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Abstract

The paper focuses on a problem of comparing clusterings with the same number of clusters obtained as
a result of using different clustering algorithms. It proposes a method of the evaluation of the agreement of
clusterings based on the combination of the Cohen’s kappa statistic and the normalized mutual information. The
main contributions of the proposed approach are: (i) the reliable use in practice in the case of a small fixed number
of clusters, (ii) the suitability to comparing clusterings with a higher number of clusters in contrast with the
original statistics, (iii) the independence on size of the data set and shape of clusters. Results of the experimental
validation of the proposed statistic using both simulations and real data sets as well as the comparison with the
theoretical counterparts are demonstrated.
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1 Introduction

This paper deals with a task of the evaluation of the agreement of clusters resulting from different methods of
the cluster analysis. The cluster analysis is a highly demanded branch of the data mining area, known also as
unsupervised learning (Larose, 2005). It provides a considerable amount of algorithms directed at sorting data
with similar attributes into groups called clusters, see e.g., (Jain, 2010; Han et al., 2011; Zaki and Meira, 2014),
etc. Clustering is required in many application fields of multivariate data analysis, including, for example, but not
limited to bioinformatics (MacCuish and MacCuish, 2010; MacCuish and MacCuish, 2014), social fields (Maione
et al., 2018; Shiau et al., 2017), transportation sciences (Suzdaleva and Nagy, 2018; Tari and Hashemi, 2018), fault
detection (Li and Hu, 2018; Rodríguez-Ramos et al., 2018), big data (Hidri et al., 2018) and many others.

Traditionally, clustering approaches are distinguished between hierarchical methods (divisive or agglomerative),
e.g., (Guha et al., 2000; Hastie et al., 2016), etc., and partitioning methods, which are further divided (with probable
overlapping) among
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• centroid-methods such as famous k-means developed more than 50 years ago (Steinhaus, 1956), but still used
in many extensions overviewed in (Jain, 2010), k-medoids (Han et al., 2011), etc.;

• density-based methods, e.g., (Ng and Han, 1994), etc.;

• grid-based methods, e.g., (Saini and Rani, 2017), etc.;

• clustering high-dimensional data and constraint-based methods (Han et al., 2011);

• model-based clustering methods, such as, e.g., conceptual clustering (Han et al., 2011), neural network ap-
proach (Han et al., 2011), mixture-based clustering (Frühwirth-Schnatter, 2006; Nagy and Suzdaleva, 2017),
etc.

Recent trends in clustering methods include also ensemble clustering (Hastie et al., 2016), semi-supervised cluster-
ing (Yin et al., 2010), etc., predominantly based on extension and improvements of numerical methods above.

When using different clustering methods for a set of data, the comparison of the obtained clusters is needed for
their verification. Another challenge is the validation of new proposed clustering algorithms with the help of the
evaluation of the cluster agreement against results of reliable theoretical counterparts, well-known in this area (for
example, k-means (Jain, 2010), fuzzy c-means (Dunn, 1973), etc.).

Methods, which compare the clustering results were discussed in a series of papers. (Wagner and Wagner, 2007)
categorized these studies as follows:

• Measures based on counting pairs in clusters, such as the Chi squared coefficient, Rand index (Rand, 1971)
and adjusted Rand index (Hubert and Arabie, 1985), Fowlkes-Mallows index (Fowlkes and Mallows, 1983),
Mirkin metric (Dongen, 2000), Jaccard index (Tan et al., 2005) and Partition difference (Li et al., 2004).
They are used to compare clusterings, however, they are seriously limited in practice by (i) the independence
assumed for the clusterings (e.g., the Chi squared coefficient and Fowlkes-Mallows index), (ii) the sensitivity
to the fixed cluster number and size of clusters (the general Rand index and Partition difference) or (iii) the
assumption on a generalized hypergeometric distribution with a fixed number of clusters and a fixed number
of elements in each cluster (the adjusted Rand index). The Mirkin metric and Jaccard index are similar
to the Rand index. Moreover, the Fowlkes-Mallows index was originally proposed for the comparison of
hierarchical clusterings.

