaking, there are two signals: the desired signal and the 
reference ultrasound source signal. The desired signal consists of 
reflections both from the hand and from the environment. The 
algorithm has to remove/reduce the reflections from the 
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environment out of the desired signal using the reference 
ultrasound source signal. These two signals are assumed to be 
uncorrelated. 

In this work the noise cancellation problem is solved using 
the QRD RLS algorithm with double precision arithmetic and 
exponential forgetting (EF). The algorithm uses QR 
decomposition of the information matrix, which provides a 
numerically stable solution [1, 15-16]. 

To make a brief insight into the algorithm used in the work, 
it is worth saying that the standard RLS algorithm [1-3] is 
described by equation: 

θ (N+1|n) = θ(N+1|n) + k·(z(N+1) - ZT(n)·θ(N+1|n)) = 

= θ(N+1|n) + [V(n)]-1·Z(n)·(z(N+1) – ZT(n)·θ(N+1|n))     (1) 

where θ (N+1|n) are unknown parameters estimated 

from known parameters θ(N+1|n), k is a Kalman gain vector, 
z(N+1) is a vector of outputs, Z(n) is a data vector,       [V(n)]-1 = 
[U(n)TU(n)]-1 is an autocorrelation matrix of the filter input 
signal, N is an order of the system, n is an order of the system 
nested in N. 

The stable version of RLS algorithms is obtained by making 
QR decomposition of the information matrix U [1-3]: 

                                        U = Q·R         (2) 

where U is a long matrix of size Lxn, L comprises all measured 
data, Q is an orthogonal matrix of size Lxn and R is an upper 
triangular matrix of size nxn with positive diagonal elements. 
Further it is valid [1-3]: 

                                       UT·U = RT·R        (3) 

The compound matrix U(N+1) is described                     as 
follows [1-3]: 

Its decomposition is performed as follows [1-3]: 

 

where the left side matrix has size Lx(n+1), 
[Q|q] is an orthogonal matrix of size Lx(n+1) and the last term 
is a triangular matrix of size (n+1)x(n+1) [1-3]. 

To avoid the product UTU, a square-root information RLS is 
used [1]: 

 

Then computation of θ is fulfilled in the following way [1]: 

                                         θ = R-1·h         (7) 

The next step of computation will have the form [1]: 

θ = R -1· h          (8) 

The algorithm has two computational steps per time update: 
a triangular updating and a triangular back-substitution. It results 
in computation complexity O(n2) [1-3]. 

To prevent a computational bottleneck and to avoid problems 
during hardware implementation of the algorithm, the QRD 
algorithm free from square-root computation is used [17]. 

It should be also noted that the algorithm used in the work is 
able to calculate the error signal without explicitly computing 
estimates of regression model parameters at each time step [1-3]. 

C. Modelling 

The block diagram of the modelling process is shown in Fig. 
1. It consists of three parts: an environment model, a hand model 
and an identification block. 

Furthermore, it is assumed that the hand appears for a short 
period of time. In this case the reflections from the hand 
represent an additional short period disturbance. 

Both models are based on linear finite impulse (FIR) models. 
They have common input u. Using input data, the environment 
and hand models produce outputs y1 and y2 respectively. These 
outputs are summed up and their summation is sent to the 
identification block, which estimates parameters of the hand 
model and computes prediction and filtration errors [13]. 

 

Figure 1. Block diagram 

The hand reflection signal is reconstructed as a prediction 
error of the algorithm. Thus, it can be stated that the development 
of prediction error ê estimates the development of output y2. 

III. RESULTS 

A series of experiments using both time-invariant and time-
variant environment models and different values of the EF factor 
have been fulfilled. The results of the experiments are 
thoroughly discussed in this section. 

The input signal in the form of pulses (see Fig. 2) is used for 
all experiments performed. The choice of the input signal is 
determined by the fact that such kind of a signal allows 
computing the distance between the hand and the device. 

The signal is created from pulses with a period of 500 
samples and a width of 50 samples. 

To model the environment and the hand, regression models 
operating with uncorrelated additional output noise are used. 

