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Abstract

This paper deals with the task of modeling the driving style depending on the driving environment. The
model of the driving style is represented as a two-layer mixture of normal components describing data with two
pointers: outer and inner. The inner pointer indicates the actual driving environment categorized as “urban”,
“rural” and “highway”. The outer pointer through the determined environment estimates the active driving style
from a fuel economy point of view as “low consumption”, “middle consumption” and “high consumption”. All of
these driving styles are assumed to exist within each driving environment due to the two-layer model. Parameters
of the model and the driving style are estimated online, i.e., while driving using a recursive algorithm under the
Bayesian methodology. The main contributions of the presented approach are: (i) the driving style recognition
within each of urban, rural and highway environments as well as in the case of switching among them; (ii) the
two-layer pointer, which allows us to incorporate the information from continuous data into the model; (iii) the
potential use of the data-based model for other measurements using corresponding distributions. The approach
was tested using real data.

Keywords: driving style, driving environment, fuel consumption, two-layer pointer, recursive mixture estimation,
mixture-based clustering

1 Introduction

Driving style recognition is a highly desired task in the area of in-vehicle information systems responsible for
intelligent vehicle control and fuel efficiency, e.g., (Zhang et al., 2010; Wang and Lukic, 2011; Huang et al., 2012;
Xu et al., 2015; Büyükyildiz et al., 2017; Martinez et al., 2017).

According to the definition in (Elander et al., 1993; Lajunen and Özkan, 2011; Sagberg et al., 2015), driving style
can be understood as a set of driving habits accumulated by a driver with increasing driving experience. Therefore,
the formation of an individual’s driving style depends on the environment, where the individual has accumulated
the driving experience most of the time. For example, urban inhabitants driving mostly in the city will have to adapt
their style for highway driving and naturally do not drive optimally for some time and vice versa, an individual
without experience with city congestions will have to spend some time to get used to such driving. It indicates that
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the generally economical driving style of some individual can differ when changing the driving environment. In
terms of modeling, it means that the driving style is switching not only among different environments, but it also
changes within each of them, i.e., the model can have some kind of a two-layer structure, which is presented in this
study.

As noted in (Suzdaleva and Nagy, 2018), driving style is modeled primarily in terms of: (i) safety (Evans, 1996;
Sagberg et al., 2015; Eboli et al., 2017), (ii) vehicle dynamics control (Nelles, 2003; Plöchl and Edelmann, 2007; Xu
et al., 2015; Bellem et al., 2016), (iii) fuel economy (Ma et al., 2015; Ferreira et al., 2015; Pampel et al., 2015) and
(iv) ecology (Sentoff et al., 2015; Rangaraju et al., 2015; Gallus et al., 2017), which are the factors greatly affected
by driving style. These factors are closely related to each other. However, their choice influences a construction of
a driving style model. In this paper, the driving style is considered from a fuel consumption efficiency point of view
depending on the driving environment.

1.1 Related work

Investigating driving style in terms of reducing fuel consumption is discussed in a number of studies. A significant
number of publications are aimed at exploring the impact of driving style on fuel consumption. (Lee and Son, 2011)
in their study dealt with the correlation analysis of driving style and fuel consumption in a highway environment.
(Ma et al., 2015) focused on the influence of driving parameters on the fuel consumption of city buses while
accelerating, normal running and decelerating with the help of a vehicle-engine combined model. The correlation
between driving style, fuel consumption and cultural factors in two different countries is compared in (Son et al.,
2016). The extensive analysis of the factors influencing fuel consumption was presented in (Zhou et al., 2016).
(Akena et al., 2017) investigated the influence of operating the vehicle, vehicle dynamics and driver awareness on
driving style in terms of fuel consumption with the help of a multi-criterial hierarchical approach. (Faria et al., 2019)
combined the analysis of the relationship of driver aggressiveness, fuel consumption and driving environment. Such
kind of studies are extremely helpful when choosing suitable variables for a data-based driving style model.

Another group of studies focuses on the classification of driving style regarding fuel efficiency. (Manzoni et al.,
2010) dealt with the driving style quantification from a fuel economy point of view using the vehicle longitudinal
model. Data mining techniques and neural networks were applied to the driving style classification by (Meseguer et
al., 2017), where they analyzed both drivers’ and driving data from the vehicle’s electronic control unit. The impact
of driver behavior on fuel consumption was analyzed and classified by (Peng et al., 2019) using machine learning.
In (Javanmardi et al., 2017), the control-based driving style model concerned with fuel economy was proposed.
Mental models classifying driving style with respect to fuel efficiency were considered by (Pampel et al., 2015). As
the high correlation between driver aggressiveness and fuel consumption was reported, methods of the driving style
classification jointly in terms of road safety and fuel economy can be found in (Constantinescu et al., 2010; Ferreira
et al., 2015) based on data mining techniques, (Wang et al., 2017) with the help of a semi-supervised support vector
machine, (Li et al., 2017) using maneuver transition probabilities to identify high-risk drivers, etc.

Driving style optimization with the aim of reducing fuel consumption was the issue considered by one more category
of studies in the discussed field, see, e.g., (Malikopoulos and Aguilar, 2012; Rios-Torres et al., 2018), etc.

As regards modeling driving style depending on the driving environment, (Liessner et al., 2016; Meseguer et al.,
2017; Büyükyildiz et al., 2017; Javanmardi et al., 2017; Faria et al., 2019) distinguished driving styles among
urban, suburban and highway driving environments. However, despite the considerable number of publications
(not limited by the ones mentioned), systematic research, which would lead to the construction of the general
probabilistic model of driving style and driving environment was not found. Such a model is expected to be suitable
for the description of driving style within each of the environments as well as in the case of switching among them.
This motivated us to focus on the research presented.