• Measures based on set overlaps, such as the F-measure (Larsen and Aone, 1999), the asymmetric Meila-
Heckerman measure, which can generalized to the symmetric maximum-match-measure (Meilă and Heck-
erman, 1999) and the Van Dongen measure (Dongen, 2000). The assymetry of these measures represents
their serious drawback in the practical use. As reported by (Wagner and Wagner, 2007), they also ignore the
non-overlapping elements of clusters.

• The entropy-based measures using the normalized mutual information between two clusterings, such as pro-
posed by (Strehl and Ghosh, 2002), (Fred and Jain, 2003) or the variation of information according to (Meilă,
2007). According to (Wagner and Wagner, 2007), this group of measures is more promising for further re-
search as well as for using in practice, as they do not suffer from limitations mentioned for two previous
categories.

Another paper belonging to the information-based category was presented by (Meilă, 2005) introducing an ax-
iomatic view of the clustering comparison, where the clusterings were taken as elements of a lattice and a criterion
of their comparison was a function of pairs of elements in the lattice. The information theoretic measures for
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clustering comparison were also extensively explored by (Vinh et al., 2010), where their important metric and
normalization properties were discussed and proved.

Comparing the clustering results based on the maximization of the Cohen’s κ coefficient (Cohen, 1960) was pro-
posed in the paper of (Reilly et al., 2005). This method seems to be close to those based on counting pairs, however,
it does not require any assumption of the clustering independence. One of the drawbacks mentioned by the authors
is its lower successfulness for the comparison of model-based clusterings with the non-hyperspherical shape of
clusters.

An extensive overview of methods was given by (Vendramin et al., 2010), who divided the existing 40 clustering
validity criteria between optimization-based and difference-based methods, provided their complexity analysis and
comparison. They also described an alternative methodology to compare clusterings, which enables getting rid of
the simplified assumptions on the correctness of one of the algorithms, but on the contrary, trying to distinguish
between better and worse clusterings within an application field. Unlike this, (Meila, 2016) evaluated clusterings
based on the difference from the optimal partition of a data set and also provided the overview of the methods with
regard to the above categorization.

A series of application related studies has been also found. For example, the paper of (Sirsikar and Wankhede,
2015) compared clustering algorithms applied to wireless sensor networks and proposed a new clustering algorithm
bringing energy saving advantages. (Schütz et al., 2018) used the sum of squared errors between the original and
clustered data as a simple comparative measure, which has been finally found as not a sufficient index to compare
the clustering algorithms applied to building energy systems. (Asioli et al., 2018) dealt with the comparison of
clustering approaches applied to the data from coffee consumers. In one of the recent publications, (Lee et al.,
2018) note that the existing measures are known to be sensitive to the arbitrary shape of clusters and propose a new
method based on a support vector data description. They show that the proposed measure is less sensitive to the
cluster shape and more robust to the data noise and outliers.

Despite the considerable number of publications in this area, new methods are still proposed from time to time.
This is obviously motivated by limitations of the existing methods that makes the choice of a suitable measure hard
in practice. In this paper, we present an attempt of combining two of undemanding measures as a new method
to compare clusterings with the same number of clusters with the aim to investigate whether their combination
gives some advantages in the practical use. The κmax statistic described by (Reilly et al., 2005) and the normalized
mutual information presented by (Strehl and Ghosh, 2002) are chosen for using in the proposed method, which is
then experimentally compared with each of the original techniques.

The remainder of the paper is organized as follows. Section 2 formulates a problem of comparing clusterings.
Section 3 provides the theoretical background of both the original methods, while Section 4 introduces the new
statistic combining them. Section 5 is devoted to the experimental validation of the proposed method based on
simulations and real data sets. It also provides the discussion. Conclusions are given in Section 6.

