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Abstract. The paper provides a practical guide on initialization of the
recursive mixture-based clustering of non-negative data. For modeling
the non-negative data, mixtures of uniform, exponential, gamma and
other distributions can be used. Initialization is known to be an impor-
tant task for a start of the mixture estimation algorithm. Within the
considered recursive approach, the key point of initialization is a choice
of initial statistics of the involved prior distributions. The paper describes
several initialization techniques for the mentioned types of components
that can be beneficial primarily from a practical point of view.
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1 Introduction

The Bayesian mixture estimation [1–4], which makes the basis for the clustering
considered in this paper, performs the estimation online. It means that in the
beginning of the estimation, where smaller data sets are used, the parameters can
be determined very inaccurately and their point estimates have large variances.
This can be unacceptable in some application domains with demands of quick
and effective estimation (e.g., fault detection, online diagnostics, medicine, etc.).
The model estimation is usually just a preparation for other tasks that use
the estimated model. This may be, for example, the prediction of the system
output or its control. Then at the beginning, a poorly estimated model may give
either completely wrong predictions or faulty control values that can damage
the controlled system. Within the clustering tasks, it leads to an unsuccessful
search for data clusters. Therefore, it is very important to pre-set the task which
includes the model estimation before its start, so that the model has already been
roughly adjusted and the estimation has only “fine-tuned” it. This is exactly the
main feature of the initialization problem.

The Bayesian approach to estimation allows us such a way. It means that
the prior information can be used for this aim by means of preparing the prior
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distribution statistics, so that the parameters from them are roughly matched
with reality. However, the non-trivial question is how to convert the prior in-
formation about the system to the prior statistics. In the field of mixture-based
clustering [5–7], the prior information should be transformed to the statistics of
the mixture components used.

Different distributions are used within this task [8–11]. Gaussian mixtures
are probably the most frequently met models, see, e.g., [12–14], etc.

This paper continues a line started in paper [15], which considered the initial-
ization task for the clustering with uniform components of the mixture model.
The uniform components are beneficial for applications where the analysis of
data with fixed boundaries is required. This paper extends the study [15] for
the domain of non-negative data, which means that other suitable distributions
can be taken as the mixture components. The mixture initialization with them
is not a trivial task.

The majority of studies, e.g., [16–20] are devoted to the initialization of the
expectation-maximization (EM) algorithm [21] used in iterative approaches to
mixture estimation. In this paper, similarly as in [15], the mixture-based cluster-
ing based on the recursive Bayesian estimation avoiding iterative computations
is used. It was considered for normal models in [22] and for normal mixtures
in [1–3]. A series of other components is discussed in [9, 23, 4]. Within the men-
tioned framework, the initialization is primarily concerned with a choice of (i)
the number of components, (ii) the initial statistics of a model of switching the
components and (iii) the initial statistics of components. In this area, paper
[24] based on [25] is also found, again devoted to the initialization with normal
mixtures.

This paper explores initialization approaches for the estimation of the mix-
ture of uniform, Bernoulli, geometric, exponential and Gamma components. The
main emphasis is on the choice of the initial statistics of components. The dis-
cussed methods are based on the use of prior data.

The paper is organized in the following way. Section 2 introduces a mixture
model along with different types of its components as well as a model of their
switching. Section 3 presents a brief summary of recursive Bayesian mixture
estimation algorithm. Section 4 specifies the initialization problem and discusses
the initialization techniques for all of the mentioned types of the components.
Conclusions and open problems are given in Section 5.

2 Models

Let us consider a multi-modal system, which generates the continuous data vec-
tor yt at each discrete time instant t = 1, 2, ..... The system is assumed to work
in mc working modes. Each of them is indicated at the time instant t by the
value of the unmeasured dynamic discrete variable ct ∈ {1, 2, . . . ,mc}, which is
called the pointer [1].

For description of such the multi-modal system a mixture model is used,
which is here comprised ofmc components in the form of the following probability
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density functions (pdfs)

f(yt|Θ, ct = i), i ∈ {1, 2, . . . ,mc}, (1)

where Θ = {Θi}mci=1 is a collection of unknown parameters of all components, and
Θi includes parameters of the i-th component in the sense that f (yt|Θ, ct = i) =
f (yt|Θi) for ct = i.

