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a b s t r a c t

Fully probabilistic design (FPD) of control strategies models both the closed control loop and control
objectives by joint probabilities of involved variables. It selects the optimal strategy as the minimiser
of Kullback–Leibler (KL) divergence of the closed-loop model to its ideal counterpart expressing the
control objectives. Since its proposal (Kárný, 1996) and general algorithmisation (Kárný and Guy, 2006),
FPD has been axiomatised (Kárný and Kroupa, 2012) and successfully applied both theoretically (Kárný
and Guy, 2012) and practically (Quinn et al., 2003; Kárný et al., 2006)[1]. This paper refines the FPD
axiomatisation and bridges FPD to standard stochastic control theory, which it encompasses, in a better
way. This enhances applicability of both as well as of its popular, independently proposed, special case
known as KL control (Guan et al., 2014).

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The paper inspects an extension of the standard stochastic
control [2–4]. The standard expresses the control aims by a per-
formance index and it takes the minimiser of its expectation
as the optimal control strategy. The studied fully probabilistic
design [5] of control strategies specifies the control aims via an
ideal (desired) probability distribution of variables in the closed
control loop and minimises Kullback–Leibler divergence [6] of
their probability distribution to the chosen ideal probability dis-
tribution.

The optimal strategy design is studied under the presentation-
simplifying relaxable assumptions that the system input1 ut ∈ u
is selected at discrete time t ∈ t = {1, . . . , |t|}, |t|< ∞, and the
closed-loop state xt ∈ x is observed. The state xt and input ut
pairs form the closed-loop behaviour

b = (x|t|, u|t|, . . . , x1, u1) ∈ b = (x × u)|t|.

An uncertain response of the controlled system and randomised
system inputs (ut )t∈t make the behaviour b ∈ b random. The joint
probability density cs(b) (pd2) is thus the most general model
of the closed loop [8].3 The joint pd cs(b) depends on the used,
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1 Throughout z denotes a set of z’s and |z| is cardinality of z . If unspecified,
z is a subset of finite-dimensional real space. Mappings are distinguished by san
serif fonts.
2 Existence of this Radon–Nikodým derivative with respect to Lebesgue’s or

counting measure is assumed, [7]. All statements on the behaviour b ∈ b are
valid almost everywhere.
3 Works analysing it mathematically call it strategic measure, e.g. [9].

generally randomised, control strategy s ∈ s. The chain rule for
pds [10] and the fact that xt is the state imply

cs(b) =

m(b)  ∏
t∈t

m(xt |ut , xt−1)

s(b)  ∏
t∈t

s(ut |xt−1) = m(b)s(b). (1)

The conditional pds m(xt |ut , xt−1) at all time instances t ∈ t
model the controlled system. They describe probabilities of the
transition from the state xt−1 to the states xt ∈ x for the system
input ut . The conditional pds s(ut |xt−1) at all time instances t ∈ t
model the strategy. They give probabilities of using the inputs
ut ∈ u at the state xt−1.

Any design chooses a strategy so ∈ s and takes it as optimal
under the design circumstances. Stochastic control theory arrives
to it as follows. It specifies a loss L(b) assigning a real value
to each behaviour b ∈ b. The loss is bounded from below by
L(bo) > −∞, where bo ∈ b is the most desired behaviour. The ex
post accessible value L(b) ≥ L(bo) expresses the loss attributed to
the deviation of the realised behaviour b from the most desired
behaviour bo. By definition, stochastic nature of the closed-loop
makes behaviour realisations b ∈ b dependent on the used
strategy s ∈ s and ‘‘something else’’ [11], which is inaccessible by
the strategy designer. Irrespectively of the cause – randomness,
uncertainty, incomplete knowledge, vagueness, etc. – the loss
does not a priori order quality of strategies. Bayesian methodol-
ogy [12,13] provides the cause-indifferent counteracting of this
obstacle. It selects the optimal strategy so as the minimiser of a
suitable functional Ts acting on uncertain losses.

Theorem 9.3-5 in [7] represents the functional Ts as an ex-
pected performance index Ts

= Es
[Is]. The design of the optimal
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control strategy facing any uncertainty then reads

soI ∈ Argmin
s∈s

∫
b
Us(L(b), b)cs(b) db = Argmin

s∈s
Es

[Is]

Is(b) = Us(L(b), b), Es
[Is] =

∫
b
Is(b)cs(b) db. (2)

Us is a non-decreasing, real-valued utility function fulfilling
Us(0, b) = 0. For the assumed behaviours b ∈ b, the minimised
functional in (2) guarantees that soI is Pareto optimal. The rep-
resentation (2) of functionals Ts ordering control strategies is
universal4 whenever

A1 Ts is locally linear: Ts
[
Lα

+ Lβ
]

= Ts [Lα]+ Ts
[
Lβ

]
for losses

Lα, Lβ
∈ L meeting LαLβ

= 0.
A2 Ts is sequentially and boundedly continuous.

Local linearity is significantly weaker than the usual linearity
required by the standard Bayesian expected utility theory [13]. It
only requires linearity on loss functions L(b), which are non-zero
on disjunct behaviour sets bα , bβ . The continuity requirement
represents no practical constraint.