2 Problem formulation

Let’s have a set of data elements, which have been clustered by a pair of clustering algorithms. A clustering
obtained with one of the algorithms is denoted by A = {A1, A2, . . . , An}, where n is a number of clusters. All
of the clusters are supposed to contain at least one element. Similarly, a clustering of another algorithm is denoted
by B = {B1, B2, . . . , Bm} with m non-empty clusters. Generally, m is not necessarily equal to n. However, in
the case m 6= n the clusterings do not obviously agree. Thus, from a practical point of view, m = n, i.e., the
same number of clusters obtained with a pair of algorithms will be assumed in this paper. None of the clusterings
is understood as “more correct” for a given data set.
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The task to be solved in the paper is to use the number of elements in the contingency table

Tij = |Ai ∩Bj |

expressing the intersection of two clusterings A and B for evaluating the agreement of the clusterings. The denota-
tion i = {1, . . . , n} means rows and j = {1, . . . ,m} – columns of the table. It is clear that the capacity of the set
|Ai ∩Bj | for i = j should be as large as possible, limited by the size of a smaller cluster (if any) in the considered
pair of clusters.

The agreement of clusterings can be evaluated with the help of different approaches mentioned in Section 1. This
paper proposes to use the combination of two of them to present the new modified method. For better understanding,
the theoretical background of both of them is briefly given below.

3 Preliminaries

3.1 The κmax statistic

(Reilly et al., 2005) proposed to use the κmax statistic, which is the extension of the Cohen’s κ coefficient (Cohen,
1960), for comparing clusterings. The main idea is to consider the permutation of the contingency table as a
mapping of one of the clustering algorithms to another one and use the permutation with the maximum Cohen’s κ
coefficient. Then the κmax statistic is calculated according to the following formulas (Umesh et al., 1989; Reilly et
al., 2005)

κmax(A,B) =
pmax − pexp

1− pexp
, (1)

where

pmax =
1

N

n∑
i=1

Tii, pexp = prpc, pr =
1

N

n∑
i=1

Tij , pc =
1

N

m∑
j=1

Tij , (2)

N is the number of data in the clustered data set, Tii and Tij belong to the permuted contingency table, pr is a sum
of the permuted contingency table along rows and pc is a sum along columns.

Values of the statistic close to 0 indicate very weak agreement between clusterings and 1 means conversely perfect
match. According to (Reilly et al., 2005), the statistic works for any number of clusters.

3.2 The normalized mutual information

(Strehl and Ghosh, 2002) introduced the mutual information between two considered clusterings normalized using
the geometric mean

NMI(A,B) =
I(A,B)√
H(A)H(B)

, (3)

where the mutual information (see, e.g., (Wagner and Wagner, 2007))

I(A,B) =
n∑

i=1

m∑
j=1

p(i, j) log2
p(i, j)

p(i)p(j)
(4)

expresses the uncertainty about the location of clusters in clustering A under condition that clusters in clustering
B are known, and vice versa. Here, the probability that a data element belongs to the i-th cluster of clustering A,
respectively to the j-th cluster of clustering B is defined by

p(i) =
|Ai|
N

, p(j) =
|Bj |
N

(5)
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and then

p(i, j) =
|Ai ∩Bj |

N
(6)

gives the probability that a data element belongs both to cluster Ai of clustering A and to cluster Bj of B. The
denominator in (3) includes the entropy of each of the clusterings A and B as follows:

H(A) = −
n∑

i=1

p(i) log2 p(i), H(B) = −
m∑
j=1

p(j) log2 p(j) (7)

that serves as a measure of the uncertainty regarding the belongingness of a randomly taken data element to clusters
(Wagner and Wagner, 2007). The normalized mutual information (3) is defined on the interval from 0 to 1 with the
interpretation similar to the κmax statistic.