The general component pdf (1) is specified in dependence of the data nature
and certain model assumptions. In this paper, several types of components are
considered as follows.

2.1 Uniform Components

Under assumption of the independence of individual entries of the vector yt, the
uniform pdf (1) takes the following form ∀i ∈ {1, 2, . . . ,mc}

f (yt|L,R, ct = i) =

{
1

Ri−Li for yt ∈ (Li, Ri) ,

0 otherwise,
(2)

where {Li, Ri} ≡ Θi, and their entries (Ll)i and (Rl)i are minimal and maximal
bounds of the l-th entry yl;t of the K-dimensional vector yt within the i-th
uniform component.

2.2 Bernoulli Components

The Bernoulli component (1) is a special case of the categorical components
considered in [2, 4]. Here for the sake of simplicity, it is used in the form

f (yt|Θ, ct = i) = Θyti;1Θ
1−yt
i;0 , (3)

where yt ∈ (0, 1) and Θi = [Θi;0, Θi;1] are parameters of the i-th component,
Θi;0 is the probability of yt = 0 and Θi;1 of the value of 1. It holds Θi;0, Θi;1 ≥ 0
and Θi;0 +Θi;1 = 1, which means Θi;1 = 1−Θi;0.

2.3 Geometric Components

The geometric distribution with a large number of possible values can be used
for modeling the non-negative data as well. Here, for the sake of simplicity, it
is considered for the case yt ∈ {0, 1}. Based on the Bernoulli distribution, the
geometric component (1) has the form

f (yt|Θ, ct = i) = Θi (1−Θi)1−yt , where Θi ∈ (0, 1) , yt ∈ {0, 1}. (4)

2.4 Exponential Components

The exponential distribution is well suited for modeling the non-negative data.
The exponential component (1) is the pdf

f (yt|Θ, ct = i) = Θi exp {−Θiyt} , where Θi > 0, yt ≥ 0. (5)
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2.5 Gamma Components

The Gamma pdf is the generalization of the exponential distribution. It is suit-
able for modeling the non-negative data, whose maximum frequency does not
lie at zero or near zero. The probability density decreases exponentially with
increasing argument. The Gamma component (1) has the form

f (yt|γ, β, ct = i) =
βγii
Γ (γi)

yγi−1t exp {−βiyt} , (6)

where Θi = {γi, βi} , γi > 0, βi > 0, yt ≥ 0.

2.6 Pointer Model

A component, which describes data generated by the system at the time instant
t is said to be active. Switching the active components is described by a model
of the pointer ct as follows:

f (ct = i|α, ct−1 = j, zt = k) = (7)

ct = 1 ct = 2 · · · ct = mc

ct−1 = 1 (α1|1)k (α2|1)k · · · (αmc|1)k
ct−1 = 2 (α1|2)k · · ·
· · · · · · · · · · · · · · ·

ct−1 = mc (α1|mc)k · · · (αmc|mc)k

where the unknown parameter α is the (mc × mc)-dimensional matrix, which
exists for each value k ∈ {1, 2, . . . ,mz} of the discrete variable zt obtained from
yt by its discretization. Its entries (αi|j)k are non-negative probabilities of the
pointer ct = i under condition that the previous pointer ct−1 = j with i, j ∈
{1, 2, . . . ,mc} and the variable zt = k.

3 Mixture-Based Clustering Summary

The clustering considered in this paper is based on recursive mixture estimation
algorithms, most of those are described in literature, e.g., [1, 22, 2–4]. The key
point of the recursive clustering is to estimate parameters of components and the
pointer model and determine which component is active at time t, i.e., currently
generates data.

The following algorithmic scheme of the clustering summarizes its main steps
at each time instant:

1. Measuring the new data item;
2. Computing the proximity of the data item to individual components, see

[26];
3. Computing the probability of the activity of components (i.e., weights) using

the proximity, the point estimate of the pointer model and the past activity,
where the maximal probability declares the currently active component, see
[1–3];
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4. Classifying data according to the declared active component;
5. Updating the statistics of all components and the pointer model, see [1, 2, 4,

15], etc.;
6. Re-computing the point estimates of parameters necessary for calculating

the proximity, see [22, 2, 27], etc.
7. Go to Step 1.