The environment model is a static regression model, i.e. has 
constant coefficients. The model is of the 1000th order. Its first 
500 coefficients are set to zero to allow the system to learn to 
estimate parameters correctly. The rest are time-invariant 
random values. 

 

Figure 2. Input signal 

The hand model is a time-variant regression model 
of the 500th order. The absence of the hand is modelled by setting 
coefficients in the columns of the matrix to zero values. The 
columns of the matrix correspond to time development of the 
system. 

To simulate a short-term appearance of the hand, 
the coefficients of the hand model are set to non-zero values. 

During the experiments three cases of the hand appearance 
are considered: 

· A short-term appearance of the hand, which does not 
allow calculating the distance (see Fig. 3). It is the first 
hand appearance at time step 10 000 lasting for 500 
samples. 

· A short-term appearance of the hand modelled 
with a certain delay presented by zero coefficients in the 
rows of the matrix (see Fig. 3). It is the second hand 
appearance at time step 50 000 lasting for 500 samples. 

· A longer-term appearance of the hand modelled with a 
certain delay presented by zero coefficients in the rows of 
the matrix (see Fig. 3). It is the third hand appearance at 
time step 80 000 lasting for 5 000 samples. 

Due to delays modelled in two latter cases, it is possible to 
compute the distance between the hand and the device. In this 
case the delay corresponds to time needed for a signal to come 
back from an obstacle to sensors. The delay for the second hand 
appearance corresponds to 200 samples; while the delay for the 
third hand appearance corresponds to 350 samples (see Fig. 4, 
6). 

The experiments also show the influence of the EF factor on 
identification process. The results of the experiments 
with different EF factors are shown in Fig. 3. 

The values of the EF factor used in the experiments are 0.995 
(the upper graph in Fig. 3), 0.99995 (the middle graph in Fig. 3) 
and 0.99999995 (the bottom graph in Fig. 3). 

In the very beginning on all graphs there is a certain increase 
of prediction error. It can be explained by the fact that the system 
needs some time to learn to identify parameters. After it the 
system should be able to estimate the parameters and compute 
prediction errors more or less accurately. 

It is also obvious from Fig. 3 that the accuracy of the results 
greatly depends on the chosen EF factor. On the upper graph the 
EF factor is small; therefore, the system learns fast. It results in 
considering both appearance and disappearance of the hand as a 
short-term disturbance. In its turn it causes the increases of 
prediction error. 

The situation is better on the middle graph, where the EF 
factor is higher (0.99995). The process of learning and adapting 
to a new situation is slower. Therefore, the first and the second 
appearance of the hand are identified very precisely. However, 
the third appearance of the hand lasts a longer period of time: 
5000 samples instead of 500 samples in the first two cases. This 
time is enough for the system to adapt to a new situation, when 
the hand is present, and it causes the small increases of prediction 
error after the hand has already disappeared. 

 

Figure 3. Identification results, time-invariant environment model, different EF 
factors (from up to down): φ=0.995, φ=0.99995, φ=0.99999995  

The graphs show the development of prediction error (red 
curve) and output y2 (green curve). As it was noted above 
the prediction error should have similar development as output 
y2 has. It is due to the fact that it is the hand that causes a short-
term disturbance and, thus, the increase of prediction error. 
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environment out of the desired signal using the reference 
ultrasound source signal. These two signals are assumed to be 
uncorrelated. 

In this work the noise cancellation problem is solved using 
the QRD RLS algorithm with double precision arithmetic and 
exponential forgetting (EF). The algorithm uses QR 
decomposition of the information matrix, which provides a 
numerically stable solution [1, 15-16]. 

To make a brief insight into the algorithm used in the work, 
it is worth saying that the standard RLS algorithm [1-3] is 
described by equation: 
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from known parameters θ(N+1|n), k is a Kalman gain vector, 
z(N+1) is a vector of outputs, Z(n) is a data vector,       [V(n)]-1 = 
[U(n)TU(n)]-1 is an autocorrelation matrix of the filter input 
signal, N is an order of the system, n is an order of the system 
nested in N. 