4 Comparing clusterings via combination of statistics

Analyzing data with the help of different-type clustering algorithms like model-based methods and k-means (Jain,
2010), for their comparing it is useful to apply measures suitable for various shapes of clusters. The use of the
κmax statistic according to (Reilly et al., 2005) is really fast and easy in practice. In κmax, the decisive information
needed for evaluating the matching is rooted in the value of pmax from (2), which is a function of maximum diagonal
elements of the permuted contingency table. As regards the value of pexp in (1), it seems that it depends on the
number of clusters and it has very close values in the case of pairs of clusterings with the same number of clusters,
but with the different location of data elements among the clusters.

In (Reilly et al., 2005), the suitability of κmax for arbitrary shape and size of clusters, which is characteristic in
the case of mixture based clustering is not unambiguous. Thus, to verify the κmax values, another measure can be
taken. The normalized mutual information (Strehl and Ghosh, 2002) has been chosen due its belongingness to the
entropy based measures not limited by the distribution assumption or cluster overlapping.

Experimentally, specific sensitive features have been discovered in the case of both measures (this will be shown
later). Calculating NMI, starting from substantial agreement between clusterings, the capacity of the intersection
of any two clusters of the compared clusterings can be zero, which causes troubles with calculating the logarithm
in (4). One of specific drawbacks of the κmax statistic was related to decreasing its values in the case of the higher
number of clusters. The values were decreasing faster than the values of the NMI statistic, however, otherwise
these statistics agree in evaluation of cluster matching.

The minor drawbacks of these easily usable statistics not requiring any assumptions regarding clusterings have
motivated to try to combine them. The combined statistic denoted by Λ is presented in the following way inspired
by the logistic function, which has been empirically adjusted

Λ(A,B) =
exp{z}

1 + exp{ pmax

NMI(A,B)}
, (8)

which uses the regression

z = θψ′, (9)

with the regression vector ψ = [1 pmax NMI(A,B)] (10)

and the regression coefficients θ = [exp{−0.8

n
} 0.8

n

0.3

n
], (11)
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which have been manually tuned. A simple example of calculating all the three statistics in a programming free and
open source environment Scilab (www.scilab.org) is given below.

Let’s compare two clusterings of simulated data shown in Figure 1. One of them is the result of the k-means
algorithm (Jain, 2010), see Figure 1 (left). Another one is the cluster-weight model (CWM) based clustering
according to (Ingrassia et al., 2015; Punzo and Igrassia, 2016; Dang et al., 2017; Mazza et al., 2018), see Figure 1
(right). The data set contains 650 data elements. Both the algorithms detected 3 clusters. Visually the agreement of
the clusterings seems to be substantial. The κmax, NMI and Λ statistics are used to evaluate their agreement.

Figure 1: The k-means (left) and the model based (right) clusterings of simulated data

The contingency table of the clusterings is as follows:

T =

1 2 3
1 133 0 93
2 1 86 138
3 70 129 0

. (12)

It should be permuted to find the maximum agreement on the main diagonal, which is here straightforward, i.e.,

T =

1 2 3
1 133 93 0
2 1 138 86
3 70 0 129

. (13)

Using (1)-(2) and (13), the κmax statistic is calculated as follows:

pmax =
133 + 138 + 129

650
= 0.6153846,

pexp = [
133 + 1 + 70

650

93 + 138

650

86 + 129

650
] · [133 + 93

650

1 + 138 + 86

650

70 + 129

650
]′ = 0.3334059,

κmax(k-means, CWM) = 0.4230141, (14)

which evaluates the agreement of this pair of clusterings as moderate, see, e.g.,
https://www.statisticshowto.datasciencecentral.com/cohens-kappa-statistic.