These steps belong to the online part of the estimation, which should be
initialized before a start.

4 Mixture Initialization

The initialization task is specified for the above recursive algorithm in the fol-
lowing way. For time t = 0, it is necessary to set:

– the number of components mc,
– the initial weighting vector,
– the initial statistics of the pointer model and the components.

The number of components can be determined offline using prior data, for ex-
ample, by their visualization, e.g., [24] or with the help of well-known clustering
methods such as, e.g., k-means [28], etc.

As regards the initial weighting vector and the pointer statistics, it is suffi-
cient to initialize them either uniformly or randomly in combination with their
updating by prior data.

The choice of the initial statistics of the components is the key point. It is ex-
plained by computing the proximity value, which depends on the parameter point
estimates and, therefore, on the component statistics. With the accurately cho-
sen number of components and the pointer statistics the proximity with wrong
initial component statistics leads to the unsuccessful clustering. The subsequent
sections are devoted to this part of the initialization task.

4.1 Initialization with Uniform Components

The mixture initialization for the case of uniform components (2) was described
in details in [15]. This section summarizes this initialization approach within the
bounds of the task of modeling the non-negative data.

The initial statistics of the uniform components can be chosen according to
the following four techniques.

Component Centers via Mid-point Update One of the approaches is to
find centers of components instead of the left and right bounds for initial de-
tection of components [23]. In this case the statistics (sl;0)i, (ql;0)i should be
used, which are l-th entries of the K-dimensional vectors st and qt, where the
last comprises a diagonal of a matrix [15]. Starting from random values, they



6 Suzdaleva and Nagy

are updated using a set of prior data ∀i ∈ {1, 2, . . . ,mc} and ∀l = {1, . . . ,K} in
the following way.

(sl;t)i = (sl;t−1)i + wi;tyl;t, (8)

(ql;t)i = (ql;t−1)i + wi;ty
2
l;t, (9)

where wi;t is a weight of the i-th component, see for details [23, 15], etc. After
updating they are used to compute the point estimates of the mid-point and mid-
range vectors of each component (St)i and (ht)i respectively as follows (similarly
as for normal components).

(Ŝt)i = (st)i/t, (10)

(Dt)i = ((qt)i − (st)i(s
′
t)i/t) /t, (11)

(ĥt)i =
√

3 diag((Dt)i), (12)

where (Dt)i is the covariance matrix of the uniform pdf, and
√

3 diag((Dt)i)
denotes the square roots of entries of the vector diag((Dt)i). (10) and (11) from
the previous time instant are placed instead of the expectation and the covariance
matrix into the proximity, see [15]. In the end of updating by prior data the mid-
point (Ŝl;t)i is the center of the i-th component for the l-th data entry. The point
estimates of the minimum and maximum bounds are then obtained as

(L̂l;t)i = (Ŝl;t)i − ε, (13)

(R̂l;t)i = (Ŝl;t)i + ε, (14)

with small ε, and they are used during the on-line estimation.

Centers Based on K-means Another way is to use the centers of clusters
initially detected by the k-means method [28] from prior data and put them into
(13) and (14) to be used during the on-line estimation.

Centers as Averages The average values from individual prior data entries
with small deviations can be taken as initial centers of components and then
substituted into (13) and (14).

Bounds as Minimum and Maximum Here the minimum and maximum
values of corresponding entries of the data vector yt are used directly as the
component statistics denoted by (Ll;0)i and (Rl;0)i respectively.

Finally, the main results of the first three techniques above are (Ŝl;T )i, which
is the center of the i-th component for the l-th entry of yt and T is the number
of prior data items. With the help of the last technique, the initial bounds of
components are obtained.