2



This paper proposes a construction of the driving style model depending on the driving environment using a two-
layer mixture model, which consists of normal components and two pointer models (Kárný et al., 1998). The
pointer variable of the outer mixture points to the active driving style, while the mixture components describe
the data measured while driving within individual driving styles. The pointer of the inner mixture indicates the
actual driving environment with the help of the data described by the inner mixture components. This two-layer
construction of the model allows us to take into account the continuous data from the inner mixture for the estimation
of the driving style. This idea can be more transparent in Figures 1 and 2. The first one provides a scheme of a
mixture model, where the results of modeling are the continuous output variable along with the discrete pointer,
which is used for classification.

Data Mixture
Mixture output

Mixture pointer

Figure 1: The graphical representation of a mixture model

The inner  mixture The outer mixture
Auxiliary data

Auxiliary output

The inner pointer

Modeled data
 Output

The outer pointer

Figure 2: The scheme of a two-layer mixture model

Unlike this scheme, Figure 2 shows the interconnection of two mixture models. The inner mixture (see the left
part of the figure) provides values of the inner pointer depending on the data modeled by this part of the model.
The name inner indicates the fact that this mixture is hidden – it does not model the target data but some auxiliary
measurements, which bring information about the modeled ones. The main mixture is the outer one (see the right
part of the figure), which describes the target variables to be modeled. It obtains both the inner pointer and the data
to be modeled. Thus, Figure 2 indicates that letting the inner pointer be hidden, continuous auxiliary measurements
influence the outer pointer used for the classification. In this way, this pointer is the data-dependent, where the data
variables are continuous. This structure is used for modeling the driving style depending on the driving environment.

For the estimation of the driving style and driving environment along with mixture parameters, recursive Bayesian
algorithms based on (Peterka, 1981; Kárný et al., 1998; Kárný et al., 2006) are used. They were proposed for
individual normal models in (Peterka, 1981), categorical models (e.g., for the pointer description) in (Kárný et al.,
2006), normal mixtures with the static pointer in (Kárný et al., 1998) and with the dynamic one in (Nagy et al.,
2011). The generalization of this approach in the unified form for various types of components was published
in (Nagy and Suzdaleva, 2017). The study (Suzdaleva and Nagy, 2018) presented an extension of the mentioned
algorithms, where the pointer indicating the driving style was allowed to be dependent on discrete or discretized
data. Here, the two-layer mixture model opens a way to introduce the pointer generally dependent on continuous
data too via the inner mixture. A straightforward way is to use the logistic regression but it is avoided to keep the
recursive estimation, which enables real-time performance of the algorithms. This is one of the most important
demands for further development of the adopted methodology applied in this study to the driving style recognition.
The main contributions of the presented approach are:
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• the driving style detection within each of the urban, rural and highway environments and in the case of driver’s
switching among them;

• the two-layer pointer, which allows us to incorporate the information from continuous data into the driving
style model;

• the potential use of the data-based model for other measurements using corresponding distributions.

The last indicates the possibility of using the approach for driving style detection in terms of safety, ecology or
vehicle dynamics control.

1.2 Problem formulation

The problem to be solved in this study can be verbally formulated as follows. Based on data actually measured
along with the data history and using the adopted methodology, it is necessary to:

• construct a two-layer mixture model of the driving style dependent on the driving environment;

• estimate recursively parameters both of the mixtures;

• estimate the inner pointer corresponding to the actual driving environment;

• estimate the outer pointer indicating the actual driving style at each time instant;

• validate the model using real measurements.

The general solution to the problem is given in Section 2, which introduces the models used and presents the
estimation algorithm. The application of the mentioned algorithm to the driving style estimation is demonstrated
in Section 3, which provides the model specification, the initialization of the algorithm, results and a discussion.
Conclusions are given in Section 4.

2 Theoretical background

2.1 Two-layer mixture model

Let’s consider a multi-modal system, which produces the auxiliary variable zt and the target variable yt at discrete
time instants t ∈ {1, . . . , T}. Both the variables are continuous and, in general, multi-dimensional. In the con-
sidered context of modeling the driving style in terms of fuel efficiency, the target variable yt is naturally the fuel
consumption. The auxiliary data zt can be any variables, which bring information about yt.

The system is described by a two-layer mixture model of the following structure:

Outer layer: describes the target variable yt as a mixture of mc components (in this paper, driving styles).

Outer pointer model: a mk ×mc matrix of probabilities, one for each combination of mk driving environ-
ments and mc driving styles.

Inner layer: models the auxiliary variable zt as a mixture of mk components (here, driving environments).

Inner pointer model: a vector of mk probabilities, one for each category of driving environment.

The specification of the two-layer mixture model and the theoretical background of its estimation is given below.
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The outer layer

The outer layer is a mixture of mc Gaussian components in the form of the probability density functions (pdf)

f (yt|Θ, ct = i, ψt) ∼ Ny( ψtθi︸︷︷︸
mean

, ri︸︷︷︸
variance

), where i ∈ {1, 2, . . . ,mc}, (1)

where Θ = {θi, ri}mc
i=1 are the unknown parameters of the components, ψt is the regression vector and ct is the

discrete pointer variable (Kárný et al., 1998; Kárný et al., 2006), which points to the active outer component (here,
the active driving style) generating the target variable yt at time t. The outer pointer model describes transitions
between values of ct from the set {1, 2, . . . ,mc} as the conditional probability function (also denoted by pdf)

f (ct = i|kt = j, α) = (2)

ct = 1 ct = 2 · · · ct = mc

kt = 1 α1|1 α2|1 · · · αmc|1
· · · · · · · · · · · · · · ·

kt = mk α1|mk
· · · · · · αmc|mk

where αi|j ∈ α are the unknown probabilities of the pointer ct = i under condition that kt = j, where the
discrete variable kt is the pointer of the inner mixture, which points to the active inner component (here, the driving
environment) generating the auxiliary variable zt.

