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Collaborative sequential state estimation under
unknown heterogeneous noise covariance matrices

Kamil Dedecius and Ondřej Tichý

Abstract—We study the problem of distributed sequential
estimation of common states and measurement noise covariance
matrices of hidden Markov models by networks of collaborating
nodes. We adopt a realistic assumption that the true covari-
ance matrices are possibly different (heterogeneous) across the
network. This setting is frequent in many distributed real-world
systems where the sensors (e.g., radars) are deployed in a spatially
anisotropic environment, or where the networks may consist of
sensors with different measuring principles (e.g., using different
wavelengths). Our solution is rooted in the variational Bayesian
paradigm. In order to improve the estimation performance, the
measurements and the posterior estimates are communicated
among adjacent neighbors within one network hop distance using
the information diffusion strategy. The resulting adaptive algo-
rithm selects neighbors with compatible information to prevent
degradation of estimates.

Index Terms—Diffusion network, diffusion strategy, state esti-
mation, Kalman filtering, variational Bayesian methods.

I. INTRODUCTION

D ISTRIBUTED inference of stochastic model parameters
and states in networks of collaborating nodes (agents)

has attracted tremendous interest in the last years. The vast
spectrum of possible applications ranges from sensor net-
works, target tracking systems, and social networks up to the
highly progressive phenomenon of the Internet of Things (IoT)
[1], [2].

The network-based inference algorithms may be categorized
with respect to several criteria. The mode of communication
gives rise to the consensus, incremental, and diffusion strate-
gies [3]. The incremental strategy relies on a Hamiltonian cy-
cle passing through every node of the network, through which
the individual estimates are gradually refined. The drawback
is evident: each node and link of the network is a potential
single point of failure, and recovery from failure – arranging
a new cycle – is an NP-hard problem. This is prohibitive for
larger networks with dynamic topology [4]. The consensus
and diffusion strategies enjoy attractive robustness, as each
network node collaborates with its adjacent neighbors, mostly
within one network hop distance. The consensus-based algo-
rithms mostly rely on several intermediate iterations among the
nodes, while the diffusion algorithms typically involve only
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two communication steps. In the adaptation step, each node
assimilates neighbors’ measurements into its own statistical
knowledge about the inferred variables. The combination step
then serves for the exchange and incorporation of the local
estimates. One or both of these steps may be used, in the
latter case in the adapt-then-combine (ATC) or the reversed
combine-then-adapt (CTA) order. As the ATC diffusion strat-
egy was shown to outperform the CTA strategy [3], [5], this
paper focuses on ATC. Sometimes, the nodes are allowed to
communicate with one randomly or deterministically selected
neighboring node, possibly with intermediate iterations. These
so-called gossip or random-exchange algorithms are either
included in the consensus or the diffusion strategy [6]–[8],
or perceived as a separate group [9].

If networks are used for observing and modeling stochastic
processes, we often face the issue of spatial anisotropy of
observing conditions, e.g., different noise distributions. Simi-
larly, the devices that could be deployed in such networks may
use different measuring principles which limits the degree of
collaboration among them. We focus on this kind of problems.
In particular, we consider the inference of state-space models
with unknown and possibly heterogeneous observation noise
covariances. The aim is to exploit the spatial or principal
diversity of the signals in order to improve the global network
modeling performance.

In non-distributed settings, the inference of unknown co-
variance matrices of the state-space models has a long history,
dating back to the seminal work [10]. In order to remove the
computational burden, the recent solutions are mostly based
on the variational Bayesian methods [11], and comprise the
variational Bayesian Kalman filter [12], [13] and its extensions
to the cases of unknown process noise covariance [14], [15].
To present, their distributed counterparts have been largely
based on the consensus communication strategies, e.g., [16],
[17] and the references therein. The problem of unknown
measurement noise covariances has been tackled rather spar-
ingly. The combination of the nonlinear cubature Kalman filter
integrating the variational Bayesian estimation of the global
measurement noise covariance matrix was proposed in [18].
In [19], the authors devise a distributed consensus linear filter
based on the H∞ filtering and interacting multiple model
algorithm, naturally with the advantages and drawbacks of
the underlying H∞ approach. The diffusion strategy-based
state estimation algorithms started with the basic diffusion
Kalman filter [20]. Its combination step involved only the
point estimates of the state variable, leaving the associated
covariance matrices intact. The work [21] modifies this step by
involving the covariance intersection procedure. The solution
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coincides with the special case of the sequential Bayesian
estimator [5]. Despite the multitude of algorithms focused on
advanced aspects like the communication effectiveness or ro-
bustness, the authors of the present paper are not aware of any
analytically tractable method allowing simultaneous diffusion-
based estimation of states and measurement noise covariances
in general, let alone in the mentioned heterogeneity case. In the
particle filtering realm, there exists a distributed solution [23]
providing joint state and parameter estimation with reduced
communication overhead, but it does not closely focus on
the problem of shared covariance matrices. The present paper
aims at filling the gap in the field of analytically tractable
algorithms.

To summarize, we are interested in scenarios where the
network nodes observe a stochastic process and employ state-
space models for its description. It is assumed that the nodes’
measurements are subject to noise that may statistically vary
from node to node due to their spatial locations or different
measuring principles. That is, there are clusters of agents that
are interested in estimating different parameter vectors, where
part of the vector is common to all nodes while other part
differs among clusters (for more information about inference
over clustered networks see [24]–[26]). Besides the traditional
task of sequential (online) filtration of states they face the need
for estimation of the associated measurement noise covariance
matrices, where interference among clusters may degrade
estimation quality. Inspired by the principles of the variational
Bayesian estimation in networks [22] and variational non-
distributed Kalman filtration [12], [13], we propose an efficient
algorithm for joint inference of states and covariances with
information diffusion. It is described from the perspective of
a single network node aware solely of its adjacent neighbors,
but lacking any knowledge of their compatibility regarding the
noise properties. The determination of this compatibility is a
part of the solution. The nodes do not rely on fixed network
topology. The resulting algorithm thus enables the nodes to
be correctly clustered and to run sequential inference with
improved performance through inter-cluster collaboration.

The paper is organized as follows: Section II formulates
the studied problem. Section III summarizes the Bayesian
inference theory under conjugate prior distributions that is
extensively used in the sequel. In Section IV, the novel
distributed Bayesian filter is proposed. In particular, the local
prediction step, the measurement update step with diffusion
adaptation, and the combination step fusing the estimates
are devised. Section V discusses the filter properties, the
performance is subsequently studied on simulation examples
in Section VI. Finally, Section VII concludes the work.

II. PROBLEM STATEMENT

Let us assume a network represented by a connected
undirected graph (I, E) consisting of a set of nodes I =
{1, . . . , |I|} where |I| denotes the cardinality of I. The set
of edges E defines the network topology, i.e., the commu-
nication paths among nodes. Each node i ∈ I is allowed
to communicate only with its adjacent neighbors that form
its closed neighborhood I(i) (i belongs to I(i) too). At each

discrete time instant k = 1, 2, . . ., we limit the exchange of any
available information (the measurements and/or the estimates)
between two nodes to be performed at most once. This type
of communication is known as the diffusion strategy [2], [3].

In our examined problem, the network nodes i ∈ I acquire
univariate or multivariate noisy measurements y(i)

k ∈ Rn, n ≥
1, of a hidden Markov process

xk = Akxk−1 +Bkuk + wk, (1a)

y
(i)
k = Hkxk + v

(i)
k , (1b)

where the state variable xk ∈ Rp, p ≥ 1, is common to all the
nodes, uk – if exists – is a globally known control variable,
Ak, Bk and Hk are known matrices of compatible dimensions,
and wk ∈ Rp is an independent process noise

wk ∼ N (0, Q), Q ∈ Rp×p.

