
Chapter 52
Path Modelling and 3D Robot
Visualization for Model-Based Control
of Articulated Robots

Květoslav Belda and Karel Dvořák

Abstract The paper deals with the three-dimensional (3D) path modelling and visu-
alization used in the simulation of model predictive control design of industrial
robot manipulators. A possible comprehensive procedure is introduced as a specific
sequence of the following points: (i) path modelling using set of control points with
G-code generation and time parametrization; (ii) construction of a photo-realistic 3D
virtual reality robot model including surrounding workplace; (iii) 3D robot visual-
ization using Virtual Reality Modeling Language (VRML V2.0); (iv) brief overview
of model predictive control design; (v) simulation of the control with visualiza-
tion using prepared 3D virtual reality robot model. This sequence is applied to the
one representative of articulated robots—ABB robot IRB 140. Siemens NX Soft-
ware (points i–iii) and MATLAB/Simulink environment (points iii–v) are proposed
as suitable work tools.

Keywords Siemens NX software · MATLAB/Simulink 3D animation toolbox ·
Model predictive control · Articulated robots · Virtual reality

K. Belda (B)
Department of Adaptive Systems,
The Czech Academy of Sciences, Institute of Information Theory and Automation, Pod
Vodárenskou věží 4, 180 00 Prague 8, Czech Republic
e-mail: belda@utia.cas.cz

K. Dvořák
Department of Technical Studies, The College of Polytechnics Jihlava,
Tolstého 16, 586 01 Jihlava, Czech Republic
e-mail: karel.dvorak@vspj.cz

© Springer Nature Switzerland AG 2022
E. Zattoni et al. (eds.), 15th European Workshop on Advanced Control and Diagnosis
(ACD 2019), Lecture Notes in Control and Information Sciences - Proceedings,
https://doi.org/10.1007/978-3-030-85318-1_52

889

890 K. Belda and K. Dvořák

52.1 Introduction

Path modelling is a necessary preparatory task of every application including motion
control in general. To ensure effecient path modeling and verification before its
run in specific motion control system, appropriate modeling and simulation tools
should be used. In this paper, we will consider two suitable tools: Siemens NX for
construction and modelling and MATLAB/Simulink for motion control simulation
with 3D realistic visualization.

Let us firstly introduce mentioned tools in view of proposed path modelling and
simulation and visualization of robot model-based motion control. Siemens NX is
a Computer Aided (CAx) application that includes a wide portfolio of tools for
modelling, simulations, and production technologies such as Computer Aided Design
(CAD) or Computer Aided Manufacturing (CAM).

The basic, default output of NX is a virtual prototype that is in the form of an indi-
vidual model or assembly. A virtual prototype represents a digital representation
(digital model) of a real product (final component, product).

A starting point of the modelling is parametric or non-parametric geometry that
forms the appropriate digital model. This model as default, usually exact CAD model
or assembly, is used for subsequent procedures as associative or non-associative
copies. For associative copies, the basic geometry is controlled by just the default
model. The geometry can be simplified for simulation purposes, e.g. by removing
insignificant details that do not affect the resulting, simulated tracking parameters.
However, such simplification can often reduce the computational demands of simu-
lation. This approach, usually referred to as a common model method, digital twin,
or Master Model Concept, e.g. in [2, 7], is illustrated in Fig. 52.1.

To support the simulation of the robot control, 3D models of the main robot com-
ponents with corresponding shape and dimensional accuracy are used. Parametric
setting of the assembly allows kinematics to be controlled through a set of vari-
ables or by external tools. This feature is useful for the visualization of simulation
of robot behaviour. The basic kinematic manipulation during construction in NX is
realized through a manipulation tool, where the vector and the subsequent translation
or rotation of the specified parameter can be changed.

For manipulation, it is also possible to use individual geometric objects of the
model or assembly or a dynamic manipulation tool in general. Furthermore, the
selected parameters can be directly determined as well as movements of the specified
parts or points on the parts of the mechanism can be analysed by means of the appro-
priate pre-configuration of Assembly Constraints such as distance, angle, collinearity,
and perpendicularity [12].