The inner layer

The inner layer represents a mixture of mk Gaussian components

f (zt|ϑ, kt = j, ϕt) , where j ∈ {1, 2, . . . ,mk}, (3)

where ϑ are the unknown parameters of the components and ϕt is the regression vector. The model of the inner
pointer kt describes transitions between driving environments from the set {1, 2, . . . ,mk} as follows:

f (kt = j|β) = (4)

kt = 1 kt = 2 · · · kt = mk

β1 β2 · · · βmk

where β = {βj}mk
j=1 are the unknown probabilities of the values of the pointer kt.

The estimate of the inner pointer kt (which will be explained later) depends on the auxiliary continuous variables.
They influence the pointer kt, which enters the pointer model of the outer mixture (2). It allows the outer pointer ct
to be influenced by them too via the inner mixture pointer. In this way, the introduced model is a mixture with the
mixed-data dependent pointer.

2.2 Clustering with the two-layer mixture

The key point of the cluster analysis with a mixture model (not only the introduced one) is the determination of
the active component, i.e., the pointer should be estimated along with mixture parameters. If the clustering should
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be performed online in real time, the active component is determined at each time instant t. The algorithms used
in this area are based on the recursive Bayesian estimation of individual normal regression models in (Peterka,
1981), categorical models (Kárný et al., 2006), mixtures with the static pointer (Kárný et al., 1998) and with the
dynamic pointer in (Nagy et al., 2011). This paper develops the adopted methodology for the case of its mixed-data
dependent version keeping the unified form of the recursive algorithms.

As it is customary in the mentioned field, the derivation of the algorithm is based on the construction of the joint
pdf of all unknown variables to be estimated and the application of the Bayes and chain rules, e.g., (Peterka, 1981).
Here, the parameters and pointers both of the mixtures enter the joint pdf, i.e.,

f (Θ, ct = i, α, ϑ, kt = j, β|D (t))︸ ︷︷ ︸
joint pdf

∝ f (yt, zt,Θ, ct = i, α, ϑ, kt = j, β|D (t− 1))︸ ︷︷ ︸
via Bayes rule

, (5)

whereD (t− 1) denotes all of the historical measurements needed for the estimation including prior knowledge and
D (t) denotes all of the data up to the time instant t, including actual yt and zt. Assuming the mutual independence
of the parameters, the right hand part of (5) is decomposed using the chain rule and models (1) – (4) as follows:

f (yt|Θ, ct = i, ψt) f (zt|ϑ, kt = j, ϕt) f (ct = i|kt = j, α) f (kt = j|β) f (Θ, ϑ, α, β, |D (t− 1))︸ ︷︷ ︸
prior pdfs

=

outer mixture︷ ︸︸ ︷
f (yt|Θ, ct = i, ψt)︸ ︷︷ ︸

model (1)

f (Θ|D (t− 1))︸ ︷︷ ︸
prior GiW pdf for Θ

f (ct = i|kt = j, α)︸ ︷︷ ︸
model (2)

f (α|D (t− 1))︸ ︷︷ ︸
prior Dir pdf for α

×
inner mixture︷ ︸︸ ︷

f (zt|ϑ, kt = j, ϕt)︸ ︷︷ ︸
model (3)

f (ϑ|D (t− 1))︸ ︷︷ ︸
prior GiW pdf for ϑ

f (kt = j|β)︸ ︷︷ ︸
model (4)

f (β|D (t− 1))︸ ︷︷ ︸
prior Dir pdf for β

, (6)

where GiW denotes the conjugate prior Gauss-inverse-Wishart pdfs used for normal components (Peterka, 1981;
Kárný et al., 1998) and Dir denotes the conjugate prior Dirichlet pdfs used for the categorical pointer models
according to (Kárný et al., 2006).

The pointer estimates

By integrating the joint pdf (6) over the unknown parameters Θ, ϑ, α and β, the pdf for the estimation of the pointers
ct and kt is obtained in the following way:

f (ct = i, kt = j|D (t)) ∝
∫

Θ∗

∫
ϑ∗

∫
α∗

∫
β∗
f (yt, zt,Θ, ct = i, α, ϑ, kt = j, β|D (t− 1)) dβ dα dϑ dΘ (7)

=

∫
β∗
f (kt = j|β) f (β|D (t− 1)) dβ

∫
ϑ∗
f (zt|ϑ, kt = j, ϕt) f (ϑ|D (t− 1)) dϑ

×
∫
α∗
f (ct = i|kt = j, α) f (α|D (t− 1)) dα

∫
Θ∗
f (yt|Θ, ct = i, ψt) f (Θ|D (t− 1)) dΘ,

which for all i ∈ {1, 2, . . . ,mc} and j ∈ {1, 2, . . . ,mk} gives the result

ℵ
(((

Mk · ∗β̂t−1

)
· ∗M c

)
· ∗α̂t−1

)
≡Wt, (8)

where
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• Mk is a column vector of proximities of the inner mixture components obtained by the substitution of the
previous-time point estimates of the parameters ϑ and current data item zt into each component, see (Nagy
et al., 2016; Nagy and Suzdaleva, 2017),

• β̂t−1 is the point estimate of the parameter β obtained from the previous-time statistics of the inner pointer
model and it is a mk-dimensional column vector (Kárný et al., 2006),

• M c is a row vector of proximities of the outer mixture components obtained similarly by the substitution of
the previous-time point estimates of the parameters Θ and current data item yt into each component,

• α̂t−1 is the point estimate of the parameter α obtained by normalizing the previous-time statistics of the outer
pointer model and it is a matrix of the dimension (mk ×mc) (Kárný et al., 2006; Nagy et al., 2011),

• the denotation ℵ (·) means the normalization to total sum equal to one,

• the denotation Wt is the joint distribution of the pointers ct and kt and it is a (mk ×mc)-dimensional matrix
(Nagy et al., 2011; Nagy and Suzdaleva, 2017).

Details about this briefly summarized derivation can be found in the provided sources generally based on (Kárný et
al., 1998; Kárný et al., 2006).