The stable version of RLS algorithms is obtained by making 
QR decomposition of the information matrix U [1-3]: 
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where U is a long matrix of size Lxn, L comprises all measured 
data, Q is an orthogonal matrix of size Lxn and R is an upper 
triangular matrix of size nxn with positive diagonal elements. 
Further it is valid [1-3]: 

                                       UT·U = RT·R        (3) 

The compound matrix U(N+1) is described                     as 
follows [1-3]: 

Its decomposition is performed as follows [1-3]: 
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The hand model is a time-variant regression model 
of the 500th order. The absence of the hand is modelled by setting 
coefficients in the columns of the matrix to zero values. The 
columns of the matrix correspond to time development of the 
system. 

To simulate a short-term appearance of the hand, 
the coefficients of the hand model are set to non-zero values. 

During the experiments three cases of the hand appearance 
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· A short-term appearance of the hand, which does not 
allow calculating the distance (see Fig. 3). It is the first 
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samples. 
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certain delay presented by zero coefficients in the rows of 
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time step 80 000 lasting for 5 000 samples. 
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compute the distance between the hand and the device. In this 
case the delay corresponds to time needed for a signal to come 
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The values of the EF factor used in the experiments are 0.995 
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In the very beginning on all graphs there is a certain increase 
of prediction error. It can be explained by the fact that the system 
needs some time to learn to identify parameters. After it the 
system should be able to estimate the parameters and compute 
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It is also obvious from Fig. 3 that the accuracy of the results 
greatly depends on the chosen EF factor. On the upper graph the 
EF factor is small; therefore, the system learns fast. It results in 
considering both appearance and disappearance of the hand as a 
short-term disturbance. In its turn it causes the increases of 
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The situation is better on the middle graph, where the EF 
factor is higher (0.99995). The process of learning and adapting 
to a new situation is slower. Therefore, the first and the second 
appearance of the hand are identified very precisely. However, 
the third appearance of the hand lasts a longer period of time: 
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time is enough for the system to adapt to a new situation, when 
the hand is present, and it causes the small increases of prediction 
error after the hand has already disappeared. 

 

Figure 3. Identification results, time-invariant environment model, different EF 
factors (from up to down): φ=0.995, φ=0.99995, φ=0.99999995  

The graphs show the development of prediction error (red 
curve) and output y2 (green curve). As it was noted above 
the prediction error should have similar development as output 
y2 has. It is due to the fact that it is the hand that causes a short-
term disturbance and, thus, the increase of prediction error. 
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The low graph in Fig. 3 shows the most precise results as the 
development of prediction error and output y2 coincide. In this 
case the EF factor is very close to 1 (0.99999995). It is obvious 
that the hand detection process for all three hand appearance is 
very accurate. Even though in the third case the hand remains a 
longer period of time, the system is able to identify it correctly. 

To show the accuracy of the results in more details, 
the fragments of the results for the third hand appearance 
for different EF factors are presented in Fig. 4. 

Taking into account the results discussed above, it can seem 
that the higher value of the EF factor is the better the results can 
be obtained. However, it is not always true. 

Let us suppose that there are some objects 
in the environment, which can move from time to time. 
To simulate this situation, a time-invariant environment model 
should be changed into a time-variant environment model, i.e. its 
coefficients will be changing with time. All other settings of the 
experiments remain the same. 

 

 

Fig. 5 shows the outputs of the experiments given the time-
variant environment model using different EF factors: φ=0.995 
for the upper graph, φ=0.99995 for the middle graph, 
φ=0.99999995 for the bottom graph. 

It is obvious that the results given the time-variant 
environment model are not as precise as they were for time-
invariant environment model. Note that in the very beginning the 
system needs more time to learn to estimate parameters. Again 
the small value of the EF factor results in fast learning. As it was 
in the previous case, it causes the increase of prediction error 
both for hand appearance and hand disappearance. However, to 
make a value of the EF factor larger is not always safe while 
using the time-variant environment model. From the middle and 
especially from the bottom graph it is obvious that for greater 
values of the EF factor the increase of prediction error in the very 
beginning of identification process is so large that it hardens to 
detect the first hand appearance.  

