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Sequential Poisson Regression in Diffusion
Networks

Kamil Dedecius and Radomı́r Žemlička

Abstract—The Poisson regression is a popular model for posi-
tive integer random variables determined by known explanatory
variables. This letter studies the problem of its collaborative
Bayesian sequential estimation under potentially slowly time-
varying regression coefficients. We assume networks where agents
share their information about the inferred quantities with ad-
jacent neighbors in order to improve the overall estimation
performance. The communication strategy is the information
diffusion, i.e., only one information exchange per time instant
is allowed.

Index Terms—Diffusion, distributed estimation, collaborative
estimation, Poisson regression.

I. INTRODUCTION

D ISTRIBUTED inference of unknown variables in net-
works of collaborating agents has become an established

discipline in the signal processing domain. It finds applications
in sensor networks, smart grids and microgrids, Internet of
Things, social networks, and other networked systems [1]–[3].

Generally, three communication and information process-
ing strategies can be distinguished: the incremental strategy,
consensus, and diffusion [4], [5]. In this letter, we focus on
the diffusion strategy, where the information exchange runs on
a single time scale and within one network hop distance [6].
Many popular sequential inference algorithms have found their
more or less modified diffusion counterparts. To name only
a few: the LMS [2], [7]–[10], RLS [6], Kalman filters [11],
[12], Bernoulli filters [13], particle filters [14]–[16], or the
quasi-Bayesian mixture estimation algorithm [17]. A unifying
Bayesian framework for diffusion inference of a wide class of
models was designed in [18] and [19].

This letter focuses on models of discrete counts used,
e.g., to describe epidemiological data, the number of stock
market transactions in finance, traffic intensities in networks
and transportation, the number of particle arrivals in physics,
or phenomena in social networks [20], [21]. Generally, high
counts can be approximated by continuous data models. How-
ever, these fail if the counts are small and include many zeros
[22]. In particular, we focus on the Poisson regression model,
propose its low-cost real-time sequential estimation to deal
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with streaming data, and devise a method for its distributed
inference in networks of collaborating agents (sensors). We
are not aware of any existing sequential distributed or non-
distributed alternative. The non-distributed Poisson models
rely on computationally intensive optimization techniques
[23], [24], complicating their use in online tasks.

We face several major difficulties. First, the sequential
estimation of the Poisson model is generally impossible due to
its functional form. We show that a way towards the solution
provides the Bayesian paradigm and a couple of approxima-
tions providing stable and analytically tractable results. There
are several novel points in the proposed algorithm. We recast
the static Bayesian Poisson regression [25] into an algorithm
capable of online estimation of potentially slowly time-varying
regression coefficients. Then, a rule for the combination of
these estimates in diffusion networks is devised.

II. SEQUENTIAL INFERENCE OF THE POISSON MODEL

We consider a discrete-time modeling of a stochastic process
{Yt; t = 1, 2, . . .} with mutually independent observations
yt ∈ N. The random variables Yt are determined by a known
regressor xt ∈ Rn, and an unknown vector of possibly slowly
time-varying regression coefficients βt ∈ Rn. The relationship
characterizes the generalized linear model (GLM) [23]

E[Yt|xt, βt] = g−1(βᵀ
t xt), (1)

where g(·) is a known link function, and the product βᵀ
t xt

is called the linear predictor. Recall, that the identity function
g(·) provides the ordinary linear regression model. In our case
of yt ∈ N, the role of the link function plays the natural
logarithm,

g(E[Yt|xt, βt]) = log(E[Yt|xt, βt]) = βᵀ
t xt, (2)

resulting in the Poisson regression model

Yt ∼ Po(λt) = Po
(
g−1(βᵀ

t xt)
)

= Po (exp (βᵀ
t xt)) . (3)

The expected value and the variance are

E[Yt|xt, βt] = var(Yt|xt, βt) = λt = exp(βᵀ
t xt). (4)

The probability density function (pdf) of the model reads

f(yt|xt, βt) =
λytt e

−λt

yt!
=
eβ

ᵀ
t xtyte− exp(βᵀ

t xt)

yt!
. (5)

Except for the linear regression model, direct Bayesian
inference of GLMs is analytically intractable due to the lack
of convenient conjugate prior distributions. The inference thus
mostly relies on MCMC methods [24], which are prohibitive
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for real-time sequential analyses. Some GLM-specific lower-
complexity workarounds were proposed, e.g., the normal
Laplacian approximation of the posterior pdf in logistic re-
gression [26], or the three-stage approximation Poisson →
loggamma → normal pdf in the static Poisson model [25].
This idea will be adopted below to propose the sequential
estimator.