For the on-line (i.e., for t = T + 1, T + 2, . . .) estimation of the component
bounds and classification of data among components according to the actual
maximum weight, the algorithm summarized in Section 3 is applied. For the
three first initialization techniques, relations (13) and (14) should be used before
measuring the first data item yt.
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Results A set of anonymized medical hematological prior data is used for
demonstration of the initialization approach for the uniform components. The
following specific variables comprise the 8-dimensional vector yt:

– y1;t – precollection number of leucocytes, [109/l];
– y2;t – precollection number of HTK, [%];
– y3;t – precollection number of Hemoglobin (Hbg), [g/dl];
– y4;t – precollection number of platelet count (PLT), [109/l];
– y5;t – precollection number of CD34+, [µl];
– y6;t – precollection number of CD34+ in total blood volume (TBV), [106],
– y7;t – concentration of mono-nuclear cells (MNC), [%];
– y8;t – concentration of CD34+/kg, [106].

The number of components is initialized as 3. The verification of the initial-
ization techniques is performed according to the following three criteria.

Evolution of component weights Evolution of component weights, which express
the activity of components, is observed during the on-line estimation. The rare
activity of some component or its absence indicates that the number of compo-
nents is incorrectly initialized and probably too high. The regular activity of all
components validates the correct choice of the number of components.

A fragment of the evolution of the component weights with the statistics ini-
tialized via the mid-point update is demonstrated in Figure 1. It can be seen that
all three components are regularly active. The k-means based initial statistics
give the similar activity, see Figure 2.

Fig. 1. The weight evolution with the initialization via the mid-point update [15].
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Fig. 2. Evolution of component weights with the initialization based on k-means [15].

The initialization via centers as averages is shown in Figure 3. It produces a
bit more probabilities close to 0.5. However, in general, the result is similar to
two first methods.

Fig. 3. Evolution of component weights with the initialized centers as averages [15].

The last method based on minimum and maximum prior values provides only
two detected components. Figure 4 shows at the y-axis that the weights of the
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first component in the top plot are too low, and this component is never declared
to be active.

Fig. 4. The weight evolution with the initialization based on minimum and maximum
prior values [15].

Evolution of Bounds Evolution of the point estimates of component parameters
(i.e., bounds) is monitored at the beginning of the on-line estimation. Fast lo-
cating the stabilized values of the point estimates means that the initialization
is successful. Comparing the evolution of the minimum and maximum bounds
of individual entries within each component, it can be noticed that a speed of
localization of stabilized estimate values is similar for the first three methods,
i.e., the bounds of the components detect their final values relatively quickly, see
Figure 5.

The initialization according to minimum and maximum prior values provides
a worse stabilization in search of the values of the bounds, see an example of the
left bound evolution for the third component in Figure 6, where the evolution
of the left (minimum) bounds of individual data entries is presented.

Clusters The shape and the location of final clusters detected in the data space
by starting the estimation algorithm with the mentioned initialization techniques
are compared. Comparison with k-means clustering is also demonstrated. Clus-
ters of the most interesting pair of data entries from the practical (hematological)
point of view are presented here. The entries y5;t, which is the precollection num-
ber of CD34+, and y8;t, which is the concentration of CD34+/kg, are chosen.
Their clusters detected according to the estimated pointer value can be seen in
Figures 7 and 8, where the comparison of the results initialized according to all
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Fig. 5. Example of the bound evolution with the initialization via the mid-point update
(left) and k-means (right) [15].

Fig. 6. Evolution of the left bounds of the third component with the initialization
according to minimum and maximum prior values [15].

of the discussed methods is demonstrated. The colors of the clusters in the figure
are chosen randomly in all of the plots. The clusters are enumerated according
to the order in which they have been detected and plotted. The shapes and the
location of the detected clusters should be compared.
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Fig. 7. Comparison of clusters of y5;t and y8;t with the mid-point (top) and k-means
based (bottom) initialization techniques [15].

The insignificant difference in the location of two upper clusters can be seen
in Figures 7 and 8 (top), while in Figure 8 (bottom) the clustering practically
fails. Only two data items are classified as belonging to the first cluster, i.e., two
clusters are detected instead of three.