The measurement noise variable v(i)
k ∈ Rn is an independent

identically distributed zero-centered variable that is potentially
heterogeneous with respect to i,

v
(i)
k ∼ N (0, R(i)), R(i) ∈ Rn×n.

The covariance matrices R(i) are unknown.
This formulation of the model (1) coincides the viewpoint

of the node i that will be followed in the sequel. The global
situation is as follows: There are several different covariance
matrices R1, . . . , RL where 1 ≤ L ≤ |I|. For each node i the
covariance matrix R(i) is equal to one of those matrices. The
nodes that share the same covariance matrix Rl, l ∈ {1, . . . , L}
are called R-compatible and constitute the set IRl ⊆ I. Since
the nodes communicate only within their closed neighbor-
hoods, we furthermore define the R-compatible neighborhood
I(i)
R that consists of those i’s neighbors j ∈ I(i) that belong

to the same IRl as i, that is, their R(j) = R(i) for all j ∈ I(i)
R .

Besides the ignorance of own R(i), the nodes are not aware
which of their neighbors are R-compatible.

The described situation, illustrated in Figure 1, is frequent
in the cases where a single phenomenon (e.g., a flying target)
with a state xk (e.g., representing its position, velocity and
acceleration) is observed by several instruments with different
measuring principles, e.g., radars with different wavelengths,
lidars etc. Then, the measurement noise distribution may
be common for the instruments using the same measuring
technology, and thus belonging to the same set IRl .

The goal is to perform online collaborative filtering of the
states xk and estimation of the local R(i). In addition to
own measurements y(i)

k , the filtering algorithm should consider
the neighbors’ measurements y(j)

k , as well as the neighbors
estimates of xk and possibly R(j). A procedure for the
identification of the R-compatible neighbors and incorporation
of the relevant information is to be devised.

III. PRELIMINARIES ON BAYESIAN INFERENCE

This section briefly summarizes the fundamentals of the
Bayesian inference with conjugate prior distributions provid-
ing posterior estimates in the closed form. The theory, although
being well-known, is worth reviewing for its extensive use in
the subsequent exposition.
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Fig. 1. Illustrative example of a diffusion network with two principally dif-
ferent instruments with two different measurement noise covariance matrices.
The red (unshaded) nodes form the R-compatible set IR1 = {1, 4, 5, 8, 11},
and the blue (shaded) nodes form IR2

= I \ I1. The closed neighborhood
of node 1 is I(1) = {1, 2, 3, 4, 5} and its R-compatible neighborhood is
I(1)R = {1, 4, 5}. However, the nodes are not aware of this configuration a
priori.

The following definition is central to the statistical esti-
mation theory, both the Bayesian and frequentists’ one. It
introduces the crucial concept of the sufficient statistic [27].

Definition 1 (Exponential family of distributions). A class
of distributions of a uni- or multivariate random variable z
parameterized by a vector θ is called the exponential family
if the probability density function of z given θ can be written
in the (non-unique) form

f(z|θ) = h(z) exp{ηᵀθTθ(z)−A(ηθ)}, (2)

where ηθ ≡ η(θ) is the natural parameter, Tθ(z) is the
sufficient statistic carrying all the information contained in
z about θ necessary for its estimation, A(ηθ) is the log-
normalizing function and h(z) is the base-measure function of
z independent of θ. The family is called canonical if ηθ = θ,
and curved if dim(ηθ) > dim(θ).

The Bayesian theory estimates θ by virtue of the prior
distribution summarizing all available knowledge about θ
before assimilation of new measurements. If this distribution
is conjugate to the model, then the assimilation results in
the analytically tractable posterior distribution of the same
functional type as the prior distribution [28]. This property
is essential for sequential estimation from streaming data. The
existence of the conjugate prior distributions is guaranteed for
the exponential family models [29].

Definition 2 (Conjugate prior distribution). A prior distri-
bution π(θ|ξ−θ , ν

−
θ ) is said to be conjugate to the model

distribution f(z|θ) belonging to the exponential family, if its
probability density function can be written in the form

π(θ|ξ−θ , ν
−
θ ) = l(θ) exp{ηᵀθ ξ

−
θ − ν

−
θ A(ηθ)}, (3)

where ηθ ≡ η(θ) is the natural parameter of f(z|θ),
A(ηθ) is the log-normalizing function of f(z|θ), dim(ξ−θ ) =
dim(Tθ(z)), and ν−θ ∈ R+. The parameters ξ−θ and ν−θ are
called the hyperparameters.

Similarly to ηθ, the prior hyperparameters ξ−θ and ν−θ are
transformed versions of the “standard” parameters of the con-

crete distributions. Sometimes, νθ is not used, or alternatively
it may be absorbed in ξθ as its element.

Lemma 1 (Bayesian update). Assume a random variable z
modeled by an exponential family distribution f(z|θ). Let
π(θ|ξ−θ , ν

−
θ ) be the prior distribution for θ that is conjugate

to the model f(z|θ). Assume m ≥ 0 realizations of z denoted
z(1), . . . , z(m). Then, the Bayesian update yields the posterior
distribution of θ given ξ+

θ , ν
+
θ and z(1), . . . , z(m) in the form

π(θ|ξ+
θ , ν

+
θ , z

(1), . . . , z(m)) ∝ π(θ|ξ−θ , ν
−
θ )

m∏
j=1

f(z(j)|θ), (4)

where the posterior hyperparameters are given by

ξ+
θ = ξ−θ +

m∑
j=1

Tθ(z
(j)),

ν+
θ = ν−θ +m.

The proof is given in Appendix A.

IV. PROPOSED DIFFUSION FILTER

The state-space model (1) can be represented in the proba-
bilistic form by the probability density functions

g(xk|xk−1) ≡ N (Akxk−1 +Bkuk, Q), (5)

fi(y
(i)
k |xk) ≡ N (Hkxk, R

(i)). (6)

Consistently with the previous section, we denote by θ(i)
k the

vector of inferred variables,

θ
(i)
k = Jxk, R(i)K ≡

[
xᵀk,
(

vec(R(i))
)ᵀ]ᵀ

, (7)

For the sake of easier reading, we will stick with the double-
bracket notation in the sequel. From the perspective of a node
i ∈ I, the Bayesian sequential estimation of θ(i)

k proceeds
with the prior distribution πi(θ

(i)
k |ỹ

(i)
k−1, ũ

(i)
k−1) where ỹ(i)

k−1 and
ũ

(i)
k−1 represent all the information about the measurements

and control variables up to time k − 1 that is available to the
ith node.

Let us focus on the evolution of the prior/posterior distri-
butions at the ith node. The key steps of virtually any variant
of the diffusion Kalman filter should be the following:

1) Local prediction step: The nodes perform the standard
prediction, i.e., transition from the last posterior distri-
bution from time k − 1 to the prior distribution at the
current time k using the state evolution equation (1a),

πi(θ
(i)
k−1|ỹ

(i)
k−1, ũ

(i)
k−1)→ πi(θ

(i)
k |ỹ

(i)
k−1, ũ

(i)
k ). (8)

2) Measurement update step: The nodes update the prior
distribution (8) by their local measurements, or by the
compatible neighbors’ measurements. The latter is called
the diffusion adaptation,

πi(θ
(i)
k |ỹ

(i)
k−1, ũ

(i)
k )→ πi(θ

(i)
k |ỹ

(i)
k , ũ

(i)
k ). (9)
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3) Combination step: The nodes share the posterior distri-
butions with their compatible neighbors. These distribu-
tions are combined in order to improve the estimation
performance,⊕

∀j∈I(i)
πj(θ

(j)
k |ỹ

(j)
k , ũ

(j)
k )→ π̄i(θ

(i)
k |Y

(i)
k , U

(i)
k ),

(10)
where

⊕
symbolizes a convenient combination operator,

Y
(i)
k and U (i)

k portray the combined measurements and
control variables, respectively. The resulting distribution
serves as the prior πi(θ

(i)
k−1|ỹ

(i)
k−1, ũ

(i)
k−1) for the next

local prediction step in (8).
These three steps will be elaborated in the sequel. Since
the Bayesian update – Lemma 1 – will be exploited in the
measurement update step, we will start with it in order to
decide the convenient form of the prior distribution, as this is
a critical point. The local prediction step and the combination
step will follow. Finally, Algorithm 1 will summarize the
initialization and the steps of the resulting diffusion filter.