The aforementioned approach is helpful for the construction of 3D CAD models.
Note that for construction of a dynamic model of the robot (i.e. equations of motions),
necessary for model-based control, NX is also a helpful tool since it can offer infor-
mative parameters such as volumes or moments of inertia relating to specific den-
sities of individual robot components. However, for the design and development
of advanced model-based control, NX cannot offer adequate flexibility due to its
strict purpose-oriented industrial functionality.

52 Path Modelling and 3D Robot Visualization … 891

CAE part with FEM analysis Drawing

Assembly CAM part

Master-Model-Part

Fig. 52.1 Master model concept

For control design, the MATLAB/Simulink environment represents an adequate
tool, where control algorithms of developed control approach can be straightfor-
wardly formulated [5]. Furthermore, obtained 3D model from NX can be involved
and used for 3D visualization together with simulation of the control. Thus, the usual
development of control algorithms can be connected to 3D visualization through
Simulink 3D Animation Toolbox. Then, user can obtain a realistic demonstration of
a run of a real robot including dynamic behaviour corresponding to control actions
generated from control algorithms. One example of such complex model-based con-
trol approaches is Model Predictive Control (MPC) that represents a promising way
for future industrial control systems. For 3D visualization, Virtual Reality Modeling
Language (VRML V2.0) is used.

The paper is organized as follows. Section 52.2 deals with path modelling. Section
52.3 will explain construction of a 3D virtual robot model. Section 52.4 will describe
3D robot visualization in MATLAB/Simulink. Finally, Sect. 52.5 will demonstrate
simulation of robot MPC with simultaneous 3D robot visualization. The correspond-
ing conceptual designing diagram is shown in Fig. 52.2.

52.2 Path Modelling in 3D

In our explanation, let us consider a geometric path, described by G-code. Such a path
will represent an ideal, geometrically accurate, curve. The curve should smoothly
connect geometric centres of the tool path, where the tool is fixed to the robot flange.

892 K. Belda and K. Dvořák

SimulinkMATLAB /

Scien�fic and technical
compu�ng tools

3D CAD
tools

path modeling time parametrization motion trajectory

model-based
control design,

simulation

robot modeling 3D visualization (virtual reality)

Fig. 52.2 Conceptual designing diagram

The G-code is standard for the description of the paths of machines in industrial
production. Here, let us consider for simplicity only several basic instructions such
as G00, G01, G02, and G03 representing rapid positioning, linear interpolation,
circular clockwise/counterclockwise interpolations, respectively.

Time parametrization is a necessary operation that is involved in the interpretation
of the G-code. The G-code uniformly represents (describes) motion path and can
contain also simple pieces of information about kinematic parameters such as motion
velocities (feed rates) or time dwells.

To execute the code in a particular production machine, it is necessary to have a
suitable algorithm that is able to interpret the individual lines of the G-code program
for the control system. In the majority of cases, it means execution of specific time
parametrization, the result of which is ordered couples of time and appropriate coor-
dinate represented data for the control system. These data are fed within the control
system in specific synchronous time sampling (time period).

A simple example of a CNC program, considered in this paper taking NX into
account, is listed in Table 52.1.

52.3 3D Virtual Robot Model

To obtain a photo-realistic 3D virtual robot model, let us consider NX for initial
individual positioning and orientation of robot components in the 3D space. The ade-
quately, specifically positioned and oriented components will be used in the creation
of 3D visualization.

The main structural objects of individual 3D models are points, curves, areas,
and surface areas. Furthermore, the position and orientation of the coordinate sys-

52 Path Modelling and 3D Robot Visualization … 893

Table 52.1 G-code of testing trajectory (mm)