The normalized mutual information (Strehl and Ghosh, 2002) does not require the optimal permutation of the table
T . According to (3)-(7) and (12), it is obtained

H(k-means) = −[
133 + 93

650

1 + 86 + 138

650

70 + 129

650
]
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× log2([
133 + 93

650

1 + 86 + 138

650

70 + 129

650
]′) = 1.5825274, (15)

H(CWM) = −[
133 + 1 + 70

650

86 + 129

650

93 + 138

650
]

× log2([
133 + 1 + 70

650

86 + 129

650

93 + 138

650
]′) = 1.5830801. (16)

The calculation of (4) can be shown here for individual clusters, e.g., for clusters 1 of both clusterings. It is

I(k-means1,CWM1) =
133

650
log2

133
650

133+93
650

133+1+70
650

= 0.1855808. (17)

It can be seen that calculating (4) via (6) for clusters 1 and 2, or 3 and 3 gives the zero in the logarithm. This can be
treated by changing the zero values for small values close to zero, e.g., 0.00001. This minor numerical correction
does not influence the result, but it enables calculating the logarithm. With this correction, the result is -0.0000004.
After summing up all the values of (4) and using (3), the NMI(k-means, CWM) measure is equal to 0.3863443.
This is the fair agreement, which is slightly weaker than it was in the case of the κmax statistic.

Further, calculating the Λ statistic is straightforward with the help of (8)-(11), (13), pmax and the NMI values,
i.e.,

z = [exp{−0.8

3
} 0.8

3

0.3

3
] · [1 0.6153846 0.3863443]′ = 0.9686653,

and then Λ(k-means, CWM) = 0.4451777, (18)

which again corresponds to the moderate agreement of the clusterings.

The statistics obtained slightly differ in their values. The statistical significance of the difference in the values is
discussed in the subsequent section, which investigates the behavior of the statistics in order to find out whether the
proposed combination keeps the properties and limitations of its origins.

5 Validation experiments

The validation experiments have been conducted in Scilab.

5.1 Experiments with a low fixed number of clusters

To investigate the behavior of the Λ statistic, a series of experiments has been conducted. Firstly, the aim of the
experiments was to explore the agreement among all of the three statistics. For this end, 30 contingency tables
corresponding to two clusterings with the fixed number of clusters (here equal to 3) were simulated 30 times, i.e.,
on the simulation space 30×30. To cover various degrees of clustering matching, the contingency tables were of
the following types: (i) with a great random number of clustered elements on the main diagonal (i.e., belonging to
the same clusters), which can be then evaluated as the almost maximum matching, (ii) with a dominating random
number of elements in each row (i.e., belonging to one of the clusters), which allows the permutation to maximize
the statistic, and (iii) the randomized contingency tables generated from the uniform distribution, where the low
values of statistics can be expected. The number of the clustered data elements was random.

The obtained values of the κmax,NMI and Λ statistics were tested for a statistically significant difference. As the
normality assumption was not satisfied, the Kruskal-Wallis test (Kruskal and Wallis, 1952) has been chosen to test
whether the values of the three statistics originate from the same distribution. The p-values of the Kruskal-Wallis
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tests can be found in Figure 2, where the average p-value was 0.34056, the maximum was 0.675 and the minimum
0.1346. The p-values were higher than the significance level of 0.05, which means that there is no significant
difference among the values of the κmax, NMI and Λ statistics. It indicates that all of the statistics agree in
evaluating the cluster matching for a fixed number of clusters equal to 3 and a random number of data.

Figure 2: The p-values of the Kruskal-Wallis tests for 30x30 simulations

The expectations of the statistic values over all of the simulations are also demonstrated in Figure 3, where never-
theless it can be seen that, as a rule, κmax has the highest values in comparison with NMI and Λ.

Figure 3: The mean values of the κmax,NMI and Λ statistics over all of the simulations of the contingency tables
with 3 clusters and various agreement
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5.2 Experiments with a growing number of clusters

Further, the experiments with a growing number of clusters have been conducted with the aim to turn out its
influence on the statistics. In order to guarantee the same matching conditions for any number of clusters, the
simulated contingency tables contained greater random numbers of elements on the main diagonal. The rest of
clustered elements in the contingency tables were small random numbers. Using such simulations, the agreement
of compared clusterings can be assumed from substantial (the statistic values are from 0.6 to 0.8 ) to near perfect
(about 0.81 – 0.99). The number of clusters was growing from 3 to 15, which is the reasonable choice from a
practical point of view. The number of data elements was random.