A. Stabilization of variance

A frequently encountered problem of the Poisson models
evident from (4) is that the variance varies with the expected
value. Therefore, a variance-stabilizing transformation by a
convenient function h(·) may improve the estimation quality.
It is well known that the square-root transform of the Poisson
variable Yt ∼ Po(λt) yields a variable that is approximately
normal and has a constant variance, Ỹt =

√
Yt ∼ N (

√
λt,

1
4 )

[27], [28]. Although there are several other favored (and
sometimes better) transformations of the Poisson variable,
summarized, e.g., in [23] or [29], we will stick with the square
root for its general simplicity and effectiveness.

The pdf of Ỹt due to the change of variables theorem is

f(ỹt|xt, βt) = f
(
h−1(ỹt)

) ∣∣∣∣dh−1(ỹt)

dỹt

∣∣∣∣ (6)

=
λ
ỹ2t
t e
−λt

ỹ2
t !

· 2ỹt (7)

=
eβ

ᵀ
t xtỹ

2
t e− exp(βᵀ

t xt)

ỹ2
t !

· 2ỹt (8)

=
2

Γ(ỹ2
t )
eβ

ᵀ
t xtỹ

2
t e− exp(βᵀ

t xt) · 1

ỹt
, (9)

where the gamma function follows from z! = zΓ(z).
Although the variance-stabilized variable Ỹt is approxi-

mately normal, the problem of nonexistent conjugate prior
persists. Hence instead of using the normal pdf, we will stick
with the functional form (9) in the subsequent steps.

B. Approximate sequential estimation of β

Let us now devise the Bayesian sequential estimator. We
introduce the prior pdf π(βt|x0:t−1, ỹ0:t−1) where x0:t−1 =
[x0, . . . , xt−1] and ỹ0:t−1 = [ỹ0, . . . , ỹt−1]. It contains all
available statistical information about the past observations
and regressors necessary for the estimation of βt. The ini-
tial variables ỹ0 and x0 symbolize the knowledge (pseudo-
observations) available at the very beginning of the modeling,
e.g., from historical observations, or given by an expert.

The update of the prior distribution of βt by recently
observed yt and xt provides the Bayes’ theorem

π(βt|x0:t, ỹ0:t) = C · f(ỹt|xt, βt)π(βt|x0:t−1, ỹ0:t−1), (10)

where C is the normalizing constant ensuring that the resulting
left-hand side posterior function is a pdf that integrates to one.

Generally, the Bayesian update (10) does not yield posterior
distributions in closed forms. An important exception in this
respect is the case of models belonging to the exponential
family of distributions estimated with conjugate prior distri-
butions [30]. In particular, an exponential family distribution

of a random variable Ỹt with a parameter βt is characterized
by a pdf of the (non-unique) form

f(ỹt|xt, βt) = k(xt, ỹt)l(βt)e
η(βt)

ᵀT (xt,ỹt), (11)

where η(βt) is the natural parameter, i.e., a function of the
original parameter βt, and T (xt, ỹt) is a sufficient statistic that
encompasses all information necessary for the estimation of
βt. The functions k(xt, ỹt) and l(βt) are the base measure and
the normalizing function, respectively. The prior distribution
for the estimation of βt conjugate to the model (11) is
characterized by the prior hyperparameters Ξt of the same
size as T (xt, ỹt), and a scalar positive νt that is dropped if
l(βt) = 1 for all βt. Its pdf has the form

π(βt|Ξt−1, νt−1) = m(Ξt−1, νt−1)l(βt)
νt−1eη(βt)

ᵀΞt−1 ,
(12)

where m(Ξt−1, νt−1) is a known function, and l(βt) is the
same function as in (11). The Bayesian update (10) multi-
plying the model (11) with the prior pdf (12) then results
in the posterior pdf of the same functional type as the prior,
characterized by the posterior hyperparameters

Ξt = Ξt−1 + T (xt, ỹt),

νt = νt−1 + 1. (13)

We stress that this result allows for efficient sequential estima-
tion of βt, as the Bayesian update (10) is equivalent to simple
summations, and the functional form of the posterior density
is the same as that of the prior density. Therefore, the posterior
pdf can serve as the prior pdf for the next time instant.