 

 

Fig. 4. Detection of the third hand appearance, different EF factors  
(from up to bottom): φ=0.995, φ=0.99995, φ=0.99999995 

  

 

 

 
Fig. 5. Identification results, time-variant environment model, different EF 

factors (from up to down): φ=0.995, φ=0.99995, φ=0.99999995 

 

Finally, Fig. 6 explains the method for computing 
distance between the hand and the device. For these 
purposes, the fragment with the second hand appearance 
given the time-invariant environment model is chosen. 

As it has already been observed in previous sections, 
the second and the third hand appearance are modelled 
with a certain delay. The delay corresponds to time needed 
for a signal to return back to the device after being reflected 
from an obstacle. 

The delays are modelled by putting coefficients 
in the rows of the matrix of the hand model to zero values. 
Thus, the second hand appearance is delayed for 200 
samples: the first 200 coefficients are zeros. The hand 
appears at time step 50 200 instead of time step 50 000 
as it was predefined in settings (see Fig. 6). Similarly, 
the third hand appearance is delayed for 350 samples and 
is at time step 80 350 instead of time step 80 000 (see Fig. 3). 

 

Fig. 6. Example of a signal delay, different EF factors (from up to bottom): 
φ=0.995, φ=0.99995, φ=0.99999995 

The experiments show that this approach to distance 
computation functions accurately and can be used for further 
development of the algorithm. 

IV. DISCUSSION 
The experiments prove that the proposed approach 

to the system identification using QRD RLS algorithm 
is promising and provides precise outputs both for time-
invariant and time-variant models. 

The experiments also show the importance of the EF 
factor, which strongly influences the results of identification 
and computation of prediction errors. A small value 
of the EF factor ensures the fastness of learning process. 
However, fast learning causes some complications when 
the hand remains for a longer period of time, so both 
its appearance and disappearance are considered to be 
a disturbance. It results in increase of prediction error. 
On the other hand, large values of the EF factor force 
the system to learn slower and detection results for a longer 
hand presence are more precise. However, for time-variant 
environment models large values of the EF factor caused 
a great increase of prediction error in the beginning 
of identification process, which complicated detection 
of the first hand appearance in the experiments described 
in the work. It can be concluded that the EF factor should be 
carefully chosen depending on a particular situation. 

Furthermore, the experiments show that the concept 
of calculating distance using a delay in regression models 
functions accurately and can be used in further 
investigations. 

The further work is supposed to use the real ultrasound 
data from the sensors to test the algorithm. Besides, 
it is supposed to supplement the algorithm with hypotheses 
testing [18] in a way that there will be different identification 
models using different EF factor and/or different orders 
of the model corresponding to this or that situation. 
The algorithm will detect, which identification model suits 
better for the data obtained. 

V. CONCLUSION 
Summarizing the results, it should be noted 

that the present work presents an approach to a hand 
detection technique based on ultrasound technology. 
The approach describes a pre-processing stage only using a 
hand detection algorithm. The algorithm used in the work 
is the QRD RLS algorithm with double precision arithmetic 
and EF. The algorithm is supposed to be a part of the more 
complex algorithm based on beamforming technique and 
supposed to be used in final gesture recognition application. 
The algorithm aims at detecting the hand presence and, thus, 
reducing noise from the environment; thus, helping the final 
gesture recognition algorithm to obtain highly accurate 
results. 

A series of experiments were performed including 
the experiments with time-variant and time-invariant 
FIR filter based environment models and time-variant 
FIR filter based hand models. During the experiments 
different values of the EF factor were used. 

The experiments show the role of the EF factor and 
the importance of a correct choice of its value. This choice 
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The low graph in Fig. 3 shows the most precise results as the 
development of prediction error and output y2 coincide. In this 
case the EF factor is very close to 1 (0.99999995). It is obvious 
that the hand detection process for all three hand appearance is 
very accurate. Even though in the third case the hand remains a 
longer period of time, the system is able to identify it correctly. 

To show the accuracy of the results in more details, 
the fragments of the results for the third hand appearance 
for different EF factors are presented in Fig. 4. 

Taking into account the results discussed above, it can seem 
that the higher value of the EF factor is the better the results can 
be obtained. However, it is not always true. 