The evolution of mean values of all of the statistics calculated from 300 simulations of 13 contingency tables with
the growing number of clusters from 3 to 15 is shown in Figure 4. It can be seen that on average, after 6 clusters
values of the κmax statistic started to fall sharply. TheNMI also demonstrated the downward trend as the number
of clusters was growing, however, not so abruptly. Due to the combination of both of them, the Λ statistic has
remained on the assumed level of the statistic values. However, with the higher number of clusters about 13-15, the
Λ statistic has approached too close to 1, which does not correspond to the assumed level of matching. It means
that for such a high number of clusters none of the discussed statistics is effectively usable in this case. Probably,
the average of the NMI and Λ will be successful in this case.

Figure 4: The mean values the κmax, NMI and Λ statistics with the growing number of clusters from 3 to 15 and
the agreement from substantial to near perfect

The statistic values have been also obtained for individual numbers of clusters growing gradually. Their mean
values over all the simulations are plotted in Figure 5. The figures show that under the same conditions of the
substantial agreement, the κmax statistic drops sharply with the number of clusters 7 and more. The NMI values
are still acceptable for 9 clusters, but then they are also falling, although until the level of the moderate agreement.
The Λ statistic is still within the assumed bounds in the case of 11 clusters, but subsequently it grows.

When using the “ideal” case with the perfect agreement (i.e., the contingency table, whose elements with the
exception of the main diagonal are zeros), the following results are observed. For the number of clusters lower than
6, all the statistics start close to each other approaching the value of 1. For the higher number of clusters, κmax

drops again abruptly, NMI remains equal to 1 and Λ is approaching to 1 until the number of clusters is equal to
10 – 11. Subsequently, it remains just above 1. The growing number of clusters affects the evolution of the statistic
values similarly in the case of slight agreement.
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Figure 5: The values of the κmax, NMI and Λ statistics for the number of clusters from 3 to 15

Based on this part of experiments, it can be said that in practice not including the ”ideal” matching, the proposed Λ
statistic can be safely used until 11 clusters, NMI is suitable up to 9 clusters and κmax should be utilized in the
case of number of clusters lower than 6.

5.3 Arbitrary size of clusters

Here, the aim of the experiments was to investigate the influence of size of the data set to the statistic values. The
fixed number of clusters equal to 5 has been chosen as reliable in the case of using any of the statistics. 30 random
contingency tables have been simulated, which were corresponding to the low level of agreement from fair with the
statistic values assumed about 0.21–0.40 to slight, where they are about 0.1– 0.20. The size of the data sets was
growing in each table gradually from 100 to 3000 data elements. The simulations were repeated 100 times. No
specific effect of the growing data size on the behavior of the statistics has been discovered: the results generally
correspond to those obtained in Section 5.1 with the random data set size. TheNMI and Λ show very close values
and κmax again has the highest ones, see Figure 6. For this specific case with the almost uniformly distributed
contingency tables, the difference of the mean values of κmax and the rest of statistics is statistically significant at
the significance level 0.05, which has been tested in pairs by the two sample Kolmogorov-Smirnov test (Massey,
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Figure 6: The mean values of the κmax,NMI and Λ statistics with the growing size of data sets from 100 to 3000
data elements

1951). The p-value obtained is 0.0001. The difference in mean values ofNMI and Λ is not statistically significant
with the p-value 0.32128.

The influence of an arbitrary size of individual clusters has been also tested, which gave similar results.

5.4 Arbitrary shape of clusters

The influence of shape of clusters has been tested on various real data sets. A series of experiments has been
conducted with the number of clusters from 3 to 7. The statistics have agreed in all of the cases. Here, results of
two of them are presented.