Using (8), the weighting vectors for both the mixtures are obtained ∀i ∈ {1, 2, . . . ,mc} and ∀j ∈ {1, 2, . . . ,mk}.
For the inner pointer kt, the mk-dimensional weighting vector wkt is obtained as the marginal pdf from Wt over
columns, i.e.,

f (kt = j|D (t)) =

mc∑
i=1

Wi|j;t ≡ wkj;t. (9)

The index j of the maximum weight in the vector wkt corresponds to the active component of the inner mixture
and it is the point estimate of the pointer kt. This point estimate is substituted as the row number into the joint
distribution Wt to obtain the mc-dimensional weighting vector wct for the outer pointer ct, i.e.,

f (ct = i|kt = j,D (t)) = Wi|kt;t ≡ w
c
i;t. (10)

The point estimate of the outer pointer ct is obtained using the index of the maximum weight in wct .

The parameter estimates

The obtained weights are used in the recursive updates of the statistics of the posterior parameter pdfs (see (6) and
(7)) according to (Kárný et al., 1998; Kárný et al., 2006) as follows.

The statistics update of the Dirichlet pdf for the parameter β

νj;t = νj;t−1 + wkj;t, ∀j ∈ {1, 2, . . . ,mk}, (11)

where νt denotes the statistics of the model of the pointer kt as the mk-dimensional vector with the entries νj;t
(Kárný et al., 2006).

The statistics update of the Gauss-inverse-Wishart pdf for the parameter ϑ

(Ut)j = (Ut−1)j + wkj;t

[
zt
ϕt

] [
zt
ϕt

]′
, (12)

λj;t = λj;t−1 + wkj;t, (13)
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where (Ut)j is the information matrix of the GiW pdf of each j-th normal component f (zt|ϑ, kt = j, ϕt) and λj;t
is the counter (Peterka, 1981; Kárný et al., 1998).

The statistics update of the Dirichlet pdf for the parameter α

(γi|j)t = (γi|j)t−1 +Wi|j;t, (14)

where γt denotes the statistics of the pointer ct, which is the matrix of the same dimension as the model (2)
with the entries (γi|j)t. This update was proposed in (Nagy et al., 2011) for the dynamic pointer with the help
of approximation based on the Kerridge inaccuracy (Kerridge, 1961). Here, the pointer ct is not dynamic, but it
depends on the inner pointer kt, which means that the same way of the update can be applied. For the sake of
simplicity, here it is used with the approximation similarly to (Kárný et al., 1998).

The statistics update of the Gauss-inverse-Wishart pdf for the parameter Θ

(Vt)i = (Vt−1)i + wci;t

[
yt
ψt

] [
yt
ψt

]′
, (15)

ηi;t = ηi;t−1 + wci;t, (16)

where similarly to (12)–(13), (Vt)j is the information matrix of the GiW pdf of each i-th normal component
f (yt|Θ, ct = i, ψt) and ηi;t is the counter according to (Peterka, 1981; Kárný et al., 1998). All of the updates
start with the initial statistics chosen during the initialization of the estimation, see, e.g., (Kárný et al., 2003; Suz-
daleva et al., 2016).

The point estimates of all of the parameters are determined in a standard way for the GiW pdfs (using the partition
of the corresponding information matrices) and Dirichlet distributions (by the normalization of the statistics), see
again, e.g., (Peterka, 1981; Kárný et al., 1998; Kárný et al., 2006), etc.

2.3 The program scheme of the algorithm

The algorithm presented above can be expressed as the following program scheme. After the offline (preliminary
before running) initialization of the estimation (Suzdaleva et al., 2016), i.e., (i) setting the number of components
and the initial statistics of the components as well as the pointer models and (ii) computing the point estimates of all
of the parameters using the initial statistics, the online estimation includes the following steps for time t = 1, 2, . . .
as long as the new data can be measured.

1. Measure the values of yt and zt at time instant t.

2. Construct the proximity vector Mk by substituting the auxiliary data item zt and the previous point estimates
of the parameters ϑ into each normal component (3) of the inner mixture.

3. Construct the proximity vector M c by substituting the target data item yt and the previous point estimates of
the parameters Θ into each normal component (1) of the outer mixture.

4. Construct the joint matrix weight Wt according to (8) and normalize it to total sum equal to one.

5. Compute the weighting vector wkt as the marginal distribution over columns from Wt according to (9).

6. Determine the point estimate of the pointer kt as the index of the maximum entry in wkt and use it as the
number of a row in Wt to obtain the weighting vector wct according to (10).
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7. Obtain the point estimate of the outer pointer ct according to the index of the maximum entry of the weighting
vector wct .

8. Classify the data according to the estimated value of the outer pointer wct .

9. Perform the update of all of the statistics.

10. Re-compute the point estimates of all of the parameters using the updated statistics.

11. Go to Step 1 and use the point estimates as the initial ones.

This part of the algorithm runs subsequently in a time loop using measured data.

3 Application to driving style estimation

Here, the above general algorithm is applied to the driving style estimation. The main idea is to show that an
individual’s driving style changes both within the actual driving environment and when changing the environment.
For example, some individuals are experienced drivers in a city, but they do not have practical skills on the highway.
Therefore, for driving on the highway, they will have to adapt to the environment, which may take some time. In
the opposite case, villagers have to adjust their driving to the center of the city, if necessary. The switching of the
driving environments influences the driving style as well as the economic efficiency of driving.

Drivers obviously know where they are driving. However, the recognition of the driving style depending on the
driving conditions and environment can be decisive for in-vehicle information systems from a fuel consumption
optimization’ point of view. The estimation with the help of the introduced two-layer model can be a suitable tool
in this case. Its application is presented below.

3.1 Model of driving style depending on the driving environment

The normal components of the inner mixture (3) describe the following multi-dimensional auxiliary variable zt =
[z1;t, z2;t, z3;t, z4;t]

′ within different driving environments:

• z1;t – gas pedal position [%],

• z2;t – brake pedal pressure [bar],

• z3;t – engine speed [rpm],

• z4;t – lateral acceleration in multiples of gravimetric acceleration.