N010 G00 X500 Y0 Z400 G17

N020 G03 X600 Y100 Z400 I0 J100 K0

N030 G02 X700 Y200 Z400 I100 J0 K0

N040 G01 X800 Y200 Z400

N050 G00 X700 Y200 Z400

N060 G00 X700 Y200 Z500

N070 G00 X800 Y200 Z500

N080 G01 X700 Y200 Z500

N090 G03 X700 Y-200 Z500 I0 J-200 K0

N100 G01 X800 Y-200 Z500

N110 G00 X700 Y-200 Z500

N120 G00 X700 Y-200 Z400

N130 G01 X800 Y-200 Z100

N140 G00 X700 Y-200 Z400

N150 G02 X600 Y-100 Z400 I0 J100 K0

N160 G03 X500 Y0 Z400 I-100 J0 K0

N170 G00 X400 Y0 Z400 M30

(considered starting point: X400 Y0 Z400)

tem are important for construction as well. Both parameters determine the basic
reference of the model, e.g. with respect to the higher assembly, or for determining
the simulation characteristics.

The models are located in an assembly where their position can be defined by
means of the location of their local coordinate systems, or by the assembly constraints.
The constraints mean the conditions of the mutual positioning of objects. Figure 52.3
illustrates such local coordinate systems. They are associated with individual robot
objects (bodies) or their characteristic points as an intersection of symmetry axes
or rotational axes.

Conditions can be defined for local coordinate systems or for geometric objects
of components—models. For simulation management purposes, it is optimal if
assembly constraints correspond to the functional characteristics of real connec-
tions, which supports simulation and analysis of real behaviour. The position and
orientation are determined primarily by the absolute Coordinate SYStem (absolute
CSYS). Its position and orientation are invariable.

The position and orientation of the geometric objects of the model are defined for
the absolute CSYS, and the visual manipulation by the model represents the move-
ment around the coordinate system. The absolute CSYS is also usually a portable
reference when exporting curve or bulk model objects to “third-party” formats.

For the models of virtual prototypes of kinematic mechanisms that represent the
robot model, it is appropriate to configure the object of the model with respect to
the absolute CSYS whose position is either in the centre of the component body

894 K. Belda and K. Dvořák

Fig. 52.3 3D VR model of ABB robot IRB 140 in NX environment

(assembly) or in the kinematic node. The kinematic node can be, as was already
indicated, a point on the rotational axis at the intersection with the moving plane
of the adjacent component. It may be a point on the edge, area, or body volume,
or a virtual point outside the body.

Another local coordinate system is the Work Coordinate System (WCS). WCS is
only relevant for editing a custom component model. It is not an object; it is a virtual,
non-associative temporary coordinate system that allows localization of the position
of the object at the beginning and the directions of the vectors to the main axes or to
the XC axis in the XC-YC plane.

An important reference object is the user-defined coordinate system Date CSYS
[10]. It is an element composed of the basic reference objects—the three reference
axes, the planes between the axes, and the reference point. There may be an arbitrary
number of user-defined coordinate systems in the model.

In addition to the local significance for component modelling, it is advantageous
to have one Datum CSYS based and aligned with the absolute coordinate system
of the model. The Datum CSYS, including reference geometry, is usable in the context
of the assembly to define the mutual positioning conditions of individual components.
A typical example is the collinearity of some of the axes of the two components
to provide rotation around the axis and the subsequent definition of the angle of
rotation by the parameter—user-defined variable, or the distance in the direction
of the defined vector between the selected objects.

The parametric setting of the assembly allows kinematics to be controlled through
a set of variables by means of external tools, where control parameters can be gen-
erated according to a specific point tracking requirement or based on a kinematic

52 Path Modelling and 3D Robot Visualization … 895

simulation. A set of points for subsequent kinematic analysis and optimization can
be obtained using other diagnostic tools [13].

Individual CSYS are shown in Fig. 52.3. A photo-realistic model for 3D visual-
ization is obtained by export of the 3D model in NX to VR World *.wrl format
of Virtual Reality Modeling Language (VRML V2.0).

52.4 Setup of 3D Visualization

3D virtual robot model, serving for online 3D visualization during robot motion
control, is constructed in 3D World Editor of MATLAB/Simulink 3D Animation
Toolbox. This section introduces the structure setup of the VR model and direct
and inverse kinematic transformations. The transformations are needful for the deter-
mination of the motion of the individual robot components considering user space
(Cartesian coordinate system) and robot control space (joint (drive) coordinate sys-
tem).