4.2 Initialization with Bernoulli Components

For the Bernoulli components (3) as well as other distributions considered in sub-
sequent sections, the approach used for the uniform components is not suitable.
The reason is as follows. The proximity function [26], (i.e., the approximation
of the posterior pdf by the Dirac delta function and substitution of the pa-
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Fig. 8. Comparison of clusters of y5;t and y8;t with the initialization techniques based
the average (top) and minimum and maximum prior values (bottom) [15].

rameter point estimates into the components [4]) cannot be used, because for
non-negative data the model has a different form than the likelihood function.
The approach based on the likelihood function derivation can be used instead.

For the initialization of the statistics of the Bernoulli component (3), it is
advantageous to use the following construction of the likelihood function. For
instance, for the first two data items y1 and y2, the product of pdfs (3) takes
the form (here omitting the subscript i for simplicity)

Θy11 Θ
1−y1
0 Θy21 Θ

1−y2
0 = Θy1+y21 Θ2−y1+y2

0 , (15)

which means that for t data items, the likelihood is

Lt (Θ) = Θ
∑t
τ=1 yτ

1 Θ
t−

∑t
τ=1 yτ

0 = ΘSt1 Θ
t−St
0 , (16)
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where St =
∑t
τ=1 yτ . The data items yτ ∈ {0, 1}, therefore St counts the values

1 and t− St – the values 0.
The posterior pdf via the Bayes rule [22] is the product of the likelihood

function and the prior pdf. It means that it is suitable to choose the prior pdf
in the same form [2], i.e.,

f (Θ|y (0)) ∝ ΘS0
1 Θt0−S0

0 , (17)

where y(0) denotes a collection of prior data, S0 is the number of the prior values
of 1, t0 is the number of prior data and t0−S0 is the number of the prior values
of 0.

The number of prior data can be either real when working with some prior
data set or fictitious in the case of using, e.g., expert knowledge. To utilize the
prior knowledge, which says that both the values 1 and 0 are measured in the
same ratio, it is suitable to choose an arbitrary value of t0 and S0 will be a
half of it. However, if t0 is high, it means that this information was extracted
from a large data set and can dominate. If it is small, the influence of the prior
knowledge is also weak.

The posterior pdf takes the form

f (Θ|y (t)) ∝ ΘSt1 Θ
κt−St
0 , (18)

where for the statistics it holds

St =

t∑
τ=1

yτ + S0, (19)

κt = t+ t0, (20)

which highlights the previous remark: low values of S0 and t0 will not influence
the statistics. The higher values, the more influence.

With the help of substitution of the distributions into the Bayes rule [2, 22],
the recursive update of the statistics is obtained in the form

Sτ = Sτ−1 + yτ , (21)

κτ = κτ−1 + 1 (22)

for τ = 1, 2, · · · , t, which starts for the given S0 a κ0.
The point estimates of the model parameters can be obtained via MAP (Max-

imum A Posteriori) method [29] as the argument of a maximum of the posterior
pdf.

The maximum is obtained by setting the derivation of the posterior pdf equal
to zero and computing the parameter estimate. Let’s denote in (18) Θ1 = Θ and
Θ2 = 1−Θ, then

St (1−Θ)
κt−St −ΘSt (κt − St) (1−Θ)

κt−St−1 = 0, (23)

and therefore

Θ̂t =
St
κt
, (24)
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i.e., the number of the values of 1 is divided by the number of data, which is the
result already mentioned above.

From relation (24), it can be seen that the point estimate of the parameter
Θ is the average of the measured output. This can be used for the construction
of the prior statistics as follows. The average of the prior data is denoted by y0
and it is set as the initial value of the Θ̂0, which means that according to (24)

y0 =
S0

κ0
. (25)

Let’s define

S0 = n0y0, (26)

κ0 = n0, (27)

where n0 is chosen according to the emphasis with which the prior knowledge is
intended to be used. After substitution, it is obtained

S0

κ0
=
n0y0
n0

= y0 = Θ̂0. (28)

This is directly the desired result, which does not depend on n0.
Figures 9 – 11 demonstrate the evolution of the point estimates of the param-

eter Θ. It can be seen how the prior knowledge can influence the stabilization of
the values of the point estimates. In dependence on the strength and the correct-
ness of the prior information the values of the point estimates are approaching
to the true values with a different speed.