A. Measurement update step

During the measurement update step, the nodes either
assimilate their own measurements,

πi(θ
(i)
k |ỹ

(i)
k , ũ

(i)
k ) ∝ fi(y(i)

k |θ
(i)
k )πi(θ

(i)
k |ỹ

(i)
k−1, ũ

(i)
k ), (11)

or the measurements of their R-compatible neighbors,

πi(θ
(i)
k |ỹ

(i)
k , ũ

(i)
k ) ∝ πi(θ(i)

k |ỹ
(i)
k−1, ũ

(i)
k )

∏
j∈I(i)R

fi(y
(j)
k |θ

(j)
k ),

(12)
where θ(j)

k = θ
(i)
k as expected. The latter version is a variant

of the Bayesian diffusion adaptation [5].
The measurement model (6) is the normal distribution

centered at Hkxk and with the node-specific covariance matrix
R(i). The probability density function at the node i is

fi(yk|θ(i)
k ) = (2π)−

n
2 |R(i)|− 1

2

× exp

{
−1

2
(y

(i)
k −Hkxk)ᵀ(R(i))−1(y

(i)
k −Hkxk)

}
.

(13)

If the unknown θ(i)
k were identically just the state variable xk,

the normal distribution

πi(xk|ỹ(i)
k−1, ũ

(i)
k ) ≡ N (x̂

(i),−
k , P

(i),−
k ) (14)

would be the convenient prior distribution for the closed-form
sequential estimation of xk according to Lemma 1 [5]. Under
θ

(i)
k = Jxk, R(i)K, the situation gets more complicated as

there is no convenient alternative. However, there is a way
around the problem. The model (1) asserts that the hidden
states xk and the measurement noise covariance matrix R(i)

are mutually independent. This allows to construct the joint
prior distribution (9) for xk and R(i) as a product of two
independent priors,

πi(θ
(i)
k |ỹ

(i)
k−1, ũ

(i)
k ) = πi(xk, R

(i)|ỹ(i)
k−1, ũ

(i)
k ) (15)

= πi(R
(i)|ỹ(i)

k−1, ũ
(i)
k )πi(xk|ỹ(i)

k−1, ũ
(i)
k ).

(16)

Still, no such conjugate prior for the joint inference of both
xk and R(i) exists. But there is a conjugate prior for xk given
known R(i), namely the normal prior distribution used in the
diffusion Kalman filter [5], and a conjugate prior for R(i) given
known xk. Both these facts allow to sequentially estimate
θ

(i)
k = Jxk, R(i)K by means of the variational message passing

(VMP) [30].
Using the VMP approach, also known as the variational

mean-field Bayesian approximation [11], we seek the best
available approximation of the posterior distribution πi(θ

(i)
k |·)

in (12) by another tractable distribution π̃i(θ
(i)
k |·). The result

should minimize the mutual Kullback-Leibler divergence

D
[
π̃i(θ

(i)
k |·)

∣∣∣∣πi(θ(i)
k |·)

]
=

∫
π̃i(θ

(i)
k |·) log

π̃i(θ
(i)
k |·)

πi(θ
(i)
k |·)

dθ
(i)
k

=
∑
j∈I(i)R

log fi(y
(j)
k |ỹ

(i)
k−1, ũ

(i)
k )+L(θ

(i)
k ).

(17)

The sum involves the distributions of y(j)
k with θ(i)

k integrated
out, hence it is fixed in the divergence. The minimization
thus involves the term L(θ

(i)
k ) called the evidence lower

bound (ELBO) or the negative variational free energy [11].
The factorization π̃i(θ

(i)
k |·) = π̃i(xk|·) π̃i(R(i)|·) and simple

rearrangements show that

L(θ
(i)
k ) =

∫
π̃i(θ

(i)
k |·) log

π̃i(θ
(i)
k |·)

pi,k

(
θ

(i)
k , {y(j)

k }j∈I(i)R

)dθ
(i)
k

=

∫
π̃i(xk|·) log

π̃i(xk|·) dxk

exp
{

ER(i)

[
log pi,k

(
θ

(i)
k , {y(j)

k }j∈I(i)R

)]}+c1

=

∫
π̃i(R

(i)|·) log
π̃i(R

(i)|·) dR(i)

exp
{

Exk
[
log pi,k

(
θ

(i)
k , {y(j)

k }j∈I(i)R

)]}+c2

(18)

where, for easier reading,

pi,k

(
θ

(i)
k , {y(j)

k }j∈I(i)R

)
=πi(θ

(i)
k |ỹ

(i)
k−1, ũ

(i)
k )

∏
j∈I(i)R

fi(y
(j)
k |θ

(j)
k ),

(19)
and c1, c2 are constants independent of xk and R(i), respec-
tively. The last two integrals in (18) are the Kullback-Leibler
divergences whose minimization yields mutually related vari-
ational distributions

π̃i(xk|ỹ(i)
k , ũ

(i)
k )∝exp

{
ER(i)

[
log pi,k

(
θ

(i)
k , {y(j)

k }j∈I(i)R

)]}
,

π̃i(R
(i)|ỹ(i)

k , ũ
(i)
k )∝exp

{
Exk
[
log pi,k

(
θ

(i)
k , {y(j)

k }j∈I(i)R

)]}
,

(20)

where the expectations are taken with respect to the
subscripted variable. If we investigate the equations and
recall that the prior distributions πi(xk|ỹ(i)

k−1, ũ
(i)
k ) and

πi(R
(i)|ỹ(i)

k−1, ũ
(i)
k ) are conjugate to the measurement model

with the other variable fixed, the measurement update step is
clearly the Bayesian update (Lemma 1), possibly with some
terms in the sufficient statistics replaced by their expectations.
The circular dependency between xk and R(i) in (20) then
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Fig. 2. Graphical model describing the measurement update step at the node
i. The state variable is modeled by the normal distribution N (x̂

(i)
k , P

(i)
k ),

and the measurement noise covariance matrix R(i) by the inverse-Wishart
distribution iW(ψ

(i)
k ,Ψ

(i)
k ) (superscripts +/− are omitted). During the

measurement update step, the measurements of the R-compatible neighbors
j ∈ I(i)R are assimilated. The chain of the variational steps starts from one
of the shaded rectangles.

calls for an iterative algorithm similar to the expectation-
maximization (EM), which is essentially a sequence of the
Bayesian updates:

1) To update π̃i(xk|ỹ(i)
k−1, ũ

(i)
k ), use the sufficient statistics

Txk(y
(i)
k ) with R(i)-related terms replaced by their ex-

pectations following from π̃i(R
(i)|ỹ(i)

k−1, ũ
(i)
k ).

2) To update π̃i(R(i)|ỹ(i)
k−1, ũ

(i)
k ), use the sufficient statis-

tics TR(j)(y
(j)
k ) with xk-related terms replaced by their

expectations following from π̃i(xk|ỹ(i)
k−1, ũ

(i)
k ).

Algorithm of this sort is guaranteed to converge [31]. The
graphical model depicted in Fig. 2 summarizes the measure-
ment update step. The details of each substep follow.