52.4.1 Structure of VR Model

The individual 3D robot components (i.e. base and links of the robot) are exported
separately from NX in the *.wrl format. Then, other parts of the VR world such
as scene and background can be created in different graphical tools and stored in dif-
ferent graphical formats, e.g. in the *.jpg format. All the parts and components
are consecutively in-lined to one VR model. Specifically, the robot components are
gradually encapsulated one within the other in compliance with their order in robot
structure.

The structure of the VR model that corresponds to this way is listed onwards
in Table 52.2. Initial elements describe user viewpoints and the specific world (VR
scene)—they are on the same level. Other elements (i.e. robot components) labelled
(Transform) are encapsulated one (child, slave) within the other (parent, master) as
already mentioned above.

52.4.2 Direct Kinematics

The VR structure closely corresponds to the direct kinematics, which uses three basic
motions and three basic rotations in transformation matrices as follows:

896 K. Belda and K. Dvořák

Table 52.2 Listing of structure of VR model

. . .

TrBASE (Transform)

rotation (SFRotation): 0 0 0 0

translation (SFVec3f): 0 0 0

children (MFNode)

BASE (Inline) url: [BASE.wrl]

TrLINK1 (Transform)

rotation (SFRotation): 0 0 1 q1

translation (SFVec3f): 0 0 h0

children (MFNode)

LINK1 (Inline) url: [LINK1.wrl]

TrLINK2 (Transform)

rotation (SFRotation): 0 1 0 q2

translation (SFVec3f): r1 0 h1

children (MFNode)

LINK2 (Inline) url: [LINK2.wrl]

TrLINK3 (Transform)

rotation (SFRotation): 0 1 0 q3

translation (SFVec3f): 0 0 l2

children (MFNode)

LINK3 (Inline) url: [LINK3.wrl]

TrLINK4 (Transform)

rotation (SFRotation): 1 0 0 q4

translation (SFVec3f): l3 0 0

children (MFNode)

LINK4 (Inline) url: [LINK4.wrl]

TrLINK5 (Transform)

rotation (SFRotation): 0 1 0 q5

translation (SFVec3f): l4 0 0

children (MFNode)

LINK5 (Inline) url: [LINK5.wrl]

TrLINK6 (Transform)

rotation (SFRotation): 1 0 0 q6

translation (SFVec3f): l5 0 0

children (MFNode)

LINK6 (Inline) url: [LINK6.wrl]

ROOT

SIDEview (Viewpoint)

fieldOfView (SFFloat): real

orientation (SFRotation): x y z �

position (SFVec3f): x y z

description (SFString): SIDEview

FRONTview (Viewpoint)
. . .

TOPview (Viewpoint)
. . .

World (Background)

groundAngle/skyAngle (MFFloat)

groundColor/skyColor (MFColor):rgb

backUrl/bottomUrl/frontUrl/leftUrl/

rightUrl/topUrl (MFString):[face.jpg]
. . .
. . .

52 Path Modelling and 3D Robot Visualization … 897

⎡
⎢⎢⎣

cos qi −cos αi sin qi sin αi sin qi ai cos qi

sin qi cos αi cos qi −sin αi cos qi ai sin qi

0 sin αi cos αi di

0 0 0 1

⎤
⎥⎥⎦ . (52.1)

The number of variable rotations qi is six according to number of degrees of freedom
(DOF) of the considered robot. Other indicated constants h0, r1, h1, �2, �3, �4, �5,
and �6 are constants of length-geometric robot parameters such as vertical distances,
axis offsets, and lengths of robot arms.

52.4.3 Inverse Kinematics

Inverse Kinematics is necessary since input into the VR model is in rotational angles
of individual robot joints. However, robot motion is given by Cartesian coordinates
of its end effector considering user space. In this section, the principle of inverse
kinematics will only be outlined due to its many routine solutions in robotics. If the
robot IRB 140 [1] is considered, it is necessary to take into account that it has 6
DOF. They represent three Cartesian coordinates and three orientation angles. This
situation is shown in Fig. 52.4.