4.3 Initialization with Geometric Components

For the geometric component pdf (4) [30], similarly as in the previous case, the
model product for the first two data items y1 and y2 gives (omitting the subscript
i for the sake of simplicity)

Θ (1−Θ)
1−y1 Θ (1−Θ)

1−y2 = Θ2 (1−Θ)
2−(y1+y2) . (29)

Hence, the likelihood function again takes the form

Lt (Θ) = Θκt (1−Θ)
κt−St , (30)

where

St =

t∑
τ=1

yτ + S0 and κt = t+ t0. (31)

The likelihood derivation equal to zero gives the similar result as in the case of
the Bernoulli pdf, i.e.,

Θ =
κt

St + κt
=

1

ȳ + 1
, (32)
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Fig. 9. The evolution of the point estimates without prior knowledge (top) and with
a weak correct prior knowledge (bottom)

where

ȳ =
St
κt

(33)

is the average output. It allows us to use the initialization technique described
above for the Bernoulli components.
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Fig. 10. The evolution of the point estimates with a strong correct prior knowledge
(top) and with a weak incorrect prior knowledge (bottom)

4.4 Initialization with Exponential Components

For the exponential component (5) [31, 32], the product of the models (omitting
the subscript i for the sake of simplicity) is

Θ exp {−Θy1}Θ exp {−Θy2} = Θ2 exp {−Θ (y1 + y2)} (34)
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Fig. 11. The evolution of the point estimates with a strong incorrect prior knowledge

and the likelihood function is therefore

Lt (Θ) = Θκt exp {−ΘSt} , (35)

where again

St =

t∑
τ=1

yτ + S0 and κt = t+ t0. (36)

After its derivation, the point estimate of the parameter Θ is computed as

Θ̂t =
κt
St
, (37)

which is the inverse average output from the used data. Thus, for the initializa-
tion, the technique described for the Bernoulli components can be used again.

4.5 Initialization with Gamma Components

For the Gamma pdf (6), the model product for the first two data items y1 and
y2 (omitting the subscript i for the sake of simplicity) is

βγ

Γ (γ)
yγ−11 exp {−βy1}

βγ

Γ (γ)
yγ−12 exp {−βy2}

=

(
βγ

Γ (γ)

)2

(y1y2)
γ−1

exp {−β (y1 + y2)} . (38)
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According to this relation, the likelihood function takes the form

Lt (Θ) =

(
βγ

Γ (γ)

)κt
P γ−1t exp {−βSt} , (39)

where

κt = t+ t0, (40)

St =

t∑
τ−1

yτ + S0, (41)

Pt =

t∏
τ=1

yτ · P0. (42)

Here, the computation of the point estimates of the parameter Θ is not so
straightforward as in the previous cases. They can be derived as follows, e.g.,
[33]. Let’s denote

s = ln

(
St
κt

)
− 1

κt
ln (Pt) (43)

and then

γ
.
=

3− s+

√
(s− 3)

2
+ 24s

12s
, (44)

β =
γκt
St

. (45)

It is known, e.g., [33] (and it can be easily derived) that for the Gamma distri-
bution, it holds

the average of the output ȳ =
γ

β
, (46)

the mode of the output ŷ =
γ − 1

β
, (47)

which enables us to obtain

γ =
ȳ

ȳ − ŷ
and β =

1

ȳ − ŷ
. (48)

For the initialization purposes, it is again assumed that the average ȳ0 and the
mode ŷ are available from the prior data.

However, it is necessary to have the initial statistics, not the initial values of
parameters. The derivation of the statistics from the parameters is a relatively
complicated procedure. That is why a good choice is not to try to derive them
as it was done in the previous sections, but to simulate some data using the
parameter estimates and use them as the prior data for the computation of the
initial statistics.
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5 Conclusions

The paper summarizes practical approaches to the initialization of mixture com-
ponents for a task of recursive mixture-based clustering under the Bayesian
methodology. The investigated approaches are based on processing the prior
data set with the aim of setting the initial statistics of several types of compo-
nents. The potential application of the discussed techniques can be beneficial for
areas of the data analysis of non-negative variables.
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structure estimation. In: IEE Proceedings, Control Theory and Applications, 150(6),
pp. 643–653.
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