1) Estimation of xk: The variational Bayesian estimation
of xk proceeds with the model (2), or equivalently (6), where
the parameter R(i) is replaced by its point estimate in the sense
similar to the plug-in principle [32]. Only then it is possible
to reveal the prior distribution for xk that is conjugate to the
model. We rewrite the probability density function (13) to the
exponential family form corresponding to Definition 1 (for the
sake of better reading, we avoid vectorizations):

fi(yk|xk,E[R(i)])

∝exp

{
− 1

2
Tr

([
−1
xk

][
−1
xk

]ᵀ
︸ ︷︷ ︸

ηxk

[
y

(i),ᵀ
k

Hᵀ
k

]
E
[
(R(i))−1

][
y

(i),ᵀ
k

Hᵀ
k

]ᵀ
︸ ︷︷ ︸

Txk (y
(i)
k )

)}
.

(21)

The role of the conjugate prior distribution plays the normal
distribution centered at x̂(i),−

k and with the covariance matrix
P

(i),−
k ,

πi(xk|ỹ(i)
k−1, ũ

(i)
k ) ≡ N (xk|x̂(i),−

k , P
(i),−
k ). (22)

Its probability density function can be rewritten into the form
compatible to (21) prescribed by Definition 2:

πi(xk|x̂(i),−
k , P

(i),−
k ) = (2π)−

p
2 |P (i),−

k |− 1
2

× exp

{
−1

2
(x̂

(i),−
k − xk)ᵀ(P

(i),−
k )−1(x̂

(i),−
k − xk)

}
(23)

∝exp

{
−1

2
Tr

([
−1
xk

][
−1
xk

]ᵀ
︸ ︷︷ ︸

ηxk

[
(x̂

(i),−
k )ᵀ

I

]
(P

(i),−
k )−1

[
(x̂

(i),−
k )ᵀ

I

]ᵀ
︸ ︷︷ ︸

ξ
(i),−
xk,k

)}
.

(24)

The hyperparameter ν(j)
θ , Eq. (3), is not necessary for the

estimation of xk.
The measurement update of the xk-estimate by the diffusion

adaptation (12) is the Bayesian update formulated in Lemma
1. The posterior hyperparameter ξ(i),+

xk,k
is given by

ξ
(i),+
xk,k

= ξ
(i),−
xk,k

+
∏
j∈I(i)R

Txk(y
(j)
k ). (25)

The local update (11) is a special case.
In order to derive the posterior hyperparameters x(i),+

k and
P

(i),+
k we rewrite the sufficient statistic and the hyperparam-

eter into the following block-matrix form

Txk(y
(j)
k ) =

[
y

(j),ᵀ
k E

[
(R(i))−1

]
y

(j)
k y

(j),ᵀ
k E

[
(R(i))−1

]
Hk

Hᵀ
kE
[
(R(i))−1

]
y

(j)
k Hᵀ

kE
[
(R(i))−1

]
Hk

]
,

(26)

ξ
−,(i)
xkk

=

[
x̂

(i),−,ᵀ
k (P

(i),−
k )−1x̂

(i),−
k (P

(i),−
k )−1x̂

(i),−
k

(P
(i),−
k )−1x̂

(i),−
k (P

(i),−
k )−1

]
.

(27)

Then from the update (25) it immediately follows that

P
(i),+
k =

[(
P

(i),−
k

)−1

+
∣∣∣I(i)
R

∣∣∣Hᵀ
k E
[
(R(i))−1

]
Hk

]−1

, (28)

x
(i),+
k =P

(i),+
k

(P (i),−
k

)−1

x̂
(i),−
k +Hᵀ

kE
[
(R(i))−1

]∑
j∈I(i)R

y
(j)
k

,
(29)

where |I(i)
R | denotes the cardinality of the R-compatible

neighborhood of the node i. The equations are the distributed
counterparts of the standard and information Kalman filter
equations, see Appendix B.

2) Estimation of R(i): In order to reveal the functional
form of πi(R

(i)|ỹ(i)
k−1, ũ

(i)
k ), we now need to rewrite the

measurement model (13) into the form parameterized by R(i)

with all xk-related terms replaced by their expected values.
The form is

fi(yk|E[xk], R(i))

∝exp

{
− 1

2
Tr

([
(R

(i)
)−1

ln |R(i)|

]T
︸ ︷︷ ︸

η
R(i)

[
E
[
(y

(i)
k −Hkxk)(y

(i)
k −Hkxk)

]T
1

]
︸ ︷︷ ︸

T
R(i) (y

(i)
k )

)}
,

(30)
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where

E[(y
(j)
k −Hkxk)(y

(j)
k −Hkxk)ᵀ]

= (y
(j)
k −Hkx̂

(i),+
k )(y

(j)
k −Hkx̂

(i),+
k )ᵀ +HkP

(i),+
k Hᵀ

k .
(31)

The conjugate prior distribution for the inference of R(i) ∈
Rn×n is the inverse Wishart distribution iW(ψ

(i),−
k ,Ψ

(i),−
k )

with the hyperparameters ψ(i),−
k ∈ R+ and Ψ

(i),−
k ∈ Rn×n,

and the probability density function

πi(R
(i)|ψ(i),−

k ,Ψ
(i),−
k ) =

|Ψ(i),−
k |

ψ
(i),−
k
2

2
nψ

(i),−
k
2 Γn

(
ψ

(i),−
k

2

)
× |R(i)|−

ψ
(i),−
k

+n+1

2 exp

{
−1

2
Tr
(

Ψ
(i),−
k (R(i),−)−1

)}
∝

{
− 1

2
Tr

([
R

(i)−1

ln |R(i)|

]ᵀ
︸ ︷︷ ︸

η
R(i)

[
Ψ

(i),−
k

ψ
(i),−
k + n+ 1

]
︸ ︷︷ ︸

ξ
(i),−
R(i),k

)}
, (32)

where Γn(·) is the multivariate gamma function.
The variational measurement update with diffusion adapta-

tion then proceeds with the sufficient statistics TR(j)(y
(j)
k ) and

the prior hyperparameters ξ(i),−
R(i) ,

ξ
(i),+

R(i),k
= ξ

(i),−
R(i),k

+
∑
j∈I(i)R

TR(j)(y
(j)
k ), (33)

where

TR(j)(y
(j)
k ) =

[
E
[
(y

(j)
k −Hkxk)(y

(j)
k −Hkxk)ᵀ

]
1

]
, (34)

ξ
(i),−
R(i),k

=

[
Ψ

(i),−
k

ψ
(i),−
k + n+ 1

]
. (35)

The posterior inverse-Wishart hyperparameters Ψ
(i),+
k and

ψ
(i),+
k thus read

Ψ
(i),+
k = Ψ

(i),−
k + |I(i)

R |HkP
(i),+
k Hᵀ

k , (36)

+
∑
j∈I(i)R

(y
(j)
k −Hkx̂

(i),+
k )(y

(j)
k −Hkx̂

(i),+
k )ᵀ

ψ
(i),+
k = ψ

(i),−
k + |I(i)

R |. (37)

Finally, the posterior expectations of R(i) and (R(i))−1 are

E[R(i)] = (ψ
(i),+
k − n− 1)−1Ψ

(i),+
k , (38)

E

[(
R(i)

)−1
]

= ψ
(i),+
k

(
Ψ

(i),+
k

)−1

, (39)

respectively. We emphasize that the estimation of xk in Section
IV-A1 requires the latter one. A frequent mistake in the
literature dealing with the estimation of covariance matrices
(say R) is assuming that E[R−1] coincides with (E[R])−1,
which is incorrect as the inverse is not a linear transformation.
However, the hyperparameter ψ·k is virtually a counter of the
number of data, hence (E[R])−1 tends relatively quickly to
E[R−1] with increasing k.