From a mathematical point of view, point I (axis A5), or its Cartesian coordinates,
has to be determined. It is possible due to local inverse kinematics for robot end
effector point using orientation angles and lengths of Link5,6 + tool length, i.e.
�5 + �6 + �t , as in [5]. If the coordinates of point I are determined, then there is one
triangle determined by vertices B = A2, F = A3, and I = A5. This triangle enables
us to compute angles q2 and q3 in joints A2 and A3.

g =
√

I 2
x + I 2

y − r1, f = Iz − h0 − h1, e =
√

f 2 + g2

ϑ = atan2(f, g), δ = arccos
c2 + d2 − e2

2 d c
, γ = arccos

d2 + e2 − c2

2 d e

q2 = −(ϑ + γ − π

2
), q3 = π

2
− δ. (52.2)

Then, angle q1 in joint 0 = A1 = [0, 0, 0]T can be determined from the robot top
view by means of function atan2 (arcus tangent) of y and x coordinates of point
I = A5 = [Ix , Iy, Iz]T towards the robot origin:

q1 = atan2(Iy, Ix). (52.3)

It is possible, since points 0 and I belong to the same vertical plane as well as
longitudinal central axes of Link3 and Link4. The angles q4 and q6 are closely related
and they are determined from angle q5 obtained from three input orientation angles

898 K. Belda and K. Dvořák

Fig. 52.4 2D views of robot
structure for inverse
kinematics

h0+h1

d= 2

3

q2

A

B

C

0

1

2

3 4 5
6

B

D
E

F

0

0

F

G H
I

I

J K L

L

g

f

r1

z0

z0

z0

y0

x0

e

4
5

6
c= 3 + 4

q1

q3 q4

q5

q6

q1
A

t

or respective points of robot wrist (Link4–6). Hence, obtained angles q1−6 are inputs
for MPC design as well as for the 3D Visualization.

52.5 Simulation of Robot MPC

Model predictive control (MPC) belongs among the most popular perspective
approaches to model-based control considered for application in industrial practice
[3, 6]. For the purpose of the paper, let us consider one of the usual implementation
ways. In robot motion control, MPC should generate executive control actions with
respect to required motion trajectories. They are usually represented by ordered set
of time and coordinates [4]. This way is considered in this paper.

52 Path Modelling and 3D Robot Visualization … 899

52.5.1 Model of Robot Dynamics

The used MPC design exploits the following discrete state-space model:

x̂k+1 = Ak xk + Bk uk

yk = Cxk .
(52.4)

The model (52.4) is obtained from a nonlinear differential equation of second order
ÿ = f (y, ẏ) + g(y)u, y ≡ q that is given by Lagrange equations of second type.
The nonlinear model is decomposed into a linear-like state-space model and then
discretized [6]. The Lagrange equations of second type are defined as follows:

d

dt

(
∂Ek

∂q̇

)
T

−
(

∂Ek

∂q

)
T

+
(

∂E p

∂q

)
T

= τ , (52.5)

where q, q̇ , Ek , E p, and τ are generalized coordinates and their appropriate deriva-
tives, total kinetic and potential energy, and vector of generalized force effects asso-
ciated with generalized coordinates [11].

Thus, the model (52.4) or its matrices Ak and Bk , respectively, are updated
with respect to a measured state and nonlinear robot dynamics in every time-sampling
instant before new computation of the vector of control actions uk .

52.5.2 MPC Design

MPC design consists in a minimization of the criterion with appropriate cost func-
tion [9]:

min
Uk

Jk (Ŷk+1, Uk, Wk) (52.6)

subject to: x̂k+i = A xk+i−1 + B uk+i−1

ŷk+i = Cx̂k+i ∀ i = 1, · · · , N ,

where A = A k+i−1 = A k , B = B k+i−1 = B k, ∀ i = 1, · · · , N from (52.4) are
updated for every minimization in discrete instants k, and N is a prediction hori-
zon. The cost function Jk itself is defined as follows:

Jk =
N∑

i=1

{||Qy (ŷk+i − wk+i)||22) + ||Qu uk+i−1||22}

= (Ŷk+1 − Wk+1)
T QT

Y QY (Ŷk+1 − Wk+1)