The inner pointer kt indicates the actual driving environment reduced to three variants:

kt ∈ {“urban”, “rural”, “highway”}.

The components of the outer mixture (1) describe the target variable yt, which is the instantaneous fuel consumption
[µl/2s] within different driving styles depending on the environment. The optional multidimensionality of the
variable yt leads to a mere modification of the information matrix in (15) and does not affect the performance of the
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algorithm. The outer pointer ct points to the driving style considered from a fuel consumption’ point of view and
here it has three possible values:

ct ∈ {“low consumption”, “middle consumption”, “high consumption”},

where all of them are assumed to exist in each of the driving environments.

The approach was validated with the help of experiments in a programming free and open source environment Scilab
(www.scilab.org). The aim of the experiments was to demonstrate the recognition of the driving style depending on
the estimated driving environments.

3.2 Data collection

The data sets were collected via the CAN bus of a vehicle driven on a chosen route which led through the three ex-
plored driving environments, i.e., a city, outside the city and the highway. Drivers repeatedly drove along the route.
Each driver was instructed to drive economically, then in a normal way and also with frequent high acceleration.

For the experiments, 7 data sets were taken. Each data set contained 1000 measurements of fuel consumption, gas
pedal position, brake pedal pressure, engine speed and lateral acceleration. The variables were measured every 2
seconds, i.e., the average trip duration on the route was 33 minutes.

3.3 Initialization

One of the data sets served for the initialization as prior knowledge. The initialization of the component statistics
was performed on the basis of histograms of the individual variables from the prior data set, where the component
centers, which cover a significant part of the histograms should be determined.

The histograms can be found in Figure 3. Three of them (gas pedal position, engine speed and fuel consumption)
show a distinct multi-modal behavior. However, all of them can be used for the purpose of the initialization. In
the figure, the initial centers of the normal components of the gas pedal position can be guessed as the following
values: 0, 19, 44. Similarly, the initial centers of the components of the engine speed that can be initially pre-
estimated are 1200, 1500, 1800. The histograms of the brake pedal pressure and the acceleration exhibit a slightly
weaker multi-modal nature. Nevertheless, three components can be initialized for them as well with the following
centers: 0.3, 7, 20 and −0.6,−0.3, 0 respectively. The value of 0.3 is explained by the minimum pressure of the
brake system.

Using the centers, the initial point estimates of the parameters ϑ for three environments can be set for time t = 0

(ϑ̂0)1 = [0 0.3 1200 − 0.6]′ , (ϑ̂0)2 = [19 7 1500 − 0.3]′ , (ϑ̂0)3 = [44 20 1800 0]′ . (17)

They are substituted into the initial information matrices as follows:

(V0)1 =


1 0 0 0 0
0 1 0 0 0.3
0 0 1 0 1200
0 0 0 1 −0.6
0 0.3 1200 −0.6 1

 , (V0)2 =


1 0 0 0 19
0 1 0 0 7
0 0 1 0 1500
0 0 0 1 −0.3
19 7 1500 −0.3 1

 ,

(V0)3 =


1 0 0 0 44
0 1 0 0 20
0 0 1 0 1800
0 0 0 1 0
44 20 1800 0 1

 . (18)
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Figure 3: Histograms of gas pedal position, brake pedal pressure, engine speed, acceleration and fuel consumption

In the histogram of the fuel consumption in Figure 3, the initial centers within three driving styles are 0, 250, 600.
Similarly, they are used as the initial point estimates to be substituted into the initial statistics

θ̂1;0 = 0, θ̂2;0 = 250, θ̂3;0 = 600, (19)

(U0)1 =

[
1 0
0 1

]
, (U0)2 =

[
1 250

250 1

]
, (U0)3 =

[
1 600

600 1

]
. (20)

11



The initial counters λj;0 and ηi;0 for all environments and driving styles were set equal to one. The statistics ν0 and
γ0 both of the pointers were initialized uniformly. The same initialization was used for all of the data sets.

3.4 Results

For the validation of the proposed two-layer model (TLM) and a comparison of the algorithm performance, two
alternative variants of the driving style model were chosen. One of them was the mixture with a single pointer
(SPM), which describes both the target and auxiliary variables yt and zt all together in the data vector. With this
model, only driving style is modeled by the pointer without driving environment in the condition. The SPM based
driving style estimation is close to that described in (Suzdaleva and Nagy, 2018). Another alternative approach
was the joint model of driving style and driving environment (JM) composed of two parts, where (i) first, driving
environment was estimated based on the auxiliary variables and then (ii) its point estimate was used along with the
fuel consumption in the data vector of target variables for the estimation of driving style. This allowed the model
to be segmented by the driving environment to capture all possible inter-dependencies between driving style and
driving environment. The validation results are presented below.

Switching the driving environments

Switching the driving environments was estimated with the help of the inner pointer model. The results obtained for
one of the data sets which were tested are given in Figure 4. The real switching of the three driving environments
on the route (1= “urban”, 2 = “rural” and 3 = “highway”) received from the data is demonstrated in Figure 4
(left). It can be seen that the chosen route fragment started on the highway, continued outside the city, then passed
through the city with a short segment of the country road and finished again in the rural environment. The driving

Figure 4: The real driving environment (left) and its recognition using the TLM and JM inner pointers (right)

environment estimation with the help of the inner pointer values can be found in Figure 4 (right). Here, the TLM
and JM estimates are naturally identical as they are based on the same approach. The SPM results are not shown,
because it was not used for the driving environment description. It can be seen that both the TLM and JM estimates
are close to the real values with the exception of locations, where the environment was changing for a short time,
see the differences from 200 to 300 time periods as well as around 550. It is explained by the data-based algorithm,
which needs some time to actualize the statistics with the current data. The average error of the driving environment
estimation was 19.4%. It means that the inner pointer model takes into account the drivers’ behavior through the
auxiliary variables and is capable of recognizing if their driving corresponds to the current environment. Obviously,
the uncertainty, which comes from the behavior of individual drivers cannot be completely covered by the model.