Bayesian, cause-independent, handling of stochasticity and
knowledge elicitation based on minimum cross-entropy principle
[14,15] provide a systematic deductive methodology [10,16,17]
giving the controlled-system model m(b) (1) needed for the op-
timal design (2). The construction of the loss L and utility U,
determining the performance index Is (2), is still a methodologi-
cal problem. There is no universal deductive way of combining
multiple behaviour attributes [18,19] expressing desirability of
behaviours b ∈ b by a scalar-valued performance index Is(b). Its
bad choice may make the optimal strategy soI (2) quite poor. The
probabilistic quantification of control objectives offers deductive
rules of probability theory for their combinations. Thus, the re-
vised fully probabilistic design conceptually overcomes the lack
of rules for a deductive quantification of control objectives, for
the choice of the performance index Is (2).

2. FPD axiomatisation

The performance indices giving the optimal strategies (2),
which result into the same closed-loop model are
design-equivalent. Thus, a choice of a single ideal closed-loop
model ci(b), b ∈ b, meeting, cf. (1), (2),

ci = cs
o
I (3)

replaces the choice of equivalent performance indices. It should
assign high values to desired closed-loop behaviours and small
values to undesired ones.

For a chosen ideal closed-loop model ci (3), it suffices to spec-
ify any representant Is of the equivalent performance indices. The
paper [20] formulated several axioms (assumptions) under which
such a representant is found. Their modified, less restrictive and
more intuitive, version is now presented.

A3 Let behaviours bα, bβ
∈ b have equal values of the closed-

loop model, cs(bα) = cs(bβ ), and also the values of the loss
equal, L(bα) = L(bβ ). Then, the corresponding values of the
performance-index equal, Is(bβ ) = Is(bβ ).
A3 demands equal contributions of equally probable be-
haviours bα, bβ with the equal losses L(bα), L(bβ ) to the
value of the optimised functional Ts

= Es
[Is] (2). This ‘‘natu-

ral" wish is met iff the utility Us depends on the behaviour
b ∈ b and the strategy s only via the values of the loss L(b)

4 It means that it serves to all control tasks dealing with the same behaviour
set b, facing the same uncertainty but possibly differing in control objectives or
sets s of inspected strategies.

and the values of the joint pd describing the closed loop
cs(b)

Is(b) = Us(L(b), b) = Ũ(L(b), cs(b)).

There, the newly-introduced utility function Ũ preserves
monotonicity of utility U in the values of the loss L and its
zero value for the zero loss.

A4 No bijective mapping b ↔ b̃ of behaviours changes the value
Ts assigned to a strategy s ∈ s.
A4 attributes a fixed quality to each strategy s ∈ s irrespec-
tively of the coordinate system of the behaviour b ∈ b. It is
simply met when (temporarily) assuming a strictly positive
ideal closed-loop model

ci(b) > 0 ∀b ∈ b. (4)

Under (4), the substitution formula for multivariate integrals
implies that A4 is met iff the performance index

Is(b) = Ũs(L(b), cs) = V(L(b), ρs(b)), ρs(b) =
cs(b)
ci(b)

. (5)

There, the utility function V preserves monotonicity of the utility
Ũ in the values of the loss L and its zero value for the zero loss.

A5 Representant Is(b) is in the inspected equivalence class.
A5 is the elementary property of any class representant.
Operationally, it means that the optimal strategy soI (2)
computed for this representant Is is to guarantee (3) for the
given ideal closed-loop model ci determining the equiva-
lence class.

Proposition 1 (Jensen’s Representant). Let the closed-loop ideal
model ci meet (4) and the utility function V (5) be a function W
of the ratio ρs

=
cs

ci

Is(b) = V(L(b), ρs) = W(ρs(b)), (6)

while the function ρW(ρ) is strictly convex for ρ > 0 and the value
W(1) is finite. Then, the performance index Is (6) meets A1–A5.

Proof. A5, which remains to be proved, directly follows from
Jensen’s inequality [7], which can be seen as the definition of
convexity. Indeed, for any s ∈ s,

Es
[Is] =

∫
b
ρs(b)W(ρs(b))ci(b) db (7)

≥

∫
b
ρs(b)ci(b) db  

=1

×W

(∫
b
ρs(b)ci(b) db  

=1

)
= W(1).

The left-hand side of (7) reaches the minimum iff the strategy soI
guarantees ρsoI (b) = 1 ⇔ cs

o
I = ci on b. □

A6 The optimal strategy of concatenated but independent con-
trol tasks consists of the optimal strategies obtained for the
individual control tasks.
A6 prevents the design methodology to enforce dependence
into the solution of independent control problems. It singles
out Kullback–Leibler divergence [6] among I-divergences
[21] given by (6).