+ U T
k QT

U QU Uk, (52.7)

900 K. Belda and K. Dvořák

where Uk , Ŷk+1 and Wk+1 stand for the sequences of control actions, output predic-
tions, and references, respectively,

Uk = [uT
k , · · · , uT

k+N−1]T (52.8)

Ŷk+1 = [yT
k+1, · · · , yT

k+N]T (52.9)

Wk+1 = [wT
k+1, · · · , wT

k+N]T . (52.10)

Furthermore, QY and QU are matrices of penalization that are defined as follows:

QT
� Q� =

⎡
⎢⎣

QT
∗ Q∗ 0

. . .

0 QT
∗ Q∗

⎤
⎥⎦ , (52.11)

where the symbolic subscripts �, ∗ have the following interpretation: � ∈ {Y W, U }
and ∗ ∈ {yw, u}.

The equations of predictions express functional estimates of the output elements
in Ŷk+1 relative to searched vector of control actions Uk within the prediction horizon
N

Fk =
⎡
⎢⎣

C A
...

C AN

⎤
⎥⎦

∣∣∣∣∣∣
k

, Gk =
⎡
⎢⎣

C B · · · 0
...

. . .
...

C AN−1 B · · · C B

⎤
⎥⎦

∣∣∣∣∣∣
k

. (52.12)

Then for the nonzero matrix QU , the predictive control law can be written as fol-
lows:

uk = MUk = M(GT
p,k QT

Y QY G p,k + QT
U QU)−1

× GT
p,k QT

Y QY (Rk+1 − Fp,k xk) , (52.13)

where a rectangular matrix M is defined as follows:

M = [
Imu , 0mu , · · · , 0mu

]
. (52.14)

Thus, the matrix M selects only the appropriate control actions corresponding
to the time instant k. The obtained vector of control actions represent reference
torques expected in individual robot joints A1–A6.

52 Path Modelling and 3D Robot Visualization … 901

52.5.3 Simulation and 3D Visualization

A specific simulation can be done in MATLAB only or in MATLAB/Simulink. To
construct a VR world, it is useful to use 3D World Editor that can be reached from the
Simulink model, e.g. in the model shown in Fig. 52.5.

The mentioned model contains a block of input from the workspace, several
routing signals blocks, and block VR Sink (Simulink 3D Animation Toolbox [8]. It
is the biggest block concurrently masked by robot figure). It serves for connection
to the VR world. This is not the only way.

TrLINK1.rotation

TrLINK2.rotation

TrLINK3.rotation

TrLINK4.rotation

TrLINK5.rotation

TrLINK6.rotation
4

4

4

4

4

4

[0 0 1]
Const. cos(xyz)1

[1x3]
[1x4][1x3]

1 0

s_gain q1

[0 1 0]
Const. cos(xyz)2

[1x3]
[1x4][1x3]

-1 0

s_gain q2

[0 1 0]
Const. cos(xyz)3

[1x3]
[1x4][1x3]

-1 0

s_gain q3

[1 0 0]
Const. cos(xyz)4

[1x3]

[1x3] [1x4]

1 0

s_gain q4

[0 1 0]
Const. cos(xyz)5

[1x3]
[1x4][1x3]

-1 0

s_gain q5

[1 0 0]
Const. cos(xyz)6

[1x3]

[1x3] [1x4]

1 0

s_gain q6

6

-0.1239
0.161

0.4161
-0.2243
-0.5888
0.1875

6

0
*, 1

1

6

0
*, 1

0
*, 1

0
*, 1

0
*, 1

0
*, 1

Fig. 52.5 Simulink model with connection to VR world

902 K. Belda and K. Dvořák

Fig. 52.6 Simulator of ABB robot IRB 140 with 3D wire-frame model in MATLAB figure

Another way is to use commands from MATLAB, connecting through the men-
tioned 3D Animation Toolbox to VR world, such as

myworld = vrworld(’*.wrl’);

open(myworld);

view(myworld);
...

myworld.TrLINKi.rotation = [0 0 1 q i]; and others.