12



Inner clusters according to driving environments

The gas pedal position and the engine speed can be used to demonstrate the marginal two-dimensional TLM/JM
inner clusters of auxiliary variables detected according to the driving environments, see Figure 5. The clusters are
clearly visible. This is explained by the pronounced multi-modal behavior of these variables (also shown in their
histograms in Section 3.3). The cluster denoted by ’?’ corresponds to urban driving and shows gas pedal position
values in the range from 0 to 65% with an almost uniform distribution of the data between 15 and 50%. The engine
speed in this cluster remains up to 1700 rpm. Its upper-bound values are partially overlapped by the cluster denoted
by ’·’, which corresponds to rural driving. Within this environment, the gas pedal position values are mostly located
from 30 to 55%, while the engine speed values vary from 1700 to 2000 rpm. The highway cluster denoted by ’×’
includes the gas pedal position values in the range from 40 to 65% and the engine speed with the values from 2000
to 2500 rpm.

Figure 5: The gas pedal position and the engine speed within three driving environments

The marginal clusters of the brake pedal pressure and lateral acceleration with the rest of the auxiliary variables are
not so representative due to their weak multimodality (see Section 3.3). However, all of the auxiliary variables give
clearly expressed clusters of driving styles when plotting them in pairs with the fuel consumption. These results are
presented in the next section.

Outer clusters according to driving styles

The outer clusters demonstrate driving styles expressing different degrees of the fuel consumption detected by the
described algorithm. Each driving style (i.e., “low consumption”, “middle consumption” and “high consumption”)
exists for each driving environment (“urban”, “rural” and “ highway”), which means that nine driving styles were
recognized in the multi-dimensional data space. By plotting the fuel consumption values against the estimated driv-
ing styles, their two-dimensional clusters can be visualized only within three values. They are displayed in Figure 6.
It can be seen that after the estimation of the driving environments, the driving styles are sharply distinguished re-
garding the values of fuel consumption.

Unlike the inner clusters in the previous section, here the differences in results of the three compared models can
be demonstrated. The outer two-dimensional clusters corresponding to driving styles are shown in Figure 7. The
left column of the figure presents the TLM, SPM and JM clusters of the fuel consumption plotted against the gas
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Figure 6: The fuel consumption within three driving styles

pedal position. It is not necessary to use a clustering validity index (Vendramin et al., 2010) to see the significant
difference between the clusters detected by the three models. The TLM three driving styles in the top left plot
are clearly visible, while the SPM estimation in the middle left plot provides the rather overlapped clusters. This
correlates with the single pointer results obtained in (Suzdaleva and Nagy, 2018), where it was noticed that in
the considered context, the driving style model requires a higher number of components (seven in (Suzdaleva and
Nagy, 2018)), which would be hardly comparable with the proposed TLM approach. The JM driving styles are
significantly overlapped, which indicates that the driving style model segmented by the driving environment in the
data vector is not beneficial in comparison with the condition in the discrete pointer model, as it is proposed in the
TLM approach. Similar comments can be given regarding the right column of Figure 7, where clusters of the fuel
consumption and lateral acceleration are presented.

Switching the driving styles within the environments

The above two-dimensional clusters cannot be used for the demonstration of switching the driving styles within
individual driving environments. However, this switching can be shown using the evolution of the outer pointer
estimates within the urban, rural and highway environments. The left part of Figure 8 (top) demonstrates the
switching of the driving styles obtained for one of the data sets using the TLM estimation. The switching is
naturally different for each data set, since the pointer estimation depends on individual driver’ behavior. For better
visibility, a fragment of the route was chosen. The values of 1, 2, 3 on the y-axis correspond to the low, middle and
high consumption driving styles respectively.

In the left top plot, the TLM urban driving style was regularly switching between the low and middle consumption
driving styles (values 1 and 2) and occasionally transitions to high consumption were monitored (value 3). While
driving outside the city (in the left middle plot), the TLM rural driving style was primarily estimated as economical
with the irregular switching to the middle and high consumption styles. In the left bottom plot, the TLM high-
way driving style was mostly corresponding to the middle fuel consumption. Periodically, it changed to low and
occasionally to high fuel consumption.

The right part of Figure 8 (top) demonstrates transitions of the JM driving styles within urban, rural and highway
environments. In the right top and right bottom plots, the urban and highway JM driving styles correspond to
economical driving for a significant part of the estimation. The transitions directly to high consumption were
frequently monitored. In the rural environment (the right middle plot), the JM estimate was either the low or the
high fuel consumption driving style.
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Figure 7: The comparison of the TLM, SPM and JM driving styles

Figure 8 (bottom) displays the SPM driving style switching. It was not conditioned by the driving environment.
However, the evolution of the estimation correlates with the inner pointer shown in Figure 4.

Since only a fragment can be visualized, the TLM and JM driving style conditional distributions are presented
in Table 1, which demonstrates the probabilities of each driving style depending on the driving environment in
percent. It can be seen that the differences in the driving style transitions inside each driving environment are well
captured by the TLM estimation, while the JM approach gives almost identical probabilities in the city as well as
outside the city, but slightly distinguishing on the highway. For instance, in the urban environment, the TLM middle
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Figure 8: Switching the driving styles in the urban, rural and highway driving environments with the TLM (top
left), JM (top right) and SPM (bottom) estimates

consumption driving style has the maximum probability, while in the rural environment it is the TLM economical
driving style and so on. Using the JM estimation, the economic driving style has the most significant dominant
probability within all of the environments.