3) Summary of the measurement update step with diffusion
adaptation: The variational inference-based measurement up-
date step has an iterative character schematically depicted in
Fig. 2. It consists of the following routines, described from
the perspective of the node i:

(i) For each neighbor j ∈ I(i)
R , prepare the sufficient

statistic Txk(y
(j)
k ) – Equation (26) – with the point

estimate E[(R(i))−1] obtained from the inverse-Wishart
distribution according to (39).

(ii) Update the hyperparameter ξ(i),−
xk,k

defined by (27) by
its summation with the sufficient statistics from the
previous step according to (25). The result is the inter-
mediate variational distribution N (x

(i),+
k , P

(i),+
k ) with

hyperparameters given by (28) and (29), respectively.
(iii) Using the results of the previous step, prepare the

sufficient statistic TR(j)(y
(j)
k ) – Formula (34).

(iv) Update the hyperparameter ξ(i),−
R(i) defined by (35) by

its summation with the sufficient statistics from the
previous step according to (33). This results in the
intermediate variational distribution iW(ψ

(i),+
k ,Ψ

(i),+
k )

with the expected values (38) and (39), respectively.
(v) Repeat the steps (i)–(iv) for the preset number of vari-

ational iterations.
If the diffusion adaptation is not used, the nodes assimilate
only their local measurements.

B. Local prediction step

The local prediction step (8) performs the forward shift
xk−1 → xk according to the state-evolution model (1a).
Since the estimate of xk−1 represents the marginal distribution
π(xk−1|ỹ(i)

k−1, ũ
(i)
k−1), the local prediction step amounts to

π(xk|ỹ(i)
k−1, ũ

(i)
k )=

∫
g(xk|xk−1,uk)︸ ︷︷ ︸

N (Akxk−1+Bkuk,Qk)

πi(xk−1|ỹ(i)
k−1, ũ

(i)
k−1)︸ ︷︷ ︸

N (x
(i),+
k−1 ,P

(i),+
k−1 )

dxk−1.

(40)
This straightforwardly yields the normal distribution with the
transformed mean and covariance matrix

x̂
(i),−
k = Akx̂

(i),+
k−1 +Bkuk,

P
(i),−
k = AkP

(i),+
k−1 Aᵀ

k +Qk. (41)

The observation noise covariance matrix R(i) is constant,
however, due to the distributed nature of its estimation, it may
be advantageous to slightly increase the uncertainty about the
estimate in order to suppress any accidentally incorporated in-
compatible information. We suggest to exploit the exponential
forgetting [33],

πi(R
(i)|ỹ(i)

k−1, ũ
(i)
k ) =

[
πi(R

(i)|ỹ(i)
k−1, ũ

(i)
k−1)︸ ︷︷ ︸

iW(ψ
(i),+
k−1 ,Ψ

(i),+
k−1 )

]λ
, (42)

where λ ∈ [0, 1] is the forgetting factor, usually not lower than
0.95. This procedure results in

ξ
(i),−
R(i),k

=

[
Ψ

(i),−
k

ψ
(i),−
k + n+ 1

]
= λ

[
Ψ

(i),+
k−1

ψ
(i),+
k−1 + n+ 1

]
, (43)
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y
(j)
k

xk R(i)

x̂
(i)
k

P
(i)
k

Ψ
(i)
k

ψ
(i)
k

Combined
for ∀j ∈ I(i)

|I(i)R | times

Combined
for ∀j ∈ I(i)R

Fig. 3. Graphical model of the proposed filter from the perspective of a node
i. The plate of y(j)k carries the measurements of the R-compatible neighbors.
They are assimilated in the adaptation step. xk is a global variable and the
local parameters x̂(i)k and P (i)

k serve for its estimation. R(i) is common only
to neighbors I(i)R ⊆ I(i). Ψ

(i)
k and ψ(i)

k serve for its estimation. While the
hyperparameters for the global xk are combined with all the neighbors j ∈
I(i), the hyperparameters for R(i) are combined only with the R-compatible
neighbors.

from which it is easy to identify the ‘predicted‘ hyperparam-
eters Ψ

(i),−
k and ψ(i),−

k .

C. Combination step
During the measurement update step each network node i ∈
I assimilates measurements y(j)

k provided by its R-compatible
neighbors j ∈ I(i)

R . This gradually corrects the local statistical
knowledge about the inferred variable θ

(i)
k = Jxk, R(i)K

summarized by the posterior distribution π̃i(θ
(i)
k |ỹ

(i)
k , ũ

(i)
k ).

The second opportunity to refine this knowledge is to take
the neighbors’ posterior distributions π̃j(θ

(i)
k |ỹ

(j)
k , ũ

(j)
k ) into

account. This could effectively bring more measurements into
i’s knowledge. Moreover, as xk is global and independent of
R(i), and both variables are represented by separate probability
density functions, we could incorporate the information about
xk provided by the possibly larger neighborhood I(i). Figure
3 presents the resulting graphical model.

In order to derive a Bayes-compatible combination step, let
us review and modify the Bayes’ update – Lemma 1. For
simplicity, assume now that the parameter θ is common, i.e.,
all the nodes are compatible, and posses the same prior prob-
ability density πi(θ|ξ(i),−

θ , ν
(i),−
θ ). The geometrically averaged

update in the form

πi(θ|ξ(i),+
θ , ν

(i),+
θ ) ∝ πi(θ|ξ(i),−

θ , ν
(i),−
θ )

∏
j∈I(i)

[f(z(j)|θ)]1/|I
(i)|

(44)

then virtually amounts to an arithmetically averaged measure-
ment update:

ξ
(i),+
θ = ξ

(i),−
θ +

1

|I(i)|
∑
j∈I(i)

Tθ(z
(j)),

ν
(i),+
θ = ν

(i),−
θ + 1.

The result is hence the same as if we combine only the
posterior distributions (without the diffusion adaptation),

πi(θ|ξ(i),+
θ , ν

(i),+
θ )∝

∏
j∈I(i)

[
πj(θ|ξ(i),−

θ , ν
(i),−
θ )f(z(j)|θ)

]1/|I(i)|
,

(45)

that is,

ξ̄
(i),+
θ =

1

|I(i)|
∑
j∈I(i)

ξ
(j),+
θ ,

ν̄
(i),+
θ =

1

|I(i)|
∑
j∈I(i)

ν
(j),+
θ , (46)

where the bar symbol is used for elements after the com-
bination step. Now, if the neighbors incorporated only i’s
measurement, i.e., z(j) = z(i) for all j ∈ I(i), this combination
rule has an information averaging property, which means that
it is repeated-measurement-safe. Obviously, this property is
valid if the prior distributions are not identical and if the
diffusion adaptation is used. The preservation of the functional
form of distribution is an attractive property allowing to
reuse the combined posterior distribution as the prior at the
subsequent time step k+ 1. In [5] an alternative derivation of
the combination rule (46) is presented. It assumes a Kullback-
Leibler-optimal fusion.

The combination of the xk-estimates can be performed over
the whole neighborhood, as the state variable is global,

ξ̄
(i),+
xk,k

=
1

|I(i)|
∑
j∈I(i)

ξ
(j)
xk,k

. (47)

An inspection of ξ(i),+
xk,k

in (27) reveals that the mean and the
covariance of the resulting normal distribution are

P̄
(i),+
k =

 1

|I(i)|
∑
j∈I(i)

(
P

(j),+
k

)−1

−1

,

¯̂x
(i),+
k = P̄

(i),+
k

 1

|I(i)|
∑
j∈I(i)

(
P

(j),+
k

)−1

x̂
(i),+
k

 . (48)

We remark that this result is equivalently the covariance inter-
section [34]. The above-given reasoning sheds an alternative
view on it.