Hematological data

One of the tested data sets contained 81 anonymized hematological data elements, see, e.g., (Marinov et al., 2011).
For two-dimensional visualization, the following variables were chosen: y1 – precollection number of CD34+, [µl],
and y2 – processed total blood volume (TBV), [ml]. The k-means (Jain, 2010) and fuzzy c-means (Dunn, 1973)
algorithms have been used for clustering the data. The obtained clusterings to be compared are shown in Figure 7.
The locations of three arbitrary-shaped clusters visually differ within the range from 17000 to 18000 [ml] of TBV.

The contingency table in this case is

T =

1 2 3
1 21 0 0
2 0 0 23
3 6 15 16

. (19)

For this pair of clusterings, κmax = 0.6076618, the mutual normalized information NMI = 0.5372067 and the
proposed Λ is equal to 0.5647885, which means that the agreement is evaluated as moderate by all of the statistics.
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Figure 7: The k-means and fuzzy c-means clusterings to be compared

Epileptic seizure recognition data

Here, the epileptic seizure recognition data set publicly available at (Dua and Graff, 2019), see also (Andrzejak et
al., 2001), has been used. As the explanatory variables, the data sets contains 178 electroencephalography (EEG)
recordings within 11500 periods of time. 5 categories of the variables are available as follows: 1 – recording the
seizure activity; 2 - recording the EEG signal from the brain area where the tumor was located; 3 – recording the
EEG activity from the healthy brain area; 4 – recording the EEG signal when the patient had their eyes closed; 5 –
recording the EEG signal when the patient had their eyes open. According to the description of the data set, it can
be supposed that 5 clusters are probably to overlap substantially. Three clustering methods have been applied to the
data set: two mixture-based clustering algorithms, namely, (i) the mixture model with normal components and the
dynamic pointer (Nagy and Suzdaleva, 2017) and (ii) the mixture of uniform components and the dynamic pointer
(Suzdaleva et al., 2017), and the k-means algorithm. It means that the agreement of six pair of clusterings (including
the real realizations) can be evaluated with the help of the discussed statistics. The visual demonstration of clusters
is not representative for such a high number of variables, so the contingency tables for the chosen explanatory
variables will be shown. They have been obtained as follows, where N denotes the mixture-based clustering with
normal components, U stands for uniform components,R corresponds to real categories andKM denotes k-means:

T (N ,U) =

1 2 3 4 5
1 227 518 511 154 145
2 77 3337 1744 3 1
3 16 1642 727 0 0
4 18 1445 665 0 0
5 5 183 81 0 1

, T (N ,R) =

1 2 3 4 5
1 1358 37 51 71 38
2 569 1428 1332 800 1033
3 53 678 714 270 670
4 308 130 171 1104 415
5 12 27 32 55 144

,

T (N ,KM) =

1 2 3 4 5
1 18 52 650 68 767
2 82 132 2217 199 2532
3 40 64 999 109 1173
4 38 54 892 96 1048
5 1 9 117 7 136

, T (U ,R) =

1 2 3 4 5
1 255 27 23 17 21
2 953 1487 1527 1572 1586
3 799 776 750 710 693
4 155 2 0 0 0
5 138 8 0 1 0

,
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T (U ,KM) =

1 2 3 4 5
1 2 10 154 16 161
2 105 186 3025 292 3517
3 70 107 1561 158 1832
4 0 3 64 7 83
5 2 5 71 6 63

, T (KM,R) =

1 2 3 4 5
1 33 40 32 40 34
2 70 60 56 60 65
3 985 982 995 923 990
4 104 100 95 97 83
5 1108 1118 1122 1180 1128

.

(20)
The results of comparing these pairs of clusterings are given in Table 1, where it can be seen that the agreements of
the clusterings compared are equivalent to chance with the exception of the mixture-based clustering with normal
components compared with real categories of EEG recordings. Their agreement is evaluated as fair by all of the
statistics.