Let us suppose that there are some objects 
in the environment, which can move from time to time. 
To simulate this situation, a time-invariant environment model 
should be changed into a time-variant environment model, i.e. its 
coefficients will be changing with time. All other settings of the 
experiments remain the same. 
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φ=0.995, φ=0.99995, φ=0.99999995 

The experiments show that this approach to distance 
computation functions accurately and can be used for further 
development of the algorithm. 

IV. DISCUSSION 
The experiments prove that the proposed approach 

to the system identification using QRD RLS algorithm 
is promising and provides precise outputs both for time-
invariant and time-variant models. 

The experiments also show the importance of the EF 
factor, which strongly influences the results of identification 
and computation of prediction errors. A small value 
of the EF factor ensures the fastness of learning process. 
However, fast learning causes some complications when 
the hand remains for a longer period of time, so both 
its appearance and disappearance are considered to be 
a disturbance. It results in increase of prediction error. 
On the other hand, large values of the EF factor force 
the system to learn slower and detection results for a longer 
hand presence are more precise. However, for time-variant 
environment models large values of the EF factor caused 
a great increase of prediction error in the beginning 
of identification process, which complicated detection 
of the first hand appearance in the experiments described 
in the work. It can be concluded that the EF factor should be 
carefully chosen depending on a particular situation. 

Furthermore, the experiments show that the concept 
of calculating distance using a delay in regression models 
functions accurately and can be used in further 
investigations. 

The further work is supposed to use the real ultrasound 
data from the sensors to test the algorithm. Besides, 
it is supposed to supplement the algorithm with hypotheses 
testing [18] in a way that there will be different identification 
models using different EF factor and/or different orders 
of the model corresponding to this or that situation. 
The algorithm will detect, which identification model suits 
better for the data obtained. 

V. CONCLUSION 
Summarizing the results, it should be noted 

that the present work presents an approach to a hand 
detection technique based on ultrasound technology. 
The approach describes a pre-processing stage only using a 
hand detection algorithm. The algorithm used in the work 
is the QRD RLS algorithm with double precision arithmetic 
and EF. The algorithm is supposed to be a part of the more 
complex algorithm based on beamforming technique and 
supposed to be used in final gesture recognition application. 
The algorithm aims at detecting the hand presence and, thus, 
reducing noise from the environment; thus, helping the final 
gesture recognition algorithm to obtain highly accurate 
results. 

A series of experiments were performed including 
the experiments with time-variant and time-invariant 
FIR filter based environment models and time-variant 
FIR filter based hand models. During the experiments 
different values of the EF factor were used. 

The experiments show the role of the EF factor and 
the importance of a correct choice of its value. This choice 
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[12]  R. Pradipa and S. Kavitha (2014). “Hand gesture recognition – analysis of 
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[Online]. Available: http://www.rroij.com/open -access/hand -gesture-
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theiralgorithms.pdf  

[13] R. Likhonina, “Hand gesture recognition: noise cancellation based 
approach using QRD RLS algorithm,” unpublished. 

[14] R. Likhonina and J. Kadlec, “Noise cancellation using QRD RLS 
algorithms (application note)”, unpublished. 

[15] J. Kadlec and R. Likhonina, “Adaptive RLS algorithms reference 
implementations (applica tion note)”, UTIA, 2016. [Online]. Available: 

http://sp.utia.cz/index.php?ids=projects/silense  

[16] R. Likhonina, “Fast Bayesian algorithms for FPGA platform: studies for 
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Transactions on Signal Processing, vol. 41, no. 3, pp. 1405–1409, 1993. 

[18] V. Peterka, “Bayesian approach to system identification,” in Eykhoff, P. 
(Ed.), Trends and Progress in System Identificaion. Pergamon Press, 
Oxford, pp. 239-304, 1981. 

always depends on a specific situation and should be 
carefully considered. 

During the experiments the method for computation 
of a distance between the hand and the device was proposed. 
It may be useful for further processing stages including 
beam-forming. The final goal is the application for hand 
detection, where the hand appears for a short period of time 
at a certain distance from the ultrasound source. 