The estimates of R(i) can be combined only within the R-
compatible neighborhoods. The rule (46) yields

ξ̄
(i),+

R(i),k
=

1

|I(i)
R |

∑
j∈I(i)R

ξ
(j),+

R(j),k
. (49)

From the definition of ξ(i),+

R(i),k
– Equation (35) – it easily

follows that the combined inverse-Wishart distribution is char-
acterized by the hyperparameters

Ψ̄
(i),+
k =

1

|I(i)
R |

∑
j∈I(i)R

Ψ
(i),+
k ,

ψ̄
(i),+
k =

1

|I(i)
R |

∑
j∈I(i)R

ψ
(i),+
k . (50)

The resulting distribution enters the local prediction step
(Section IV-B) as the prior for R(i) at the time instant k + 1.

The proposed combination rule coincides with the philos-
ophy ‘let data speak for themselves’ [33] in the sense that
the impact of each density is weighted by the amount of
its associated uncertainty, c.f. formula (48), and no external
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information enters the combination procedure. Naturally, the
user may want to perform weighted averaging in place of the
uniform averaging (46). In [5], a general Bayesian procedure
for weighted combination along with the optimization of the
combining weights is proposed that may be adopted here.

D. Identification of compatible neighbors
While the state variable xk is global, i.e., common for

all network nodes, the (normal) measurement noise v
(i)
k is

generally heterogeneous. Its statistical properties are common
only to the R-compatible nodes, e.g., with the same measuring
principles, or close (geo)spatial locations. This complicates
both the adaptation step, where the nodes may incorporate
only the measurements of the R-compatible neighbors with
the same observation model (1b), and the combination step,
which may enter only the posterior distributions of R(i) of
the R-compatible neighbors. A reliable identification of these
neighbors is hence a task of paramount importance.

In order to identify the R-compatible neighbors, we propose
to examine the similarity of the point estimates of R(i). This
strategy is very robust and allows to fine-tune the bounds of
compatibility. There are several measures of similarity of two
covariance matrices, e.g., based on the Mahalanobis distance
[35], comparison of eigenstructures [36]–[39], or the family
of the logarithm-determinant divergences excellently reviewed
and extended in [40]. We suggest to stick with the Jensen-
Bregman divergence [40]–[42] for its low computational de-
mands and attractive theoretical properties. For two covariance
matrices R1, R2 it is defined by

d(R1, R2) = log det

(
R1 +R2

2

)
− 1

2
log det(R1R2). (51)

The Jensen-Bregman divergence has very attractive properties,
the three most useful for our task are [42]:

1) Nonnegativity: d(R1, R2) ≥ 0 with equality if and only
if R1 = R2.

2) Symmetry: d(R1, R2) = d(R2, R1).
3) Affine invariance – for two compatible matrices A,B,

it holds d(AR1B,AR2B) = d(R1, R2).
The following example demonstrates how to find the bound

for the determination of the R-compatible neighbors based on
the (dis)similarity of the diagonal covariance matrices. In the
case of non-diagonal matrices, the reasoning needs to involve
certain heuristic.

Example: Assume a fixed node i ∈ I with a diagonal
covariance matrix R(i) ∈ Rn×n. We aim at the construction of
the R-compatible neighborhood consisting of those neighbors
j ∈ I(i), whose estimates of the covariance matrices R(j)

are closer to R(i) than a2R(i), where a is some positive real
number. From (51) it follows that the bound of the Jensen-
Bregman divergence is given by

d(R(i), a2R(i)) = log

∣∣∣∣R(i) + a2R(i)

2

∣∣∣∣− 1

2
log |R(i) · a2R(i)|

= log

∣∣∣∣ (a2 + 1)R(i)

2

∣∣∣∣− 1

2
log |a2(R(i))2|

= log

(
a2 + 1

2a

)n
= δ. (52)

The set of R-compatible neighbors is then

I(i)
R = {j ∈ I(i) : d(R(i), R(j)) ≤ δ}. (53)

Naturally, we employ the estimates of the corresponding
covariance matrices.

Algorithm 1 summarizes the resulting diffusion filter.

Algorithm 1 STATE FILTERING WITH INFORMATION DIFFU-
SION UNDER HETEROGENEOUS NOISE
At each node i ∈ I set the prior densities

πi(xk, R
(i)|ỹ(i)

0 , ũ
(i)
0 ) = πi(xk|ỹ(i)

0 , ũ
(i)
0 )πi(R

(i)|ỹ(i)
0 , ũ

(i)
0 )

in the form of
• the normal distribution

πi(xk|ỹ(i)
0 , ũ

(i)
0 ) = N (x̂

(i),+
0 , P

(i),+
0 ),

• the inverse-Wishart distribution

πi(R
(i)ỹ

(i)
0 , ũ

(i)
0 ) = iW(ψ

(i),+
0 ,Ψ

(i),+
0 ).

Initialize the sets of R-compatible neighbors I(i)
R ≡ {i}. Set

the forgetting factor λ ∈ [0, 1] and the number of variational
Bayes iterations V . Set the boundary distance δ > 0 for the
identification of the R-compatible neighbors.

For k = 1, 2, . . . and each node i do:
Local prediction step:

1) Predict x̂(i),−
k and P (i),−

k , Equation (41).
2) Predict ξ(i),−

R(i),k
, Equation (43)

Measurement update step with diffusion adaptation:
1) Acquire measurements y(j)

k of neighbors j ∈ I(i)
R .

2) For v = 1, . . . , V do:
i) Prepare the suff. statistics Txk(y

(j)
k ), Eq. (26),

ii) Update ξ(i)
xk,k

, Eq. (25),
iii) Prepare the suff. statistic TR(i)(y

(j)
k ), Eq. (34),

iv) Update ξ(i)

R(i),k
, Eq. (33).

Combination step:
1) Get the posterior probability density functions of neigh-

bors j ∈ I(i).
2) Combine the posterior densities for xk, Eq. (47) or (48).
3) Calculate the point estimates of R(j), Eq. (38), and

determine I(i)
R , Eq. (53).

4) Combine the posterior densities for R(i), Eq. (49) or
(50).

V. DISCUSSION OF THE FILTER PROPERTIES

It is well known that under mild conditions the Bayesian
posterior estimates are consistent, i.e., they converge to the
true parameter with the increasing number of measurements
[43]. Simultaneously, the posterior consistency guarantees that
the incoming observations have to gradually dominate the role
of the prior distribution in inference. Albeit this topic may be
of a considerable interest, it is far behind the scope of the
paper and the reader is referred, e.g., to [44]–[46] and the
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references therein. We can stick with the widely recognized
notion of the Bayesian information processing optimality.

While the idea of combining the posterior estimates of R(i)

within the R-compatible neighborhood is clear, a question
may arise whether the combination of all neighbors’ posterior
distributions of xk does not adversely affect its estimation per-
formance. The answer lies in the asymptotic properties of the
Bayesian inference: with increasing number of observations,
the posterior estimates converge to the true parameter, in our
case to the xk global for the whole network. Furthermore,
the posterior estimate of xk at each node i is inherently
connected with the covariance matrix P

(i),+
k that quantifies

the amount of uncertainty connected with it. The source of
this uncertainty is the combination of the initial uncertainty
at k = 0 that vanishes with time, and the uncertainty due to
the measurement noise, see Equation (28). The combination
rule (48) performs penalization of the estimates with respect to
this uncertainty, suppressing the influence of the less credible
estimates.

The potential difficulty connected with the proposed method
lies in the variational Bayesian procedure present in the
measurement update step. The statistical properties of the
variational procedures are not well understood. Their thor-
ough analyses are usually technical and mostly single-problem
oriented. A generalization in this respect provides the local
variational approximation: the variational Bayes for the latent
models can be interpreted as its application [47].

Let us review the theoretical drawbacks of the variational
Bayesian methods discussed in [48] and see, how the proposed
algorithm counteracts them:

1) The variational methods do not provide guarantees of
producing (asymptotically) exact posterior distributions,
they only seek for distributions closest to the target
with respect to the optimization criterion (the Kullback-
Leibler divergence). In particular, the sought distribution
is located at the mode (or one of them). This is not
a considerable problem in our task as all the involved
distributions are unimodal.