In the following figures, Figs. 52.6 and 52.7, there is an illustration of the realiza-
tion of the visualization. Figure 52.6 shows a simple 3D wire robot model constructed
by simple MATLAB elements such as lines and surfaces, whereas Fig. 52.7 shows
a fully spatial, 3D robot model consisted of individual volume parts such as robot
base (basic frame) and robot links including simple scene.

Last but not the least figure, Fig. 52.8 demonstrates results of motion control using
MPC applied to the ABB robot IRB 140 along the considered trajectory specified
in Table 52.1. There are necessary kinematic quantities such as position, velocity,
and acceleration profiles in the Cartesian coordinate space and corresponding joint
angles in the joint space (top to bottom up to the fifth row). The last, the sixth row,
shows individual control actions—torques applied to robot joints.

52 Path Modelling and 3D Robot Visualization … 903

Fig. 52.7 Simulator of ABB robot IRB 140 with 3D volume model in MATLAB figure using 3D
Animation Toolbox

Fig. 52.8 Demonstration of results of MPC motion control of ABB robot IRB 140

904 K. Belda and K. Dvořák

52.6 Conclusion

The paper introduces a promising way of linking 3D visualization with MPC design
and simulation for industrial robot control. Both used tools, NX software and MAT-
LAB/Simulink, are specialized for specific work. However, the interconnection of the
visualizing tool with the mathematical-computing environment is under continuous
effort. The proposed way indicates one possible realization of a full physically mod-
elled virtual digital factory that can offer online full digital image of the reality
including motion dynamics of robots.

In future work, we would like to focus on scene extension and collaboration of
more robotic systems to simulate not only their kinematics (usually offered) but also a
fully compliant dynamics and model-based motion control. The goal is to construct
a realistic digital factory that is able to demonstrate realistic actions and motions
of the industrial robotic systems.

References

1. ABB: ABB robot IRB140 - product manual & CAD data. online (2019), cited 2019-05-26
2. Axiom Tech: NX CAD. online (2019), cited 2019-05-26
3. Belda, K.: Nonlinear design of model predictive control adapted for industrial articulated robots.

In: Proc. of the 15th Int. Conf. on Informatics in Control, Automation and Robotics. pp. 71–80.
INSTICC, Scitepress. (2018)

4. Belda, K., Novotný, P.: Path simulator for machine tools and robots. In: Proc. of the 17th Int.
Conf. on Methods and Models in Automation and Robotics. pp. 373–378. West Pomeranian
University of Technology (2012)

5. Belda, K., Rovný, O.: Predictive control of 5 DOF robot arm of autonomous mobile robotic
system motion control employing mathematical model of the robot arm dynamics. In: Proc.
of the 21th Int. Conf. on Process Control. pp. 339–344. Slovak University of Technology in
Bratislava (2017)

6. Belda, K., Záda, V.: Predictive control for offset-free motion of industrial articulated robots.
In: Proc. of the 22nd IEEE Int. Conf. on Methods and Models in Autom. and Robotics. pp.
688–693. West Pomeranian Univ. of Technology (2017)

7. Dvořák, K.: Management of parametric CAD model by external tools. Mechanical and
Aerospace Engineering IV 390(11), 616–620 (2013)

8. MathWorks: Simulink 3D animation - user’s guide. online (2019), cited 2019-05-26
9. Ordis, A., Clarke, D.: A state-space description for gpc controllers. J. Systems SCI. 24(9),

1727–1744 (1993)
10. Ricci, F., Bedolla, J., Gomez, J., Ciabert, P.: PMI: a PLM approach for the management of

gemetrical and dimensional controls in modern industries. Computer-Aided Design and Appli-
cations 11(1), 36–43 (2014)

11. Siciliano, B., et al., L.S.: Robotics: Modelling, planning and control. Springer (2009)
12. Siemens: NX docomentation. online (2019), cited 2019-05-26
13. Zohaib, A., Asad, A.: Modeling and simulation of a lower-body wearable exoskeleton using

robotics techniques. Int. J. of Mechanical Engineering and Robotics Research 7(3), 313–318
(2018)