The confrontation of the true data model (9) with the
exponential family form (11) reveals that there cannot exist
a convenient conjugate prior distribution of the form (12).
For the one-shot static Poisson regression without the variance
stabilization a workaround is suggested in [25]. It consists of
approximating the likelihood of the (time-invariant) β for all
the observed data x1:t,

f(y1:t|β, x1:t) =
∏
τ

f(yτ |β, xτ ) (14)

in the posterior distribution by a normal distribution, in the
sense proposed originally by Bartlett and Kendall [28]. Al-
though we deal with the transformed variable ỹt =

√
yt and

our aim is to update the estimate of βt sequentially with the
incoming observations, we can adopt a similar philosophy.

Let us once again focus on the Bayesian update (10).
The model (9) acts in the posterior pdf as a function of
βt with xt and ỹt fixed. It is known that the density func-
tions of a real random variable u that are proportional to
exp(uz) exp(− exp(u)) where z stands for a parameter, can
be approximated by a normal distribution N (log z, z−1), pro-
vided that z is large enough [28]. In Equation (9) with xt and
ỹt fixed, this leads to the approximation by N (log ỹ2

t , ỹ
−2
t ).

In order to compensate the approximation error under low
values of ỹt, we suggest the following moment matching-based
calibration: the bias of both the approximating mean value
and the standard deviation can be with sufficient accuracy
predicted and suppressed using the regression models with ỹt
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Fig. 1. Approximation of the true distribution of ỹt for the values 1 (top), 3
(middle), and 6 (bottom), i.e., yt = 1, 9, and 36. The solid line depicts the
true distribution, the dashed line is used for the calibrated distribution, and
the dotted line for the noncalibrated distribution. Apparently, the calibrated
approximation by N (µc, σ2

c ) has a better accuracy than N (log ỹ2t , ỹ
−2
t ).

With increasing ỹt the approximating distributions tend to the true one.

in the role of the regressand. The calibrated normal distribution
removing the bias has the mean and standard deviation

µc = log ỹ2
t −

0.5574

ỹ2
t

,

σc =
1

ỹt
+

0.0724

ỹ2
t

+
0.2121

ỹ4
t

, (15)

where the coefficients were obtained from the ordinary least
squares over the values ỹ2

t = 1, . . . , 100. Fig. 1 compares the
true distribution of ỹt, the calibrated, and noncalibrated normal
approximations. We remark that since yt ∈ N, it is possible to
use a table of precomputed values of µc and σc for low yt.

C. The posterior distribution

The posterior distribution π(βt|x0:t, ỹ0:t) in (10) now con-
sists of the normal distribution N (µc, σ

2
c ) defined by the

moments (15) and a prior distribution π(βt|x0:t−1, ỹ0:t−1).
The normal distribution belongs to the exponential family and
can be written in the form (11),

f(yt|xt, βt) =
1√

2πσ2
c,t

exp

{
− 1

2σ2
c,t

||µc,t − βᵀ
t xt||2

}

∝ exp

{
− 1

2
Tr

([
−1
βt

] [
−1
βt

]ᵀ
︸ ︷︷ ︸

η≡η(βt)

[
µc,t
xt

] [
µc,t
xt

]ᵀ
σ−2
c,t︸ ︷︷ ︸

T (xt,ỹt)

)}
,

(16)

where, for the sake of simplicity, we use a slight abuse of nota-
tion and avoid vectorizations. This reveals that the appropriate
conjugate prior distribution is the normal distribution with the
mean vector bt−1 and the covariance matrix Pt−1 with the pdf
in the compatible form

π(β|bt−1, Pt−1)

∝ exp

{
− 1

2
Tr

([
−1
β

] [
−1
β

]ᵀ
︸ ︷︷ ︸

η≡η(β)

[
bᵀt−1

I

]
P−1
t−1

[
bᵀt−1

I

]ᵀ
︸ ︷︷ ︸

Ξt−1

)}
,

(17)

where I is the n×n identity matrix. The posterior distribution
following from the Bayes’ rule (10) in terms of the update of
the prior hyperparameters (13) is given by

Ξt = Ξt−1 + T (xt, ỹt). (18)