2) The variational inference releases statistical dependence
among inferred quantities in order to be analytically
tractable, hence it cannot capture their correlations. For-
tunately, in our case the elements of θ(i)

k are statistically
independent by nature, see Section IV-A.

3) The variational inference underestimates the posterior
(co)variances. In the proposed algorithm, the local
prediction step counteracts this issue by inflating the
covariance of x(i),−

k by means of the Kalman prediction
step, as well as the variance of the R(i) estimate by
forgetting.

The combination procedure devised in Section IV-C is shown
to be Bayes-compatible and only sensitive to an appropriate
determination of the R-compatible neighborhood. A conserva-
tive setting of the bound δ (Section IV-D) effectively prevents
the incompatible nodes from joining the neighborhood. More-
over, even if the value of δ becomes prohibitive, the nodes
still process own information, see the simulation examples in
Section VI.

TABLE I
SUMMARY OF DOWNLINK COMMUNICATION FROM THE VIEWPOINT OF
NODE i: THE NUMBER OF NEIGHBORS INVOLVED IN COMMUNICATION,

SHARED VARIABLES AND THEIR SIZES, AND THE TOTAL DOWNLINK
COMMUNICATION COSTS.

Adaptation Combination πj(xk|·) Combination πj(R(j)|·)

no. of
neighbors

|I(i)R |−1 |I(i)|−1 |I(i)|−1

shared
variables

y
(j)
k x̂

(j),+
k P

(j),+
k Ψ

(j),+
k ψ

(j),+
k

var. size n p p× p n× n 1
comm.
cost

(|I(i)R |−1)n (|I(i)|−1)p (|I(i)|−1)

× p(p+1)
2

(|I(i)|−1)

×n(n+1)
2

(|I(i)|−1)

A pertinent question is whether the filter requires the
observation matrices Hk to be equal for all the network nodes.
The answer is negative as long as these H

(i)
k would refer

to the same (global) state variable xk. The local observation
matrices H

(i)
k would simply replace the global Hk in the

sufficient statistics (26) and (34). This would have only a minor
impact on the subsequent equations. Namely, the summation
symbol would replace the multiplier |I(i)

R | in (28) and (36),
and the summation symbol in (29) would move before H(i)

k .
This immediately opens the way towards nonlinear filters with
additive normal noise, where the respective matrices arise from
the Taylor-type linearizations. Due to the limited extent of the
paper we leave this topic for future research.

The communication costs – the number of real numbers
that need to be obtained from the neighbors of a node i at
each time step k – is summarized in Table I. There is a huge
potential for reduction based on the particular application, e.g.,
by scheduling the combination steps.

VI. EXAMPLES

The performance of the proposed method was assessed
in the following two examples. The first example assumes
common states xk and common noise covariance matrix
R(i) = R for all i ∈ I. The aim is to prove that the method
provides a better estimation quality than the noncooperative
scenario where the nodes do not collaborate at all, and that the
quality is close to the case where a fusion center processes all
available information. The second example assumes common
states xk, but two different measurement covariance matrices
dividing I into two disjoint R-compatible sets IR1

and IR2
.

The nodes are randomly assigned to these sets, however, they
have no knowledge of this partitioning nor compatibility. This
simulates situations where two different instruments are used
to measure the same phenomenon, and the nodes are not
aware of any mutual compatibility. The goal is to show that
collaboration with identified compatible neighbors leads to a
significant improvement of the estimation performance.

The results of each example are averaged over 100 indepen-
dent runs, i.e., over 100 completely different simulated data.

In both examples the data represent 1000 samples of a
simulated 2D trajectory. The state-space model has the form

xk = Axk−1 + wk, (54)

y
(i)
k = Hxk + v

(i)
k , (55)
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where xk ∈ R4 is the unknown state vector of location
coordinates x1,k and x2,k, and associated velocities x3,k and
x4,k, x0 = [0, 0, 0, 0]ᵀ. The measurement vector of observed
coordinates is yk ∈ R2. The matrices

A =


1 0 ∆k 0
0 1 0 ∆k

0 0 1 0
0 0 0 1

 , H =

[
1 0 0 0
0 1 0 0

]
, (56)

where the time difference ∆k = 1. The independent identically
distributed noise variable wk ∼ N (0, Q) with the covariance
matrix

Q =
1

2


∆3
k

3 0
∆2
k

2 0

0
∆3
k

3 0
∆2
k

2
∆2
k

2 0 ∆k 0

0
∆2
k

2 0 ∆k

 . (57)

The measurement noise v(i)
k ∼ N (0, R(i)) is independent and

identically distributed. Its covariance matrices are defined in
the examples. Fig. 4 depicts one of generated trajectories. The
true trajectory is common, while the measurements are node-
specific.

The network consists of |I| = 15 nodes. Its topology is
depicted in Fig. 5. All network nodes have the same initial
prior distributions. Namely, the prior distribution for R(i) is
the inverse-Wishart distribution iW(4, 100·I[2×2]), the normal

prior distribution for xk is zero-centered and with the covari-
ance matrix 100 · I[4×4] where I is the identity matrix. The
forgetting factor for the estimation of R(i) is 0.99. At each time
k, V = 5 iterations of the variational algorithm are run. The
neighbors are declared to have the same measurement noise
covariance if the Jensen-Bregman divergence of the estimates
is less than 0.005. From (52) it follows that this value is very
conservative. Under collaboration, the nodes may share the
posterior distributions of the state xk and, after the detection
of compatible neighbors, the posterior distributions of R(i).
In the adapt-then-combine (ATC) algorithm, the compatible
nodes share their raw measurements too.

We emphasize that the model is the constant velocity model,
where the velocity is driven (and hence modeled) solely by the
additive noise term. Therefore, we focus on the estimates of
the location coordinates x1,k and x2,k only.

A. Example 1: Common xk and R(i) = R for all nodes

The first example demonstrates the ability of the proposed
method to gradually detect and collaborate with compatible
neighboring nodes. In this case, the whole network shares the
same model with the measurement noise covariance matrix
R = 402 · I2×2. Four scenarios are compared: (i) NOCOOP,
where the nodes do not cooperate at all and evaluate their esti-
mates based on own measurements, (ii) C – the combination-
only scenario, i.e., the reduced ATC scenario where the nodes
do not share the measurements but only the posterior estimates,
(iii) ATC – the adapt-then-combine strategy, where the com-
patible nodes share the posterior estimates and measurements,
and finally (iv) FC, the fusion center scenario where a single
node processes all available information.

Figures 6 and 7 depict the RMSE evolution of the estimates
of the states x1,k and x2,k, and the measurement noise co-
variance matrix R, respectively. The values are averaged over
the network. The proposed algorithm provides the estimation
quality of xk between the non-cooperative scenario and the
FC scenario. The estimation of R yields – particularly in
the ATC scenario – the estimation quality very close to the
fusion center (whose convergence is naturally much faster).
In both cases the two-stage ATC algorithm performs slightly
better than the combination-only (C) algorithm, of course at
the price of higher computational and communication burden.
To summarize, the nodes progressively detected the neighbors
with a compatible information and started to collaborate with
them, which resulted in an improvement of the estimation
quality.

Finally, we compare the state estimation performance with
the generic diffusion Kalman filter (denoted by diffKF) re-
quiring known measurement covariance matrices [5], [21]. It
exploits the adapt-than-combine strategy. Instead of plotting its
performance in Figure 6, the results are compared only to the
proposed ATC filter in Figure 8, because after approximately
150 steps the filters attain very similar average RMSE (only
500 time steps are depicted to show the difference in detail).
We attribute the initial dissimilarity to the period where the
proposed filter had insufficient knowledge of the (estimated)
measurement noise covariance matrix.
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Fig. 6. Decimal logarithm of average RMSE of state estimates (Example 1).
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Fig. 7. Decimal logarithm of average RMSE of measurements noise covari-
ance estimates (Example 1).