The final version of the algorithm is supposed to be 
implemented on Xilinx Zynq devices operating in real time 
with a microphone and ultrasound transducers. The final 
implementation is supposed to benefit from FPGA structure 
and pipeling technique to accelerate the computation process. 
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Abstract - Deep learning (DL) has transformed the field of
data analysis by dramatically improving the state of the art in
various classification and prediction tasks, especially in the area
of computer vision. In biomedical engineering, a lot of new work
is directed towards surface electromyography (sEMG) based
gesture recognition, often addressed as an image classification

problem using Convolutional Neural Networks (CNN). In this
paper, we utilize the Hilbert space-filling curve for the generation
of image representations of sEMG signals that are then classified
by CNN. The proposed method is evaluated on different network
architectures and yields a classification improvement of more
than 3%.

Keywords - classification, CNN, deep learning,
electromyography, hand gesture recognition, Hilbert
curve, sEMG

I. INTRODUCTION

The problem of gesture recognition is encountered in many
applications including human computer interaction [1], sign
language recognition [2], prosthesis control [3] and
rehabilitation gaming [4, 5]. Signals generated from the
electrical activity of the forearm muscles, which can be
recorded with surface electromyography (sEMG) sensors,
contain useful information for decoding muscle activity and
hand motion [6].

Machine Learning (ML) classifiers have been used
extensively for determining the type of hand motion from
sEMG data. A complete pattern recognition system based on
ML consists of data acquisition, feature extraction, classifier
definition and inference from new data. For the classification of
gestures from sEMG data, electrodes attached to the arm and/or
forearm acquire the sEMG signals, and features such as Root
Mean Square (RMS), variance, zero crossings and frequency
coefficients are extracted and then fed as input to classifiers like
k-Nearest Neighbors (k-NN), Support Vector Machine (SVM),
Multi-Layer Perceptron (MLP) or Random Forests [7].

Over the past years, Deep Learning (DL) models have
shown great success to the problem of sEMG-based gesture
recognition. In these approaches, sEMG data are represented as
images and a Convolutional Neural Network (CNN) is used to
determine the type of gesture. A typical CNN architecture
consists of a stack of convolutional and pooling layers followed
by fully connected (i.e. dense) layers and a softmax output. In
this way, CNNs transform the input image layer by layer, from
the pixel values to the final classification label. 

CNNs have made breakthroughs in feature extraction and 
image classification tasks in 2D problems. Yet, choosing a 
proper method to convert time-series into images that can be 
used as inputs to CNN models is not obvious. Among the 
methods proposed in literature are the segmentation of multi-

channeled signals using windows and the application of 2D 
transformations such as the Fourier and Wavelet Transforms. 

In this work, we investigate the application of the Hilbert 
space-filling curve to represent sEMG signals as images that 
can be classified by CNNs. This type of curve is useful because 
it provides a mapping between 1D and d-dimensional spaces 
while preserving locality. The main contributions presented in 
this paper are:  

· the development of a representation method for sEMG 
signals as images using the Hilbert curve,  

· the application of this method to the problem of hand 
gesture recognition with CNNs.  

The rest of the paper is organized as follows. Section 2 
provides a literature review of gesture recognition 
methodologies. In Section 3 we give the details of the proposed 
method and the CNN architectures used for experimentation. 
The experiments performed for the evaluation of the model are 
given in Section 4, while a discussion of the results is presented 
in Section 5. Finally, Section 6 summarizes the outcomes and 
outlines future work. 

II. RELATED WORK 

Both typical ML approaches and DL practices have been 
employed to study the problem of sEMG-based hand gesture 
recognition. In the former, the work of [8] comprises the first 
approach for the classification of four gestures through the 
extraction of time-domain features from two electrode sEMG 
signals. The authors of [9] reach an accuracy of 97% in 
categorizing three types of grasps using as input to an SVM 
classifier the RMS of seven electrodes. The research of [10, 11, 
12] evaluates various EMG features with a selection of 
classifiers for the classification of 52 gestures from the Ninapro 
reference dataset [10, 13]. A Random Forest classifier and a 
combination of statistical and frequency domain features yield 
the best performance, an accuracy of 75%. 

In the case of DL methods, a huge amount of literature has 
been recently developed. The authors of [14] define a CNN for 
the recognition of six common gestures resulting in improved 
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