The sums of squared deviations between the TLM driving style probabilities in the individual environments were
obtained as 215.091, 116.831 and 613.986. In contrast to that, the sums of squares between the JM conditional
probabilities were 0.274, 101.4897 and 111.161 respectively, i.e., their variability is much lower than in the TLM
case. This confirms the significant difference in the TLM estimation in comparison with JM.
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Table 1: The driving style conditional distributions obtained with the TLM and JM estimates
TLM, [%] JM, [%]

Urban low consumption 44.976 76.077
Urban middle consumption 53.110 7.655
Urban high consumption 1.914 16.268
Rural low consumption 53.913 75.652
Rural middle consumption 41.739 7.826
Rural high consumption 4.348 16.522
Highway low consumption 36.434 82.946
Highway middle consumption 59.302 8.139
Highway high consumption 4.264 8.915

Fuel consumption prediction

The adopted methodology can be used twofold for clustering and prediction. For the clustering task, static com-
ponents are rather beneficial, while for the prediction, dynamic components with delayed values in the regression
vector are more suitable to obtain a higher accuracy of the results unlike the static components, which follow the
estimated regression coefficients around the expectation. Results of the prediction of the target variable, i.e., fuel
consumption are demonstrated in Figure 9 (top) in comparison with its real values from a randomly chosen data set.
For better visibility, a fragment of 150 time periods of driving on the chosen route is displayed. In the beginning,
up until 30 time periods, it corresponds to the highway and further, the driving took place in the rural environment.
The predictions of all of the compared models are in the correspondence with the real fuel consumption values. In
the figure, the TLM and JM predictions are mostly coinciding, while SPM has more significant deviations during
the whole prediction. The differences can be mainly seen in locations where abrupt changes of values are observed,
e.g., from 35 to 50 time periods, where both the SPM and JM predictions give negative values, or around 120 time
periods.

Figure 9 (bottom) compares box plots of the real data with the TLM, JM and SPM predictions, where the min-max
normalization of the values was used. In this figure, the median of the TLM prediction is the closest to the real fuel
consumption, while the SPM median is the farthest. This indicates the least difference between the real values and
TLM prediction.

For each data set, the normalized root-mean-square error (NRMSE) was computed

NRMSE =

√∑T
t=1(yt−ŷt)2

T

ymax − ymin
, (21)

where ŷt denotes the prediction at the time instant t and T = 1000. The NRMSE averaged over all of the data sets
is provided in Table 2 for the three models. The table shows that the TLM has the lowest average NRMSE and
the SPM the highest one. However, the difference is insignificant. To complete the comparison, the two-sample
paired t-test was used in pairs of the real fuel consumption with each prediction in order to test whether there is a
significant difference between their means. The p-values of the tests are given in Table 2. They are higher than the
significance level of 0.05, which means that the differences between the real data and predictions are not statistically
significant. However, it should be noticed that the SPM p-value only slightly exceeds the significance level, while
the TLM and JM p-values are close to 1, with the TLM p-value being the highest among them. This is explained
by the worse handling of sharp changes in fuel consumption values in the case of JM and SPM. The data prediction
quality was identical in the case of the variables with a distinctive multi-modal behavior, i.e., gas pedal position and
engine speed and worse when predicting the brake pedal pressure as well as lateral acceleration. This is caused by
the fact that their course is strongly affected by external traffic conditions (pedestrians, traffic, etc.).
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Figure 9: The fuel consumption prediction (top) and box plots (bottom)

In addition, Table 2 also provides the average computational time (CT) of the online estimation of the compared
models according to Section 2.3 as well as its standard deviation. The computational time was calculated by the
Scilab functions tic and toc in seconds and averaged over all of the tested data sets with 1000 measurements.
The three compared models are based on the recursive Bayesian mixture estimation theory (Kárný et al., 1998;
Kárný et al., 2006; Nagy et al., 2011), which enables the one-pass estimation without iterative computations and
guarantees the fixed computational time. That is why the average CT of all of the models is very low and fixed with
small standard deviations. The SPM has the shortest time, which is explained by the estimation of a single pointer
of a single mixture, while both the JM and TLM need to handle with two pointers of two mixtures (JM successively
and TLM in two layers) that causes an insignificantly longer duration of computations in thousandths of a second.
However, in view of the TLM improving in clustering and prediction, this compromise is acceptable, especially
since this CT is guaranteed, shorter than in the case of iterative techniques (see the comparison in (Suzdaleva and
Nagy, 2018)) and does not depend on the algorithm convergence.
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Table 2: NRMSE, p-values of the paired t-tests, the average CT and its standard deviation
NRMSE p-value Average CT, [s] CT standard deviation

TLM 0.0038935 0.952 0.00122 0.00002
JM 0.0041326 0.899 0.00115 0.00002

SPM 0.0403583 0.054 0.00061 0.00004

3.5 Discussion

The main aim of the presented study was to show the application of the proposed algorithm to the driving style
recognition depending on the driving environment. As it is demonstrated in Section 3.4, the aim was successfully
accomplished. The considered approach is close to that discussed in (Suzdaleva and Nagy, 2018): both of them are
based on recursive algorithms of Bayesian mixture estimation (Kárný et al., 1998; Kárný et al., 2006; Nagy et al.,
2011). However, this study brings the further novel extension of the pointer model both from a methodology and
application point of view. First, it allows the pointer to be dependent on continuous data by means of the two-layer
mixture model through the estimation of the inner pointer. This is extremely suitable for driving style estimation,
since, as noted in numerous studies in Section 1.1, driving styles vary depending on different traffic conditions.
Here, the traffic conditions were categorized into three driving environments. Thus, in the application field, the
proposed approach gives a possibility to get driving style conditioned by the information coming from auxiliary
data with the help of incorporating the driving environment as the inner pointer into the model.

The recognition of three driving styles in terms of fuel efficiency, which are switching within each of the three
environments, was demonstrated by means of two-dimensional clusters. It means that nine driving styles were
recognized in the data sets used for the experiments. The obtained clusters are clearly visible and practically non-
overlapping. The comparison with the driving style model (Suzdaleva and Nagy, 2018) based on a single pointer
shows the improvement in detecting driving styles as well as in predicting data. Another configuration of the two
pointer model was tested as well, which indicated that the segmentation of the driving style model by driving
environment is not so successful in clustering, but provides a similar quality of the prediction.