A little algebra reveals that the posterior ‘conventional’ normal
hyperparameters are

bt = (σ−2
c,t xtx

ᵀ
t + P−1

t−1)−1(P−1
t−1b

ᵀ
t−1 + σ−2

c,t xtµc,t),

Pt = (σ−2
c,t xtx

ᵀ
t + P−1

t−1)−1. (19)

D. Time-varying βt
The case of constant model parameters is rather an ex-

ception than a rule. Although there is no explicit model
for the evolution βt−1 → βt in many situations, we still
may proceed by means of forgetting if the variations are
slow. It means heuristic discounting of potentially outdated
information about βt from the posterior distribution. The most
basic yet prevailing procedure is the exponential forgetting,
flattening the prior pdf by its exponentiation [31],

π(βt|x0:t−1, y0:t−1) = [π(βt−1|x0:t−1, y0:t−1)]α, α ∈ [0, 1].
(20)

In conjugate priors this amounts to

νt−1 ← ανt−1, Ξt−1 ← αΞt−1. (21)

For more elaborate forgetting methods, see, e.g., [32] and the
references therein.

III. DIFFUSION ESTIMATION

Let us now assume a network consisting of a set I
of agents that independently observe the processes Y

(i)
t ∼

Po(exp(βᵀ
t x

(i)
t )) where βt is global, i.e., identical for all

i ∈ I, while the observations y
(i)
t and potentially the re-

gressors x(i)
t are local. These situations occur, e.g., in particle

detection, where each agent (sensor) observes different number
y

(i)
t of particles generated by a single underlying process,

and employs a time-series model with x(i)
t consisting of past

observations. Furthermore assume that at each time instant t
the agents may perform one mutual exchange of the posterior
pdfs with all their adjacent neighbors within 1 network hop
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Fig. 2. Network topology used in the simulation.

distance. We denote by I(i) the set of i’s adjacent neighbors,
and let i ∈ I(i) too. The pdfs are fully represented by Ξ

(i)
t .

A careful inspection of the Bayesian update (13) reveals that
Ξ

(i)
t summarizes the information contained in the past suffi-

cient statistics T (x
(i)
τ , ỹ

(i)
τ ), τ = 0, . . . , t where T (x

(i)
0 , ỹ

(i)
0 )

represent the initial pseudo-observations, see Sec. II-B. The
combination of the posterior pdfs in terms of the hyperparam-
eter averaging

Ξ̄
(i)
t =

1

card(I(i))

∑
j∈I(i)

Ξ
(j)
t (22)

where card(I(i)) denotes the cardinality of I(i) thus amounts
to the uniformly weighted Bayesian update by neighbors’
observations. Moreover, from a little algebra it follows that

P̄
(i)
t =

 1

card(I(i))

∑
j∈I(i)

P
−1,(j)
t

−1

, (23)

b̄
(i)
t = P̄

(i)
t

 1

card(I(i))

∑
j∈I(i)

P
−1,(j)
t b

ᵀ,(j)
t

 , (24)

which is known as the covariance intersection. The first author
shows in [18] that this result is Kullback-Leibler-optimal.
Although (22) corresponds to uniformly weighted averaging
of neighbors’ knowledge about βt, the covariance matrices
P

(j)
t effectively reflect the uncertainty about the individual

estimates, see (24). More elaborate strategies are proposed,
e.g., in [33].

Algorithm 1 DIFFUSION POISSON REGRESSION

For each agent i ∈ I set the prior distribution N (b
(i)
0 , P

(i)
0 ).

Set the forgetting factor α. For t = 1, 2, . . . and each node
i ∈ I do:
Local estimation:

1) Gather observations x(i)
t , y

(i)
t .

2) Flatten the prior distribution, Eq. (21).
3) Update the prior hyperparameter, Eq. (18)

Combination:
1) Get posterior pdfs π(βt|b(j)t , P

(j)
t ) of neighbors j ∈ I(i).

2) Combine the posterior hyperparameters, Eq. (22), or in
terms of b(j)t and P (j)

t , Eq. (24).
3) Evaluate the point the estimate b̄(i)t and the covariance

matrix P̄ (i)
t from Ξ̄

(i)
t .
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Fig. 3. Evolution of the RMSE averaged over all network nodes.

IV. SIMULATION EXAMPLE

This example demonstrates the performance of the proposed
method. As the authors are not aware of any alternative method
for sequential modeling of counts in diffusion networks, two
scenarios are compared: (i) the ‘combination’ scenario using
Algorithm 1, and (ii) the isolated ‘no combination‘ scenario.