B. Example 2: Common xk, heterogeneous R(i)s

The second example demonstrates the case of heterogeneous
measurement noise covariances. The network of 15 nodes (Fig.
5) observes the trajectory corrupted by a zero-centered normal
noise with the covariance matrix either R1 = 302I2×2 or
R2 = 402I2×2, respectively. In the 100 experiment runs, the
covariance matrices are randomly and with equal probabilities
assigned to individual nodes during the data simulation stage.
In order to initiate collaboration, the nodes have to identify
their R-compatible neighbors first.

Three scenarios are studied: (i) NOCOOP, where the nodes
do not collaborate at all and evaluate their estimates solely
from locally measured data, (ii) C – the combination-only
scenario where the nodes no not share their measurements but
only the posterior distributions, and (iii) ATC, where both the
adaptation and combination steps are used. The fusion center
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Fig. 8. Decimal logarithm of average RMSE of state estimates (Example 1).
Comparison with the diffusion Kalman filter [5], [21], denoted by ‘diffKF’.
Only the first 500 steps are depicted.

scenario is not studied, because the underlying estimation
algorithm is not directly suitable for the mixture cases.

The RMSE evolutions averaged over 100 independent simu-
lation runs are depicted in Figures 9 and 10 for the estimates of
both x1,k and x2,k, and R(i), respectively. They are consistent
with the previous example – as the nodes start to collaborate,
their estimation quality improves. The ATC algorithm where
both the measurements and posterior estimates are shared
performs better than the combination-only (C) scenario, of
course at the price of slightly higher communication overhead.

VII. CONCLUSION

In this paper we proposed a new algorithm for sequential
(online) distributed estimation of the state-space models with
unknown and heterogeneous measurement noise covariance
matrices. The algorithm assumes that the states are common to
all network nodes and their estimates can be directly shared,
while the covariances may differ. The nodes are not aware of
the global situation. After the detection of neighbors with suf-
ficiently similar covariance estimates, the relevant information
– covariance estimates and possibly the raw measurements –
are incorporated by the nodes into their local knowledge about
the inferred variables. The algorithm is suitable for the linear
state-space models, but the principles equivalently apply to the
nonlinear models with a Taylor-type linearization. The future
work should focus on filtration under unknown hidden process
noise and under time-varying covariance matrices.

APPENDIX A
PROOF OF LEMMA 1

Assume that the model of z is an exponential family
distribution (Def. 1) and the conjugate prior (Def. 2) is used
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Fig. 9. Decimal logarithm of average RMSE of state estimates (Example 2).
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for the estimation of its parameters. By Lemma 1,

π(θ|ξ+
θ , ν

+
θ ) ∝ π(θ|ξ−θ , ν

−
θ )

m∏
j=1

f(z(j)|θ)

∝ exp{ηᵀθ ξ
−
θ − ν

−
θA(ηθ)}

m∏
j=1

exp{ηᵀθTθ(z
(j))−A(ηθ)}

∝ exp

ηᵀθ
ξ−θ +

m∑
j=1

Tθ(z
(j))

− (ν−θ +m)A(ηθ)


∝ exp{ηᵀθ ξ

+
θ − ν

+
θ A(ηθ)},

where

ξ+
θ = ξ−θ +

m∑
j=1

Tθ(z
(j)),

ν+
θ = ν−θ +m.

The functional form of the posterior is thus the same as the
prior distribution, and the subsequent normalization provides
the proper posterior probability density function.

APPENDIX B
ALTERNATIVE FORMULATION OF x

(i),−
k UPDATE STEP

This appendix formulates the Kalman update of x(i),−
k –

Formulas (28) and (29) – in alternative forms involving the
Kalman gain.

First, let us focus on the covariance update (28) and rewrite
it using the celebrated matrix inversion lemma:

P
(i),+
k =

[(
P

(i),−
k

)−1

+
∣∣∣I(i)
R

∣∣∣Hᵀ
k E
[
(R(i))−1

]
Hk

]−1

(58)

= P
(i),−
k − |I(i)

R |P
(i),−
k Hᵀ

k

×
[
|I(i)
R |HkP

(i),−
k Hᵀ

k + E
[
(R(i))−1

]−1
]−1

HkP
(i),−
k

=
[
I − |I(i)

R |K
(i)
k Hk

]
P

(i),−
k , (59)

where |I(i)
R | denotes the cardinality of the R-compatible neigh-

borhood of the node i, I is the identity matrix of compatible
size, and

K
(i)
k = P

(i),−
k Hᵀ

k

[
|I(i)
R |HkP

(i),−
k Hᵀ

k+E
[
(R(i))−1

]−1
]−1

(60)

is the Kalman gain under update by multiple measurements. In
order to obtain its alternative formulation, we premultiply it on

the right-hand side by P (i),+
k

(
P

(i),+
k

)−1

which is equal to the

identity matrix, substitute the inverse of (58) for
(
P

(i),+
k

)−1

,
and rearrange terms:

K
(i)
k = P

(i),+
k

(
P

(i),+
k

)−1

K
(i)
k

= P
(i),+
k

[(
P

(i),−
k

)−1

+
∣∣∣I(i)
R

∣∣∣Hᵀ
k E
[
(R(i))−1

]
Hk

]
× P (i),−

k Hᵀ
k

[
|I(i)
R |HkP

(i),−
k Hᵀ

k+E
[
(R(i))−1

]−1
]−1

= P
(i),+
k Hᵀ

k

[
I+
∣∣∣I(i)
R

∣∣∣E[(R(i))−1
]
HkP

(i),−
k Hᵀ

k

]
×
[
|I(i)
R |HkP

(i),−
k Hᵀ

k+E
[
(R(i))−1

]−1
]−1

. (61)

Now, we bring the expectation out to the left side, and the
formula simplifies as follows:

K
(i)
k = P

(i),+
k Hᵀ

k E
[
(R(i))−1

]
×
[
E
[
(R(i))−1

]−1

+
∣∣∣I(i)
R

∣∣∣HkP
(i),−
k Hᵀ

k

]
×
[
E
[
(R(i))−1

]−1

+ |I(i)
R |HkP

(i),−
k Hᵀ

k

]−1

= P
(i),+
k Hᵀ

k E
[
(R(i))−1

]
. (62)

The result is the well-known formula for the Kalman gain.
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The update of the estimate x(i),−
k prescribed by Formula (29)

can be rewritten as follows:

x̂
(i),+
k = P

(i),+
k

(P (i),−
k

)−1

x̂
(i),−
k +Hᵀ

kE
[
(R(i))−1

]∑
j∈I(i)R

y
(j)
k


= P

(i),+
k

(
P

(i),−
k

)−1

x̂
(i),−
k +P

(i),+
k Hᵀ

kE
[
(R(i))−1

]∑
j∈I(i)R

y
(j)
k .

Now, we substitute (59) for P (i),+
k in the first summand, then

(62) for P (i),+
k Hᵀ

kE
[
(R(i))−1

]
in the second, and rearrange.

This yields the Kalman update formula

x
(i),+
k = x̂

(i),−
k −K(i)

k

∑
j∈I(i)R

(
y

(j)
k −Hkx̂

(i),−
k

)
. (63)

The formulas (58) – (63) are the counterparts of the standard
Kalman filter formulas summarized, e.g., in [49, Chap. 5].
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[12] S. Särkkä and A. Nummenmaa, “Recursive noise adaptive Kalman
filtering by variational Bayesian approximations,” IEEE Trans. Autom.
Control, vol. 54, no. 3, pp. 596–600, Mar. 2009.
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