The results of the proposed model show the differences in the driving style evolution in individual environments,
which cannot be captured by the single pointer model, identical for all of the environments, and were only slightly
indicated by two successive JM pointers. In practice, such differences may mean that the driver has more experience
in one of the environments. The regular switching of the driving styles dependent on the environments confirms the
suitable configuration of the two-layer model. Such a model is the main contribution of the study, and its updating
by the new continuous data along with the data history allows us to perform the cluster analysis while driving and
recognize the driving style in a timely manner. The additional contribution of the study concerns the preliminary
histogram-based analysis of prior data, which could be used for a choice of other distributions, if necessary.

A practical application of the proposed driving style estimation is expected in the field of in-vehicle information
systems, where the recognition of the driving style for a corresponding environment can be beneficial for intelligent
vehicle control. The estimation of the driving environment can be critical in case of a GPS signal failure. Moreover,
such data can also serve for learning the model up to the case with the known inner pointer based on the discretized
signal. However, improvements should be made from a driving environment recognition point of view.

A limitation of the approach is the necessity of using the reproducible statistics of distributions to be updated with
new data. It means that for the discussed data-based algorithm, the variables to be involved in the model should be
carefully chosen. Preliminary analysis of prior data helps in this task.
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4 Conclusion

The paper proposed the two-layer model of driving style depending on the driving environment. The model con-
struction was based on actually measured data along with the available data history and represented a mixture,
which was composed of two layers. The inner layer of the model covered the description of driving environment
using auxiliary data, while the outer layer operated with target variables and was aimed at modeling driving style
in terms of fuel economy conditional on the environment. Gaussian components and discrete pointer models were
used within both the layers. For estimating their parameters as well as the inner and outer pointers, the algorithm
based on the recursive Bayesian mixture estimation theory was presented, which enables handling with data in real
time without iterative computations. Driving style recognition was demonstrated with the help of clusters. The
proposed model captured the economical, middle and high fuel consumption driving styles at each time instant
within each of urban, rural and highway driving environments, i.e., three driving environments were estimated as
the inner pointer and three driving styles as the outer one. It means that nine driving styles were recognized in the
available data sets used for the imitation of real driving. The obtained results reported the variability of the fuel
efficiency oriented driving style distributions within different environments. The model validation with the help of
real data and comparison with theoretical counterparts showed improvements in recognizing driving styles as well
as predicting data. In this way, all the subtasks listed in the problem formulation in Section 1.2 were solved to
present the novel model of driving style, which is the main contribution of the paper.

One of the strong benefits of the presented model is the possibility to have the pointer dependent on continuous
auxiliary data. It was shown that the modeling of a data vector consisting both of the auxiliary and target variables,
had provided worse results than in the case of feeding the information from the auxiliary data into the outer layer
through the inner pointer. Obviously, it brings less loss of information than in the case of discretization. This is a
significant advantage in the task of incorporating the available information into the model.

Among the problems that remain open in the considered context, it is worth mentioning (i) the extension of the
methodology up to the mixture of mixed components, which is suitable for a situation when the modeled variables
should be described by different distributions; (ii) the use of some distributions that do not have reproducible
statistics and need a special approximation; (iii) the multi-step prediction of the outer pointer for a pre-set inner
pointer, which would enable the driving style prediction for a predefined route. Testing the approach using a more
representative drivers’ sample in different traffic situations could be also beneficial for further research.

In addition, it should be mentioned that the inner pointer is not limited by its application for the determination of
driving environment. Using suitable data, it can be used for indicating the emissions level, which would enable
us to model the driving style jointly in terms of the fuel consumption and ecology. Another potential application
can be expected in the case of using data not only from a vehicle, but also from a driver as, e.g., in (Yang et al.,
2018). In this case, the inner pointer model could describe abrupt changes in the driver’s health state, tiredness,
aggressiveness, etc. Such combination of the data described by suitable distributions could serve for the driving
style recognition regarding road safety.
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Suzdaleva, E., Nagy, I. and Mlynářová, T., 2016. Expert-based initialization of recursive mixture estimation. In: 8th
IEEE International Conference on Intelligent Systems, 2016, September 4-6, Sofia, Bulgaria, pp. 308-315.

Vendramin, L., Campello, R. J. G. B., Hruschka, E. R., 2010. Relative clustering validity criteria: a comparative
overview. Statistical Analysis and Data Mining, 3(4), 209-235.

Wang, R. and Lukic, S.M., 2011. Review of driving conditions prediction and driving style recognition based control
algorithms for hybrid electric vehicles. In: IEEE Conference on Vehicle Power and Propulsion Conference,
2011, September 6-9, Chicago, IL, USA, pp. 1-7.

Wang, W., Xi, J., Chong, A., Li, L., 2017. Driving style classification using a semisupervised support vector ma-
chine. IEEE Transactions on Human-Machine Systems, 47(5), 650-660.

Xu, L., Hu, J., Jiang, H. and Meng, W., 2015. Establishing style-oriented driver models by imitating human driving
behaviors. IEEE Transactions on Intelligent Transportation Systems, 16(5), 2522-2530.

Yang, L., Ma, R., Zhang, H. M., Guan, W., Jiang, S., 2018. Driving behavior recognition using EEG data from a
simulated car-following experiment. Accident Analysis & Prevention, 16, 30-40.

Zhang, Y., Lin, W.C. and Chin, Y.K.S., 2010. A pattern-recognition approach for driving skill characterization.
IEEE Transactions on Intelligent Transportation Systems, 11(4), 905-916.

Zhou, M., Jin, H., Wang, W., 2016. A review of vehicle fuel consumption models to evaluate eco-driving and
eco-routing. Transportation Research Part D: Transport and Environment, 49, 203-218.

23