Fig. 2 depicts the randomly generated diffusion network of
50 nodes. They observe independently generated outcomes of
a Poisson regression process simulated with

βt =


0.7 + 0.1 · sin

(
4π · t

500

)
0.5 + 0.05 · cos

(
2π · t

500

)
−0.2

0.05 · cos
(
π · t

500

)
 , t = 1, . . . , 400,

and randomly generated regressors x(i)
t ∼ U (0, 5)4. For all

the nodes i ∈ {1, . . . , 10}, the initial prior distribution is the
normal distribution with b(i)0 = [0, 0, 0, 0]ᵀ and P (i)

0 = 100 · I
where I is the identity 4 × 4 matrix. The forgetting factor
α = 0.95. The results are averaged over 100 independent runs.

Fig. 3 depicts the root mean-squared error (RMSE) evo-
lution averaged over all nodes. The collaborative estimation
improves the estimation quality, particularly in terms of the
convergence rate. When the estimates stabilize, the RMSE
may slightly vary due to the time-varying nature of βt. The
results show that the proposed method yields good estimation
performance. Our observations also indicate that the estimates
of the time-varying βt are more stable in terms of smoothness.

V. CONCLUSION

We proposed a method for sequential distributed modeling
of counts using the Poisson model. The parameters are locally
estimated using a calibrated stabilized estimation procedure.
Then, the posterior pdfs are combined in the network. The
future work will focus on count processes with specific prop-
erties, e.g., the zero inflation or overdispersion [24], [34], and
on the full adapt-then-combine diffusion strategy [4], [5].
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[19] K. Dedecius and V. Sečkárová, “Factorized estimation of partially
shared parameters in diffusion networks,” IEEE Trans. Signal Process.,
vol. 65, no. 19, pp. 5153–5163, Oct. 2017.

[20] N. Bosowski, V. K. Ingle, and D. Manolakis, “Generalized linear models
for count time series,” in Proc. 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2017, pp.
4272–4276.

[21] L. Wang and Y. Chi, “Stochastic approximation and memory-limited
subspace tracking for Poisson streaming data,” IEEE Trans. Signal
Process., vol. 66, no. 4, pp. 1051–1064, Feb. 2018.

[22] D. Manolakis, N. Bosowski and V. K. Ingle, “Count time-series analysis:
A signal processing serspective,” IEEE Signal Process. Mag., vol. 36,
no. 3, pp. 64–81, May 2019.

[23] P. McCullagh and J. A. Nelder, Generalized Linear Models, Second
Edition, Monographs on Statistics and Applied Probability Series.
Chapman & Hall, 1989.

[24] R. H. Myers, D. C. Montgomery, G. G. Vining, and T. J. Robinson,
Generalized Linear Models, Wiley Series in Probability and Statistics.
Hoboken, NJ, USA: Wiley & Sons., Mar. 2010.

[25] G. M. El-Sayyad, “Bayesian and classical analysis of Poisson
regression,” Journal of the Royal Statistical Society: Series B
(Methodological), vol. 35, no. 3, pp. 445–451, Jul. 1973.

[26] L. Tierney and J. B. Kadane, “Accurate approximations for posterior
moments and marginal densities,” Journal of the American Statistical
Association, vol. 81, no. 393, pp. 82–86, Mar. 1986.

[27] J. H. Curtiss, “On transformations used in the analysis of variance,”
The Annals of Mathematical Statistics, vol. 14, no. 2, pp. 107–122,
Jan. 1943.

[28] M. S. Bartlett and D. G. Kendall, “The statistical analysis of
variance-heterogeneity and the logarithmic transformation,” Supplement
to the Journal of the Royal Statistical Society, vol. 8, no. 1, pp.
128–138, 1946.

[29] F. A. Haight, Handbook of the Poisson Distribution. New York: John
Wiley & Sons, 1967.

[30] H. Raiffa and R. Schlaifer, Applied Statistical Decision Theory.
Harvard University Press, Jan. 1961.

[31] V. Peterka, “Bayesian approach to system identification,” in Trends
and Progress in System Identification, P. Eykhoff, Ed. Oxford, U.K.:
Pergamon Press, 1981, pp. 239–304.

[32] K. Dedecius, I. Nagy, and M. Kárný, “Parameter tracking with partial
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