Proposition 2 (FPD). The utility W(ρ) = ln(ρ) (6) meets A1–A6.
It defines the optimal strategy as the minimiser of KL divergence
D(cs||ci)

so ∈ Argmin
s∈s

∫
b
cs(b) ln

(
cs(b)
ci(b)

)
db = Argmin

s∈s
D(cs||ci). (8)

The optimisation (8) is dubbed fully probabilistic design of decision
strategies.
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Proof. It remains to inspect A6. A pair of independent control
problems deals with the behaviour b = (bα, bβ ) ∈ b = bα

×

bβ , bα
∩ bβ

= ∅. It uses the ideal closed-loop model ci(b) =

ciα(bα)ciβ (bβ ). The optimised functional (6) on the pair b = (bα,

bβ ) equals the sum of individual functionals

0 =

∫
bα

∫
bs
csα(bα)csβ (bβ ) ×[

W(ρsα(bα)ρsβ (bβ )) − W(ρsα(bα)) − W(ρsβ (bβ ))
]
dbαdbβ .

This gives the functional equation for the utility function W (6),
which has to be met for arbitrary ratios ρα, ρβ > 0

W(ραρβ ) = W(ρα) + W(ρα).

It has W(ρ) = ln(ρ) for ρ > 0 as its only smooth solu-
tion, [22]. □

3. Relation to standard stochastic control

The dependence of the performance index Is (2) on the op-
timised strategy s ∈ s makes the optimised functional Es

[Is]
non-linear in the opted strategy s. The standard stochastic control
design deals with s-independent performance indices I. For them,
the minimised Es

[I] =
∫
b I(b)m(b)s(b) db is linear in the opted

strategy s. Consequently, the optimal strategy soI is deterministic
feedback [2]. The ideal closed-loop model specified by (3) then
violates (4). The following proposition addresses this discrepancy
and relates FPD to the standard stochastic control. It uses the
closed-loop neg-entropy Hs

=
∫
b c

s(b) ln(cs(b)) db.

Proposition 3 (Stochastic Control as FPD Limit). Let the perfor-
mance I be strategy-independent. Then, the optimal strategy min-
imising Es

[I] over strategies with the closed-loop neg-entropy
separated from its supremum,

Hs
≤ h < sup

s∈s
(Hs) = h ≤ ∞, (9)

coincides with the FPD-optimal strategy soλ given by the ideal closed-
loop model

ci(b) =
exp[−I(b)/λ]∫

b exp[−I(b)/λ] db
. (10)

The positive scalar λ = λ(h) converges to zero if the separating
parameter h in (9) converges to h. The FPD-optimal strategy soλ then
converges to minimiser of Es

[I], i.e. to the strategy optimal in the
standard stochastic-control sense.

Proof. The deterministic unconstrained optimal strategy reaches
the supremum of the neg-entropy. Thus, the constraint (9) is ac-
tive. The corresponding unconstrained minimisation of the Kuhn–
Tucker functional, given by the multiplier λ = λ(h) > 0,
reads

Argmin
s∈s

Es
[I + λ ln(cs)] = Argmin

s∈s
Es

[I/λ + ln(cs)]

= Argmin
s∈s

Es
[ln(cs/exp(−I(b)/λ))] = Argmin

s∈s
D(cs||cs

o
λ ).

The claimed convergence is then an obvious consequence of the
relaxation of the constraint (9). □

Proposition 3 generalises its analogy in [20]. It origins in [23],
where dual-control features of FPD are studied. Their discussion,
connections with the theory of rational inattention [24], simu-
lated annealing [25], Boltzmann machine, etc., are out of scope of
this brief paper. It is important to notice that by focusing on FPD
no stochastic control problem is omitted. Formula (10) relates
them constructively.

4. Concluding remarks

Technically, the paper refines the axiomatisation [20].
Propositions 1, 2 lead to FPD under weaker assumptions than the
former version based on variational arguments mimicking [26].
Proposition 3 provides a simpler connection of FPD with the
standard stochastic control than that presented in [20].

The existence of the axiomatisation allowed us to squeeze
the FPD theory into a short paper without entering subtleties
of preference and strategy orderings. The interested reader is
referred to it [20]. Even control experts who are uninterested in
subtleties of this type could care about FPD, which:

• provides a unified theory properly extending the standard
stochastic control, Proposition 3;

• unifies otherwise disparate languages describing controlled
systems and control objectives;

• finds minimising strategy explicitly even in general setting
[5,27], which makes approximate dynamic programming
[28] simpler as only the expectation is to be approximated
instead of the operation pair (expectation, minimisation) of
the standard optimal stochastic control;

• allows to address hard non-Gaussian control problems
[1,29–31];

• has approximation [26] and generalisation of minimum KL
principles [15] as simple consequences [14,32];

• puts KL control [33–35] into a wider perspective;
• feeds a proper exploration into an implementable adaptive

control [23];
• transforms quantitative description of control objectives

into the choice of the ideal closed-loop model: this allows
to employ estimation [36] and approximation [37] to this
purpose;

• reveals that any control-objectives quantification is to re-
spect the model of the controlled system [38–40] and in
adaptive context it adapts performance index [41];

• converts cooperation of simple filters or controllers (agents)
into the pooling problem [42] of mutually understandable
shared pds [43–46];

• offers unifying framework to probabilistic control design
[47], etc.
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