Table 1: The κmax, NMI and Λ statistics
κmax NMI Λ

N vs. U 0.0324529 0.0781617 0.0209253
N vs. R 0.266087 0.183074 0.2403329
N vs. KM -0.0006052 0.0005609 0
U vs. R 0.0345652 0.0578645 0.0468144
U vs. KM -0.0010054 0.0007411 0
KM vs. R 0.0091304 0.0004312 0

The rest of experiments in this section have been conducted with the set of driving-related variables measured
on a driven vehicle, which have been clustered by the already mentioned clustering algorithms giving different
shapes of clusters. The values of the statistics obtained as the result of the comparison have been tested for a
statistically significant difference by the Kruskal-Wallis test. The p-value obtained was 0.9099, which means that
at the significance level of 0.05, there is no significant difference among the values of the κmax, NMI and Λ
statistics. It means that the non-hyperspherical shape of clusters, which is characteristic for mixtures of uniform
components, had no effect on the behavior of the statistics.

5.5 Discussion

The main aim of the presented study was to combine two existing methods of comparing clusterings and explore
the behavior of the new combined statistic in order to understand whether it brings any improvements in practice.

As it was demonstrated in Sections 4 – 5.4, the aim has been successfully accomplished. The κmax statistic and the
mutual normalized information have been combined with the help of the empirically adjusted function based on the
logistic one, which is mapping the values of both the statistics into the interval from zero to one. The behavior of the
new method along with both original statistics has been extensively investigated under various conditions using the
considerable number of experiments and compared among each other. The values of the proposed statistic agreed
with both the original ones during the experimental verification, which has validated the new method.

As a result, the specific advantages brought by the proposed Λ statistic include: (i) the reliable use in practice in the
case of low fixed number of clusters, (ii) the suitability to comparing clusterings with a higher number of clusters
up to 11 in contrast with the κmax statistic, whose values sharply decrease with the number of clusters greater than
6 and theNMI, which also shows slight dropping values after 9 clusters, (iii) the independence on the cluster size
and shape.
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However, in the case of the number of clusters about 12 and higher, the proposed Λ statistic is not suitable, as its val-
ues increase higher than the assumed level of matching, which can be verified working with simulated contingency
tables. The unsuitable behavior has been also shown by the κmax statistic and the mutual normalized information.
As it is mentioned in Section 5.2, the mean value of Λ and NMI seems to be suitable in this case.

Summarizing the experimental part of the work, it can be said that the proposed Λ statistic can be applied to
comparing results of clustering algorithms including mixture-based clustering with different type of components
independently on the number of data elements to be clustered and with arbitrary shape of clusters, whose number
does not exceed 11 clusters.

The limitation of the approach is also the value 1 of NMI in the case of the perfect agreement. This issue is
treated as follows. The perfect agreement means that the elements of the main diagonal of the contingency table
correspond to individual clusters, which are matching, and the rest of the table are zero elements. However, to
avoid the problem with calculating the logarithm in (4) for NMI, the numerical correction of the contingency
table is necessary in the form of replacing zero values by minor numbers, e.g., 0.000001. The result of comparing
is not affected by this correction. However, beside avoiding the zero in the logarithm, it guarantees that the NMI
measure in the case of perfect agreement will get the maximum value of 0.99999. This also helps fix the limitation
in calculating Λ.

6 Conclusion

The paper proposes the new method for comparing clusterings with the same number of clusters based on the
combination of the existing statistics such as κmax and the mutual normalized information. The proposed method
has been experimentally validated using simulations and real data sets. The agreement among all of the statistics
has been statistically tested for various number of clusters, capacity of data sets and shape of clusters.

The open problem remains comparing clusterings with a high number of clusters, which needs another extensive
study aimed at this specific problem. However, it should be noticed that in practice the number of clusters from 3
to 12 (also used in the application part of (Reilly et al., 2005)) is rather acceptable.
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